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Morphogenesis often yields organs with robust size and shapes, whereas cell growth and defor-
mation feature significant spatio-temporal variability. Here, we investigate whether tissue responses
to mechanical signals contribute to resolve this apparent paradox. We built a model of growing
tissues made of fiber-like material, which may account for the cytoskeleton, polar cell-cell adhesion,
or the extracellular matrix in animals, and for the cell wall in plants. We considered the synthesis
and remodeling of this material, as well as the modulation of synthesis by isotropic and anisotropic
response to mechanical stress. Formally, our model describes an expanding, mechanoresponsive,
nematic, and active fluid. We show that mechanical responses buffer localized perturbations, with
two possible regimes - hypo-responsive and hyper-responsive, and the transition between the two
corresponds to a minimum value of the relaxation time. Whereas robustness of shapes suggests
that growth fluctuations are confined to small scales, our model yields growth fluctuations that
have long-range correlations. This indicates that growth fluctuations are a significant source of
heterogeneity in development. Nevertheless, we find that mechanical responses may dampen such
fluctuations, with a specific magnitude of anisotropic response that minimizes heterogeneity of tis-
sue contours. We finally discuss how our predictions might apply to the development of plants and
animals. Altogether, our results call for the systematic quantification of fluctuations in growing
tissues.

Variability has emerged as an inherent feature of many
biological systems (1, 2), spanning molecular scales —
such as in cytoskeletal dynamics (3) — to tissular scales
— such as in organ expansion (4). For instance, cell
growth was found to be spatially heterogeneous (5–9),
cell cycle length may appear random (10), and there is
extensive evidence of stochastic gene expression (11, 12).
Such variability has been hypothesised to be required for
the emergence of complex shapes since it favors symme-
try breaking (13) and self-organisation (14) during devel-
opment. Nevertheless, growth variability would need to
be restrained to ensure robust morphogenesis. In plant
tissues, an increase in the spatial correlations of growth
fluctuations was shown to reduce the robustness of floral
organ size and shape (15). In animal tissues, work on the
wing imaginal disc of the fruit fly indicates that robust
wing development involves cell competition and requires
the modulation of cell division and apoptosis (16, 17).

Mechanical signals are natural candidates for the reg-
ulation of growth variability because spatial differences
in growth or in deformation rates induce mechanical
stress (18–20). In animals, a mechanical feedback af-
fecting the rate of cell divisions was hypothesized (21)
and then supported by experiments in Drosophila and
in zebrafish (22–25). Actomyosin cables are reinforced
by mechanical tension in the wing imaginal disk of
Drosophila (26). In plants, mechanical sensing is required
to prevent growth fluctuations in roots (27). The deposi-
tion of cellulose fibers, the main load-bearing component
of the cell wall, depends on wall tension (28, 29), which
stiffens the cell wall in the direction of maximal tensile
stress (30).

∗ Corresponding author: arezki.boudaoud@ens-lyon.fr

Previous theoretical studies have modelled how me-
chanical feedback regulates proliferation (21) and how
transitions in tissue rheology are induced by proliferation
and apoptosis (31, 32). Here, we build upon such studies;
in addition, we account for small sources of stochastic-
ity and investigate the consequences on large scale tissue
growth. We focus on generic aspects of tissue growth,
so that our results may be broadly applicable to active
matter (33).

GROWING TISSUES AS

MECHANORESPONSIVE ACTIVE FLUIDS

We built a continuous two-dimensional model of tissue
growth. The tissue is assumed to be made of a mate-
rial with a preferred orientation (i.e. fiber-like), account-
ing for its main mechanical elements: cytoskeleton, polar
cell-cell adhesive junctions, extra-cellular matrix (ECM)
in animals; cellulose within the cell wall in plants. Hence,
the state of the tissue is locally described by two order
parameters, the density of fibers and the nematic field de-
scribing the orientation of fibers and their degree of align-
ment, which confer isotropic and anisotropic mechanical
properties to the material, respectively. In our contin-
uous description, we only account for variations in den-
sity, orientation, and degree of alignment at supracellular
length scales, though the material may be patterned at
smaller scales (sub-cellular or cellular). We account for
fiber synthesis and remodeling, which may be modulated
by responses to mechanical stress: reinforcement of actin
stress fibers or of the ECM, enhancement of myosin activ-
ity, or fluidisation by cell division, in animals; increase in
cell wall synthesis, cellulose synthesis, or cell division, in
plants. Synthesis has a small random component, consid-
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ered as a stochastic, uncorrelated source. Stochasticity
in synthesis induces growth heterogeneity, which results
in mechanical stress and feeds back on synthesis. We
use a viscous description of long-term tissue remodeling,
so that we cannot account for short-term elastic tissue
behavior, which would be better captured by an elastic
model as performed in a parallel study (34). Formally,
the model describes an expanding, mechanoresponsive,
nematic, and active fluid.

A model of nematic viscous fluid

We describe the fibers with a density ρ(~r) and a

nematic 2 × 2 tensor
↔
s (~r), that vary with the posi-

tion vector ~r. The nematic tensor
↔
s may be defined

as an average over a small region around position ~r,
↔
s (~r) = 〈n̂n̂ − 1/2

↔
1 〉~r, where the unit vector n̂ de-

fines the polarization of fiber monomers and
↔
1 is the

unit tensor. Regions of the material move at velocity
~v(~r), which may also vary spatially. In the following,
we use the gradient of the velocity field, decomposed

into strain rate,
↔
γ = 1/2

{
(∂~r~v) + (∂~r~v)

T
}
, and vorticity

↔
ω = 1/2

{
(∂~r~v)− (∂~r~v)

T
}
, where ∂~r stands for the par-

tial derivative with respect to position (~r) and T for the
transpose of the preceding tensor.

We neglect diffusion of fibers in the tissue. The equa-
tions of continuity for density and nematic tensor are
then

∂t ρ+ ∂~r · {~v ρ} = κρ, [1]

∂t

{
ρ
↔
s
}
+ ∂~r ·

{
~v ρ

↔
s
}
+ ρ

{
↔
ω ·

↔
s −

↔
s ·

↔
ω
}
=

↔
κ
s
, [2]

where t is time, κρ is the rate of synthesis of material, and
↔
κ
s

is a nematic tensor that describes the orientation of
synthesis and its degree of alignment. The second terms
in the left-hand sides of [1-2] account for the dilution of
material density and degree of alignment due to tissue
expansion; the third term of [2] accounts for the rotation
of fibers due to the flow.

Expansion of the tissue is assumed to be driven by a
uniform and isotropic tension, p, which may correspond
to turgor pressure in plants, or to a pressure induced
by cell divisions in animals (31); this tension is one of
the active components of our model. The mechanical

stress,
↔
σ , then follows the force balance equation ∂~r ·[↔

σ − p
↔
1
]
= ~0, supplemented with standard boundary

conditions: no shear stress and normal stress equal to
tension, p, at system boundaries. We consider time scales
long enough for tissue remodeling to occur, so that we

neglect elastic behavior, assuming that
↔
σ depends on the

strain rate tensor, on the density, and on the nematic

tensor. This dependence
↔
σ (

↔
γ , ρ,

↔
s ) is the constitutive

law that characterizes the rheology of the tissue.

In the following, we consider small fluctuations around
an average state. The statistical averages of variables
are denoted by brackets. For convenience, tensorial fields
↔

Φ = Φ
↔
1 +

↔

Φd are decomposed into hydrostatic (Φ) and

deviatoric (
↔

Φd) components,
↔

Φd being traceless. On av-
erage, the tissue has uniform density, 〈ρ〉, and is isotropic,

〈
↔
s 〉 =

↔
0 ; mechanical stress 〈

↔
σ 〉 = 〈σ〉

↔
1 has only a hy-

drostatic component 〈σ〉; areal growth rate 2γ = ∂~r · ~v
is on average uniform; through an appropriate change of
reference frame, the averaged velocity may be written as
〈~v〉 = 〈γ〉~r. Assuming small fluctuations of all fields, we
linearize the constitutive equation as a function of the

hydrostatic strain rate, γ, the deviatoric strain rate,
↔
γ d,

the density, ρ, and the nematic tensor
↔
s ,

σ − 〈σ〉 = η(1+ν) (γ − 〈γ〉) + cρ (ρ− 〈ρ〉), [3]

↔
σ d = η(1−ν)

↔
γ d + cs

↔
s , [4]

where η is an effective viscosity coefficient, cρ and cs are
effective compressibilities, and ν is analog to Poisson’s
ratio. In the right-hand side of [3-4], the first term ac-
counts for viscous-like remodelling and the second for
tissue compressibility (changes in density and alignment
under stress).

Activity: mechanical responses and fluctuations

On the one hand, mechanical stress orients cell divi-
sions (22, 23, 35) and plant cell wall reinforcement (30).
On the other hand, synthesis of ECM or of cell wall and
cytoskeleton polymerization are not uniform in space,
having some level of randomness (3, 36, 37). The two
classes of phenomena are incorporated in the other active
component of our model, namely synthesis. Without loss
of generality, synthesis may be written at linear order in
fluctuations as

κρ − 〈κρ〉 = −
〈ρ〉

τρ

(
ρ− 〈ρ〉

〈ρ〉
−

σ − 〈σ〉

σρ

)
+ ξρ, [5]

↔
κ
s
= −

〈ρ〉

τs

(
↔
s −

↔
σ d

σs

)
+

↔

ξ s, [6]

where the first terms in the right-hand side of [5-6] de-
scribe the mechanical feedback on synthesis. τρ and τs
are the response times of the mechanical feedbacks, σρ

and σs determine the amplitudes of the mechanical feed-

backs, and ξρ and
↔

ξ s are the hydrostatic and devia-
toric part of the noise, respectively. Noise is assumed
to be white and Gaussian with zero mean, and has ex-
tended space correlation characterized by noise strengths
Kρρ and Kss and by a correlation length ℓ, which
is typically sub-cellular or cellular. The correlations
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functions of noise take the form 〈ξρ(t1, ~r1)ξρ(t2, ~r2)〉 =

Kρρ δ(t1− t2)g (|~r1 − ~r2|/ℓ) , and 〈
↔

ξ s(t1, ~r1)
↔

ξ s(t2, ~r2)〉 =
Kss δ(t1 − t2) g (|~r1 − ~r2|/ℓ) . δ is the delta distribution
and g(x) is a positive function decaying quickly to zero
as x → +∞. (We use g(x) = e−x in calculations.) Carte-
sian coordinates of the 4-tensor Kss are constrained by

the traceless nature of
↔

ξ s to be of the form Kssabcd =
Kss {δadδbc + δacδbd − δdbδcd}, where δij is the Kronecker
delta. We do not take the limit ℓ → 0 for spatial cor-
relations because otherwise the problem would have no
characteristic lengthscale. Accordingly, we hereafter use
ℓ as a unit of length.

Dimensionless parameters

We rescale all fields and variables as follows.

P = cρ
ρ−〈ρ〉
2η〈γ〉 ,

↔

S = cs
2η〈γ〉

↔
s ,

↔

Γ =
↔

γ−〈
↔

γ 〉
2〈γ〉 ,

Ξρ =
cρ

4η〈γ〉2 ξρ,
↔

Ξs =
cs

4η〈γ〉2

↔

ξ s,
↔

Σ =
↔

σ−〈
↔

σ 〉
2η〈γ〉 ,

T = 2t〈γ〉, ~R = ~r
ℓ ,

~V = ℓ~v−〈~v〉
2〈γ〉 .

P and
↔

S are the dimensionless density fluctuation and
nematic tensor. They are associated to the dimension-

less random components of synthesis Ξρ and
↔

Ξs.
↔

Γ is the

dimensionless fluctuation of strain rate tensor,
↔

Σ is the

dimensionless stress fluctuation. T, ~R, and ~V are, respec-
tively, the dimensionless time, position vector, and veloc-
ity fluctuation. The dimensionless versions of Eqs. [1-6]
are given in [SI].

This rescaling shows that the model has 8 dimen-
sionless parameters. ωρ = 1 + 1/(2τρ〈γ〉) and ωs =
1 + 1/(2τs〈γ〉) characterize the relaxation of the tissue
in absence of mechanical feedback. β0 = cρ〈ρ〉/(2η〈γ〉)
compares the contributions of density variations and
growth to mechanical stress. ν is the dimensionless dif-
ference between effective dilatational and shear viscosi-
ties. Kρρ = Kρρ/(16 η

2〈γ〉4) and Kss = Kss/(16 η
2〈γ〉4)

are the rescaled magnitudes of random synthesis. βρ =
cρ〈ρ〉/(2τρ〈γ〉σρ) and βs = cs/(2τs〈γ〉σs) are the mea-
sures of isotropic and anisotropic responses to stress.

RESPONSE TO PERTURBATIONS IN

SYNTHESIS

The general formulation is given in the Appendix.
Here, we discuss tissue response to an isotropic pertur-
bation that is localised in space – a disk of initial ra-
dius ℓ – and in time – a duration that is small with
respect to all other time scales. Formally, the pertur-

bation to density synthesis is Ξρ(T, ~R) = δ(T)H(1− |~R|),
with H the Heaviside function, while the perturbation

to synthesis of nematic order vanishes,
↔

Ξs(T, ~R) =
↔
0 .

The fields Φ = P,
↔

S ,
↔

Σ,
↔

Γ have self-similar forms,

Φ(T, ~R) = AΦ(T)BΦ(~R e−T/2), where AΦ represents the
amplitude of the perturbation and BΦ its spatial pat-
terns. The dynamics of the amplitude is specific to each
field, whereas the pattern always expands with a char-
acteristic lengthscale ℓ exp(〈γ〉t) (in dimensional units).
AΦ(T ) and BΦ are represented in Fig.1a-e and are ex-
plicitly given in [SI]. An immediate consequence of the
perturbation is to stiffen the tissue, which reduces expan-
sion (AΓ(0) < 0) and increases stress levels (AΣ(0) > 0);
then the anisotropic mechanical response gradually in-
duces radial fibers and reinforcement in the direction
of the main stress. The behavior at longer times de-
pends on the level of mechanical response. For low
anisotropic response, i.e. for βs smaller than a thresh-
old computed in [SI], the tissue is hypo-responsive and
all amplitudes evolve monotonously as a function of time
and vanish at times that are long with respect to the
correlation time τc ; tissue nematic orientation, strain
rate, and mechanical stress are all mainly radial. For
high anisotropic response, i.e. for βs above this thresh-
old, the tissue is hyper-responsive, and amplitudes show
an underdamped-like dynamics: they change sign before
decaying to 0; after well-defined times, density becomes
slightly smaller than average density, and all of nematic
order, strain rate, and mechanical stress become circum-
ferential. This hyper-responsive regime can be under-
stood as follows. An initially high mechanical anisotropy
of the tissue reduces the radial strain until strain be-
comes circumferential, leading to circumferential stress
and then circumferential nematic order.

These dynamics occur on a time scale τc, which is the
maximal relaxation time scale in response to a perturba-
tion [SI]. The time scale τc depends on the magnitudes
of mechanical responses, as shown in Fig.1f (see Fig. S2
for the effect of other parameters). Isotropic mechanical
feedback makes perturbations more persistent in time,
because τc increases with βρ. The effect of the anisotropic
feedback on relaxation is more complex: τc first decrease
and then increase as βs is increased; the minimum of
τc corresponds to the transition between hypo-response
and hyper-response. This characteristic time τc will also
appear to be important for the effect of noise.

GROWTH FLUCTUATIONS

We find that growth (areal strain rate in 2D) has long-
range correlations, with a correlation function that spa-
tially decays with an exponent −4/τc [SI]. In practice,
growth is measured at the scale of the spatial resolution of
experimental measurements, which depends on the land-
marks used and is often at cell scale. We therefore define
a coarse-grained growth rate and we consider the time
correlation function G(R,T) of the growth of a disk of ra-
dius R, where R is the coarse-graining size i.e. the resolu-
tion size. It is simply related to velocity fluctuations (see

Appendix) by G(R,T) = 1/(πR2)2〈
∫ 2π

0
dθ
∫ 2π

0
dϕ ~R(θ) ·

~V(~R(θ), 0) ~R(ϕ) · ~V(~R(ϕ),T)〉. This correlation function is
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a. Snapshots of tissue density and orientation

b. Tissue density c. Tissue anisotropy

1

1

1

d. Strain rate e. Mechanical stress

1

-.5

f.Correlation time versus magnitudes of mechanical
responses

1 20

3

-1

FIG. 1. Example of mechanical response: tissue relaxation
following a localized disk-shape isotropic perturbation. a.

Snapshots at dimensionless times T = 0, 0.5 and 1. The den-
sity is color-coded according to the heat map on the left (white
corresponds to no deviation from average density). The ne-
matic order parameter is shown by the small lines: the angle
corresponds to line orientation and the degree of anisotropy to
line length. The mechanical responses strengths are βs = .3
and βρ = .6. b-e Amplitudes Aϕ of the perturbations in
tissue density, P, tissue anisotropy, S, strain rate, Γ, and me-
chanical stress, Σ; the corresponding patterns (Bϕ) are shown
as insets. The blue and the green lines show the relaxation
of the amplitude of the perturbations for low, βs = 0.3, and
high, βs = 1.6, anisotropic response, with βρ = .6. Time is
rescaled by the characteristic time, τc. f. The correlation
time, τc, as a function of the strength of the isotropic (βρ)
and anisotropic (βs) mechanical responses.Regimes of hypo-
and hyper- response are respectively on the left and on the
right of the dashed blue line. ωρ = 1, ωs = 1, β0 = 1, and
ν = 0 for all panels.

plotted in Fig.2. Panel a shows time correlations for high
and low anisotropic mechanical feedback, respectively
corresponding to the hypo-response and hyper-response.
The negative correlations for high feedback are related
to underdamped relaxation of hyper-responsive tissues.
The correlation function decays quickly to 0 with a char-

a. Time correlations of areal growth

1

- 2 2
0

b.Size-dependence of areal growth mean square deviation

FIG. 2. Growth fluctuations for low (βs = 0.3, blue) and
high (βs = 1.6, green) anisotropic mechanical response. a.

Time correlation function G(R,T) (normalized by its initial
value) as a function of time, T, normalized by the correla-
tion time, τc; see Fig. S1 for other values of βs. Negative
correlations appear for high anisotropic mechanical response.
b. Growth mean square deviation, G(R,T), as a function of
the coarse-graining size, R. G(R,T) and R are normalized
using R0 = 20. The asymptotic power-law (R−1.2) for low
anisotropic mechanical response is shown by the blue dashed
line. For high anisotropic mechanical response, G(R,T) oscil-
lates around a power-law (R−0.8, dashed green line). βρ = 0.6,
ωρ = 1, ωs = 1, β0 = 1, and ν = 0 for the two panels.

acteristic time scale that is exactly the relaxation time,
τc, shown in Fig.2e. Areal growth mean square deviation
appears roughly scale-invariant, see Fig.2b; it is exactly
scale-invariant for hypo-response and oscillates around a
scale-invariant for hyper-response. Two regimes charac-
terise the decay. In a weakly-correlated regime, when
τc < 2, growth mean square deviation scales with the
inverse of the coarse-graining area, G(R, 0) ∼ R

−2, an
exponent due to the central limit theorem. In a strongly-
correlated regime, when τc > 2, growth mean square de-
viation decays more slowly G(R, 0) ∼ R−4/τc , see [SI] for
a rationale.

FLUCTUATIONS OF ORGAN SHAPE

We are now interested in the effects of noise in syn-
thesis on tissue contours or on organ shape. In a ho-
mogeneous and isotropic tissue, quantifying the fluctua-
tion of contours is equivalent to determining the fluctua-
tion of a vector joining two landmarks followed through-
out growth of the tissue. Hence, we use a Lagrangian

description and consider the position, ~X(T), at time

T of a landmark initially at position ~X0, which is de-
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termined by the dimensionless velocity field ~V through
d ~X(T)
dT = 1

2
~X(T)+ ~V(T, ~X(T)). The fluctuations of ~X are

computed in the Appendix. Heterogeneity of contours
is assessed using the coefficient of variation, CV(T) =

〈‖∆ ~X(T)‖2〉1/2/〈‖ ~X(T)‖〉, which is plotted in Fig.3a. Its
asymptotic trend for long times depends on the value of
the correlation time τc. If τc < 2, then CV ∼ T1/2e−T,
and for τc > 2, CV scales e−2T/τc for low feedback and
oscillate around this trend for high feedback.

We represent in Fig.3b the maximal value of the coef-

ficient of variation, normalized by K
1/2
ρρ . This enables us

to quantify contour fluctuations in the tissue or of organ
shapes. In absence of anisotropic feedback, βs = 0, we
find that heterogeneity increases with isotropic feedback.
Accordingly, a positive isotropic feedback maintains per-
turbations and induces long-range correlations as seen
in previous sections. Conversely, negative isotropic feed-
back dampens perturbations. Whatever the level of
isotropic feedback, βρ, we find that heterogeneity , as a
function of anisotropic feedback, has a single minimum,
which corresponds to the transition between hypo- and
hyper-response. In the hypo-responsive regime, increas-
ing anisotropic feedback dampens perturbations, whereas
in the hyper-responsive regime, increasing anisotropic
feedback enhances perturbations due to the oscillatory
overshoot. Finally, we note that the behavior of hetero-
geneity in Fig.3b is qualitatively similar to the behavior
of correlation time (τc) in Fig.1f, indicating that the cor-
relation time is a major determinant of heterogeneity be-
cause the correlation time sets how the tissue keeps the
memory of its previous state.

DISCUSSION

We built a continuous viscous model of tissue growth,
describing density and nematic order of the tissue, and
modelled material synthesis and responses to mechan-
ical stress. Here, the responses are characterized by
two parameters, βρ and βs, corresponding to isotropic
response - increase in density due to increase in stress
when βρ > 0 - and anisotropic response - increase in tis-
sue anisotropy due to increase in stress anisotropy when
βs > 0, and conversely when these parameters are neg-
ative. In plants, it is believed that cell wall synthesis is
enhanced when tension increases (38), which corresponds
to βρ > 0. The alignment of cortical microtubules with
maximal stress orientation leads to the anisotropic stiff-
ening of the cell wall in this direction (30, 39), while cell
divisions are associated with new cell walls oriented in
the direction of maximal stress (35); both processes yield
βs > 0. In animal tissues, experiments indicate that tis-
sues are fluidised by cell divisions (22–25): proliferation
is enhanced by tensile stress and daughter cells tend to
separate along the direction of highest mechanical stress,
which corresponds to βρ < 0 and βs < 0, respectively. At
shorter time scales, actomyosin cables are reinforced in

a.Coefficient of variation of position versus time

0 1 2 �

1

b.Tissue heterogeneity versus mechanical responses

210

1

-�

FIG. 3. a. Coefficient of variation of position,
〈‖∆ ~X(T)‖2〉1/2/〈‖ ~X(T)‖〉, normalized by its maximal value
CVmax as a function of time, T, normalized by the correlation
time, τc, for low (βs = 0.3, blue) and high (βs = 1.6, green)
anisotropic mechanical response (see Fig. S3 for other val-
ues of βs). The dashed line represents the asymptotic limit
for X0 ≫ 1 for low anisotropic feedback. b. Coefficient of

variation of position, normalized by K
1/2
ρρ , as a function of

the magnitude of anisotropic mechanical response for various
levels of anisotropic feedback. Regimes of hypo- and hyper-
response are respectively on the left and on the right of the
dashed blue line. βρ = 0.6, ωρ = 1, ωs = 1, β0 = 1, ν = 0,
and X0 = 10 for the two panels.

the direction of applied stress (26), which yields βρ > 0.
At intermediate time scales, ECM would also be rein-
forced against mechanical stress (βρ > 0), though its
role in morphogenesis has not received attention until re-
cently (40–43).

In this study, we determined tissue response to a lo-
calized perturbation, depending on the mechanical feed-
back parameters βρ and βs. We generalized predictions
that anisotropic mechanical feedback buffers such a per-
turbation (29), in agreement with observations on tri-
chomes – a cell type with transient faster growth – in
Arabidopsis sepals (29). Here, we unravelled two possi-
ble regimes: hypo-response at low anisotropic feedback
– perturbations decay monotonously and hyper-response
at high anisotropic feedback – perturbations oscillate be-
fore decaying, with a characteristic time that is minimal
at the transition between the two regimes. This case
study provides an assay of mechanical responses in both
plant and animal systems, for instance by inducing clones
with altered growth rate and quantifying the relaxation
timescales in backgrounds with different levels of mechan-
ical response.

We then investigated the statistical properties of tissue
growth, unravelling long-range correlations, with slowly
decaying correlation functions. To test this, it would be
crucial to examine correlation functions in live imaging
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data of growing organs, e.g. (15, 44–47). Given that a
larger correlation time (τc) corresponds to longer-range
correlations, higher levels of anisotropic feedback (inde-
pendently of its sign) or higher levels of positive isotropic
feedback yield more slowly decaying correlations func-
tions. Nevertheless, long-range correlations could be me-
diated by both chemical and mechanical signals. Further
experiments would be required to test whether mechani-
cal signals are involved in such correlations.

Finally, we found that heterogeneity of contours
and shapes is minimal for a well-determined level of
anisotropic mechanical response. This generalizes a sim-
ilar conclusion reached for local heterogeneity using a
cell-based toy model (48). Here we also accounted for
isotropic mechanical responses and considered hetero-
geneity at all scales. We identified the correlation time
as a key parameter determining the extent of spatial cor-
relations and the level of heterogeneity of organ shape.
Based on our results, we make the following predictions.
In plants (βρ > 0 and βs > 0), heterogeneity in devel-
opment can be significantly high unless anisotropic feed-
back is close to the value that minimizes heterogeneity.
In animals, if we discard possible contributions of the
ECM, βρ < 0 and βs < 0 at long time scales, heterogene-
ity in development is minimal when anisotropic feedback
is negligible. Such predictions can be tested by mea-
suring correlations of growth in space and time, as well
as the strength of isotropic and anisotropic variations in
growth due to an external force or to the induction of
clones. More generally, characterizing the fluctuations
of cell properties appears as a promising avenue to shed
light on how signals orchestrate organismal development.

APPENDIX

Response to perturbations in synthesis

We assume the tissue to be infinite, the perturbations

to not induce rotation (〈∂~R ∧ ~V〉 = ~0), and the reference

frame to satisfy ~V(T,R = ~0) = ~0. We investigate the
response to generic perturbations. Because the average
strain rate profile stretches patterns, we consider a mod-
ified Fourier transform defined as

Φ̃(~q,T) =

∫
d2~R e−T e−i~q·~Re−T/2

Φ(T, ~R),

with the position ~R rescaled by the average growth factor
eT/2. Defining q̂ = ~q/|~q| as the direction of the wavevec-
tor, the Fourier transform of the nematic tensor can be

written as
↔

S̃ = S̃qq[2q̂q̂−
↔
1 ]+{q̂

~̃
Sq⊥+

~̃
Sq⊥q̂}. The linear

response for material density and nematic tensor is then
given by

[
P̃(T, ~q)

S̃qq(T, ~q)

]
=

∫
T

−∞

dτ

[
e
(τ−T) [ω]

]
·

[
Ξ̃ρ(τ, ~q)

Ξ̃s qq(τ, ~q)

]
,

~̃
Sq⊥(T, ~q) =

∫ T

−∞

dτ eωs(τ−T)~̃
Ξs q⊥(τ, ~q),

where
[
e(τ−T) [ω]

]
is an exponential involving the re-

laxation matrix [ω], see [SI], and the fields
~̃
Ξs qq =

q̂ ·
↔

Ξ̃s(τ, ~q) · q̂ and
~̃
Ξs q⊥ = q̂ ·

↔

Ξ̃s(τ, ~q) · [
↔
1 − q̂q̂] are the

components of the noise Fourier transform. Finally, the
Fourier transform of the strain rate tensor is decomposed

as
↔

Γ̃ = 2Γ̃ q̂q̂ + q̂
~̃
Γq⊥ +

~̃
Γq⊥q̂, so that the linear response

of strain rate is given by

Γ̃(T, ~q) = −

∫ T

−∞

dτ
eωε(τ−T)

2

[
Cε

ρ Ξ̃ρ(τ, ~q) + Cε
s Ξ̃s qq(τ, ~q)

]
,

[7]

~̃
Γq⊥(T, ~q) = −

1

1−ν

∫ T

−∞

dτeωs(τ−T) ~̃
Ξs q⊥(τ, ~q), [8]

where the integrand in the r.h.s. of [7] is a sum over the
values {+,−} of the index ε and ω± are the two eigenval-
ues of [ω]. The expression of ω± and the coefficients C±

ϕ

can be found in [SI]. We thus obtain the full response of
the tissue to any perturbation of synthesis, in terms of
the modified Fourier transform of the sources of density
and of nematic order.

Growth fluctuations

Using the linear response of flow velocity to synthesis
perturbations [7-8], we derived the velocity fluctuations,
as detailed in [SI]. The correlation tensor of velocity fluc-
tuations is proportional to the unit tensor,

〈~V(T, ~R1)~V(T+∆T, ~R2)〉 =
↔
1
{
Kϕ1ϕ2

C ε1
ϕ1

Cε2
ϕ2
I(~R1, ~R2,∆T, ωε1 , ωε2) [9]

+ 4Kss/(1−ν)2 I(~R1, ~R2,∆T, ωs, ωs)
}
,

for ∆T > 0, with the same C±
ϕ coefficients as in [7-8] and

I(~R1, ~R2,∆T, ω1, ω2) = e∆T( 1
2
−ω1)

{
I(|~R2|e

−∆T

2 , ω1 + ω2)

+I(|~R1|, ω1 + ω2)− I(|~R1 − ~R2e
−∆T

2 |, ω1 + ω2)
}
,

where I (R, ω) = 1
2

∫ 0

−∞ dτeτ(ω−1)
∫ R eτ/2

0 1/x dx
∫ x

0 dr r g (r).
This explicitly defines the correlation functions.

Fluctuations of organ shape

We look for the probability P
[
~X(T)

]
that a material

point follows a path ~X(T). For small fluctuations, this
probability can be simplified as

P
[
~X(T)

]
∼ δ( ~X(0)− ~X0) e

−A[ ~X(T)], [10]
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A
[
~X(T)

]
=

∫
dT

∣∣∣d
~X(T)
dT − 1

2
~X(T)

∣∣∣
2

2
∫∞

0
dτe−

τ
2 〈~V(0, ~X(T)) · ~V(τ, ~X(T)e

τ
2 )〉

,

where the velocity correlation function is given by [9]. We
determined the asymptotic statistics of the Lagrangian
flow by applying the saddle point method (49) to P . P

is maximized by the average trajectory 〈 ~X(T)〉 = ~X0 e
T/2

and the correlation tensor of the position ~X(T) is given
by [SI]

〈∆ ~X(T1)∆ ~X(T2)〉 = [11]
↔
1 X2

0e
(T2+T1)/2J

(
~X0e

T2/2
)(

1− J
(
~X0e

T1/2
)
/J
(
~X0

))
,

J (~u) =
1

u2

∫ ∞

0

dt′
∫ ∞

0

dτ〈~V(0, ~u e
t′

2 ) · ~V(τ, ~u e
t′+τ

2 )〉e−t′− τ
2 ,

with T1 ≤ T2. This correlation tensor does not depend
on T2−T1 because of the lack of time translation invari-
ance.
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