C. Norman, M. Runswick, R. Pollock, and R. Treisman, Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element, Cell, vol.55, pp.989-1003, 1988.

L. Pellegrini, S. Tan, and T. J. Richmond, Structure of serum response factor core bound to DNA, Nature, vol.376, pp.490-498, 1995.

P. Shore and A. D. Sharrocks, The MADS-box family of transcription factors, FEBS J, vol.229, pp.1-13, 1995.

K. Sasaki, R. Aida, H. Yamaguchi, M. Shikata, T. Niki et al., Functional divergence within class B MADS-box genes TfGLO and TfDEF in Torenia fournieri Lind, Mol. Genet. Genom, vol.284, pp.399-414, 2010.

E. R. Alvarezbuylla, S. J. Liljegren, S. Pelaz, S. E. Gold, C. Burgeff et al., MADS-box gene evolution beyond flowers: Expression in pollen, endosperm, guard cells, roots and trichomes, Plant J. Cell Mol. Biol, vol.24, pp.457-466, 2000.

Y. Liu, S. Cui, F. Wu, S. Yan, X. Lin et al., Functional conservation of MIKC*-Type MADS box genes in Arabidopsis and rice pollen maturation, Plant Cell, vol.25, pp.1288-1303, 2013.

L. Parenicová, F. S. De, M. Kieffer, D. S. Horner, C. Favalli et al., Molecular and Phylogenetic Analyses of the Complete MADS-Box Transcription Factor Family in Arabidopsis: New Openings to the MADS World, Plant Cell, vol.15, pp.1538-1551, 2003.

L. Gramzow and G. Theißen, Phylogenomics of MADS-Box genes in plants-Two opposing life styles in one gene family, Biology, vol.2, pp.1150-1164, 2013.

K. Henschel, R. Kofuji, M. Hasebe, H. Saedler, T. Münster et al., Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens, Mol. Biol. Evol, vol.19, pp.801-814, 2002.

S. D. Bodt, J. Raes, K. Florquin, S. Rombauts, P. Rouzé et al., Genomewide structural annotation and evolutionary analysis of the type I MADS-Box genes in plants, J. Mol. Evol, vol.56, pp.573-586, 2003.

C. E. Wells, E. Vendramin, T. S. Jimenez, I. Verde, and D. G. Bielenberg, A genome-wide analysis of MADS-box genes in peach, BMC Plant Biol, vol.15, pp.1-15, 2015.

K. Kaufmann, R. Melzer, and G. Theissen, MIKC-type MADS-domain proteins: Structural modularity, protein interactions and network evolution in land plants, Gene, vol.347, pp.183-198, 2005.

C. Smaczniak, R. G. Immink, G. C. Angenent, and K. Kaufmann, Developmental and evolutionary diversity of plant MADS-domain factors: Insights from recent studies, vol.139, pp.3081-3098, 2012.

E. S. Coen and E. M. Meyerowitz, The war of the whorls: Genetic interactions controlling flower development, Nature, vol.353, pp.31-37, 1991.

J. Moon, S. S. Suh, H. Lee, K. R. Choi, C. B. Hong et al., The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis, Plant J, vol.35, pp.613-623, 2003.

J. H. Lee, S. J. Yoo, S. H. Park, I. Hwang, J. S. Lee et al., Role of SVP in the control of flowering time by ambient temperature in Arabidopsis, Genes Dev, vol.21, pp.397-402, 2007.

C. Liu, H. Chen, H. L. Er, H. M. Soo, P. P. Kumar et al., Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis, vol.135, pp.1481-1491, 2008.

J. Y. Hu and J. Meaux, miR824-regulated AGAMOUS-LIKE16 contributes to flowering time repression in Arabidopsis, Plant Cell, vol.26, pp.2024-2037, 2014.

B. J. Adamczyk, M. D. Lehti-shiu, and D. E. Fernandez, The MADS domain factors AGL15 and AGL18 act redundantly as repressors of the floral transition in Arabidopsis, Plant J, vol.50, pp.1007-1019, 2007.

S. J. Liljegren, G. S. Ditta, Y. Eshed, B. Savidge, J. L. Bowman et al., MADS-box genes control seed dispersal in Arabidopsis, Nature, vol.404, pp.766-770, 2000.

R. Tapialópez, B. Garcíaponce, J. G. Dubrovsky, A. Garayarroyo, R. V. Pérezruíz et al., An AGAMOUS-related MADS-box gene, XAL1 (AGL 12 ), regulates root meristem cell proliferation and flowering transition in Arabidopsis, Plant Physiol, vol.146, pp.1182-1192, 2008.

G. Theissen and H. Saedler, Plant biology. Floral quartets, Nature, vol.409, 2001.

O. J. Ratcliffe, R. W. Kumimoto, B. J. Wong, and J. L. Riechmann, Analysis of the Arabidopsis MADS AFFECTING FLOWERING gene family: MAF2 prevents vernalization by short periods of cold, Plant Cell, vol.15, pp.1159-1169, 2003.

S. D. Michaels and R. M. Amasino, FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering, Plant Cell, vol.11, pp.949-956, 1999.

S. D. Rounsley, G. S. Ditta, and M. F. Yanofsky, Diverse roles for MADS box genes in Arabidopsis development, Plant Cell, vol.7, pp.1259-1269, 1995.

S. Heuer, H. Lörz, and T. Dresselhaus, The MADS box gene ZmMADS2 is specifically expressed in maize pollen and during maize pollen tube growth, vol.13, pp.21-27, 2000.

O. Zobell, W. Faigl, H. Saedler, T. Münster, . Mikc*-mads-box et al., Conserved regulators of the gametophytic generation of land plants, Mol. Biol. Evol, vol.27, pp.1201-1211, 2010.

S. Masiero, L. Colombo, P. E. Grini, A. Schnittger, and M. M. Kater, The emerging importance of type I MADS box transcription factors for plant reproduction, Plant Cell, vol.23, pp.865-872, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00600356

E. I. Barker and N. W. Ashton, A parsimonious model of lineage-specific expansion of MADS-box genes in Physcomitrella patens, Plant Cell Rep, vol.32, pp.1161-1177, 2013.

M. Yagi, Recent progress in genomic analysis of ornamental plants, with a focus on Carnation, vol.84, pp.3-13, 2015.

L. C. Hileman, J. F. Sundstrom, A. Litt, M. Chen, T. Shumba et al., Molecular and phylogenetic analyses of the MADS-box gene family in tomato, Mol. Biol. Evol, vol.23, pp.2245-2258, 2006.

R. Arora, P. Agarwal, S. Ray, A. K. Singh, V. P. Singh et al., MADS-box gene family in rice: Genome-wide identification, organization and expression profiling during reproductive development and stress, BMC Genom, vol.8, 2007.

Y. Zhao, X. Li, W. Chen, X. Peng, X. Cheng et al., Whole-genome survey and characterization of MADS-box gene family in maize and sorghum, Plant Cell Tissue Organ Cult, vol.105, pp.159-173, 2011.

D. F. Gan, Genome-wide sequence characterization analysis of MADS-Box transcription factor gene family in cucumber (Cucumis sativus L.), J. Nucl. Agric. Sci, vol.26, pp.1249-1256, 2012.

Y. Shu, D. Yu, D. Wang, D. Guo, and C. Guo, Genome-wide survey and expression analysis of the MADS-box gene family in soybean, Mol. Biol. Rep, vol.40, pp.3901-3911, 2013.

W. Duan, X. Song, T. Liu, Z. Huang, J. Ren et al., Genome-wide analysis of the MADS-box gene family in Brassica rapa (Chinese cabbage), Mol. Genet. Genom, vol.290, pp.239-255, 2015.

X. Wei, L. Wang, J. Yu, Y. Zhang, D. Li et al., Genome-wide identification and analysis of the MADS-box gene family in sesame, Gene, vol.569, pp.66-76, 2015.

C. Li, Y. Wang, L. Xu, S. Nie, Y. Chen et al., Genome-wide characterization of the MADS-Box gene family in Radish (Raphanus sativus L.) and assessment of its roles in flowering and floral organogenesis, Front. Plant Sci, 1390.

M. Yagi, S. Kosugi, H. Hirakawa, A. Ohmiya, K. Tanase et al., Sequence Analysis of the genome of Carnation (Dianthus caryophyllus L.), DNA Res, vol.21, pp.2319-2321, 2014.

. Tair-website, , 2017.

, The Rice Genome Annotation Project, 2017.

, The National Center for Biotechnology Information. Available online, 2017.

R. D. Finn, P. Coggill, R. Y. Eberhardt, S. R. Eddy, J. Mistry et al., The Pfam protein families database: Towards a more sustainable future, Nucleic Acid Res, vol.44, pp.279-285, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01294685

T. L. Bailey, M. Boden, F. A. Buske, M. Frith, C. E. Grant et al., SUITE: Tools for motif discovery and searching, Nucleic Acids Res, vol.37, pp.202-208, 2009.

, Carnation genome, p.23, 2017.

M. A. Larkin, G. Blackshields, N. P. Brown, R. Chenna, P. A. Mcgettigan et al., Clustal W and Clustal X version 2.0, Bioinformatics, vol.23, pp.2947-2948, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00206210

K. Tamura, G. Stecher, D. Peterson, A. Filipski, S. Kumar et al., Molecular Evolutionary Genetics Analysis version 6.0, Comput. Appl. Biosci. CABIOS, vol.30, pp.2725-2729, 2013.

J. L. Yong and I. Hwang, Identification of a signal that distinguishes between the chloroplast outer envelope membrane and the endomembrane system in vivo, Plant Cell, vol.13, pp.2175-2190, 2001.

S. C. Baudinette, T. W. Stevenson, and K. W. Savin, Isolation and characterisation of the carnation floral-specific MADS box gene, CMB2, Plant Sci, vol.155, pp.123-131, 2000.

Y. Tian, Q. Dong, Z. Ji, F. Chi, P. Cong et al., Genome-wide identification and analysis of the MADS-box gene family in apple, Gene, vol.555, pp.277-290, 2015.

B. Johansen, L. B. Pedersen, M. Skipper, and S. Frederiksen, MADS-box gene evolution-structure and transcription patterns, Mol. Phylogenetics Evol, vol.23, pp.458-480, 2002.

T. L. Bailey and C. Elkan, Fitting a mixture model by expectation maximization to discover motifs in biopolymers, Proc. Int. Conf. Intell. Syst. Mol. Biol, vol.2, pp.28-36, 1994.

L. Gramzow and G. Theissen, A hitchhiker's guide to the MADS world of plants, Genome Biol, vol.11, 2010.

S. Ferrario, R. G. Immink, A. Shchennikova, J. Busscherlange, and G. C. Angenent, The MADS box gene FBP2 is required for SEPALLATA function in petunia, Plant Cell, vol.15, pp.914-925, 2003.

S. Pelaz, G. S. Ditta, E. Baumann, E. Wisman, and M. F. Yanofsky, B and C floral organ identity functions require SEPALLATA MADS-box genes, Nature, vol.405, pp.200-203, 2000.

S. T. Malcomber and E. A. Kellogg, SEPALLATA gene diversification: Brave new whorls, Trends Plant Sci, vol.10, pp.427-435, 2005.

C. Castillejo, M. Romera-branchat, and S. Pelaz, A new role of the Arabidopsis SEPALLATA3 gene revealed by its constitutive expression, Plant J, vol.43, pp.586-596, 2005.

S. Ohmori, M. Kimizu, M. Sugita, A. Miyao, H. Hirochika et al., MOSAIC FLORAL ORGANS1, an AGL6-like MADS box gene, regulates floral organ identity and meristem fate in rice, Plant Cell, vol.21, pp.3008-3025, 2009.

X. Hao, Y. Fu, W. Zhao, L. Liu, R. Bade et al., Genome-wide identification and analysis of the MADS-box gene family in Melon, J. Am. Soc. Horticult. Sci, vol.141, pp.507-519, 2016.

L. Pnueli, D. Hareven, S. D. Rounsley, M. F. Yanofsky, and E. Lifschitz, Isolation of the tomato AGAMOUS gene TAG1 and analysis of its homeotic role in transgenic plants, Plant Cell, vol.6, pp.163-173, 1994.

A. Ray, K. Robinson-beers, S. Ray, S. C. Baker, J. D. Lang et al., Arabidopsis floral homeotic gene BELL (BEL1) controls ovule development through negative regulation of AGAMOUS gene (AG), Proc. Natl. Acad. Sci, vol.91, pp.5761-5765, 1994.

R. Favaro, A. Pinyopich, R. Battaglia, M. Kooiker, L. Borghi et al., MADS-box protein complexes control carpel and ovule development in Arabidopsis, Plant Cell, vol.15, pp.2603-2611, 2003.

S. Lee, J. Kim, J. J. Han, M. J. Han, and G. An, Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in rice, Plant J, vol.38, pp.754-764, 2004.

J. Lee, Regulation and function of SOC1, a flowering pathway integrator, J. Exp. Bot, vol.61, pp.2247-2254, 2010.

K. Kobayashi, N. Yasuno, Y. Sato, M. Yoda, R. Yamazaki et al., Inflorescence meristem identity in rice is specified by overlapping functions of three AP1/FUL-like MADS box genes and PAP2, a SEPALLATA MADS box gene, Plant Cell, vol.24, pp.1848-1859, 2012.

M. S. Ahn, Y. S. Kim, J. Y. Han, E. S. Yoon, and E. C. Yong, Panax ginseng PgMADS1, an AP1/FUL-like MADS-box gene, is activated by hormones and is involved in inflorescence growth, Plant Cell Tissue Organ Cult, vol.122, pp.161-173, 2015.

A. Becker and G. Theißen, The major clades of MADS-box genes and their role in the development and evolution of flowering plants, Mol. Phylogenetics Evol, vol.29, pp.464-489, 2003.

A. Litt, An evaluation of A-function: Evidence from the APETALA1 and APETALA2 gene lineages, Int. J. Plant Sci, vol.168, pp.73-91, 2007.

Q. Gu, C. Ferrándiz, M. F. Yanofsky, and R. Martienssen, The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development, vol.125, pp.1509-1517, 1998.

C. Burgeff, S. J. Liljegren, R. Tapia-lópez, M. F. Yanofsky, and E. R. Alvarez-buylla, MADS-box gene expression in lateral primordia, meristems and differentiated tissues of Arabidopsis thaliana roots, Planta, vol.214, pp.365-372, 2002.

S. Zachgo, H. Saedler, and Z. Schwarz-sommer, Pollen-specific expression of DEFH125, a MADS-box transcription factor in Antirrhinum with unusual features, Plant J. Cell Mol. Biol, vol.11, pp.1043-1050, 1997.

A. Mouradov, B. Hamdorf, R. D. Teasdale, J. T. Kim, K. U. Winter et al., A DEF/GLO-like MADS-box gene from a gymnosperm: Pinus radiata contains an ortholog of angiosperm B class floral homeotic genes, Genesis, vol.25, pp.245-252, 1999.

C. J. Whipple, P. Ciceri, C. M. Padilla, B. A. Ambrose, S. L. Bandong et al., Conservation of B-class floral homeotic gene function between maize and Arabidopsis, vol.131, pp.6083-6091, 2004.

A. Becker, K. Kaufmann, A. Freialdenhoven, C. Vincent, M. A. Li et al., A novel MADS-box gene subfamily with a sister-group relationship to class B floral homeotic genes, Mol. Genet. Genom, vol.266, pp.942-950, 2002.

S. De-folter, A. V. Shchennikova, J. Franken, M. Busscher, R. Baskar et al., A B sister MADS-box gene involved in ovule and seed development in petunia and Arabidopsis, Plant J, vol.47, pp.934-946, 2006.

K. Prasad, X. Zhang, E. Tobón, and B. A. Ambrose, The Arabidopsis B-sister MADS-box protein, GORDITA, represses fruit growth and contributes to integument development, Plant J, vol.62, pp.203-214, 2010.

R. Erdmann, L. Gramzow, R. Melzer, G. Theissen, and A. Becker, GORDITA (AGL63) is a young paralog of the Arabidopsis thaliana B sister MADS box gene ABS (TT16) that has undergone neofunctionalization, Plant J, vol.63, pp.914-924, 2010.

S. D. Michaels and R. M. Amasino, Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization, Plant Cell, vol.13, pp.935-941, 2001.

S. D. Michaels, Y. He, K. C. Scortecci, and R. M. Amasino, Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior in Arabidopsis, Proc. Natl. Acad. Sci, vol.100, pp.10102-10107, 2003.

C. H. Leseberg, A. Li, H. Kang, M. Duvall, and L. Mao, Genome-wide analysis of the MADS-box gene family in Populus trichocarpa, Gene, vol.378, pp.84-94, 2006.

B. J. Adamczyk and D. E. Fernandez, MIKC* MADS domain heterodimers are required for pollen maturation and tube growth in Arabidopsis, Plant Physiol, vol.149, pp.1713-1723, 2009.

W. Verelst, H. Saedler, and T. Münster, MIKC* MADS-protein complexes bind motifs enriched in the proximal region of late pollen-specific Arabidopsis promoters, Plant Physiol, vol.143, pp.447-460, 2007.

M. C. Shih, M. L. Chou, J. J. Yue, C. T. Hsu, W. J. Chang et al., BeMADS1 is a key to delivery MADSs into nucleus in reproductive tissues-De novo characterization of Bambusa edulis transcriptome and study of MADS genes in bamboo floral development, BMC Plant Biol, vol.14, pp.1-16, 2014.

J. Díazriquelme, D. Lijavetzky, J. M. Martínezzapater, and M. J. Carmona, Genome-wide analysis of MIKC-type MADS box genes in grapevine, Plant Physiol, vol.149, pp.354-369, 2008.

Z. Xu, Q. Zhang, L. Sun, D. Du, T. Cheng et al., Genome-wide identification, characterisation and expression analysis of the MADS-box gene family in Prunus mume, Mol. Genet. Genom, vol.289, pp.903-920, 2014.

C. S. Lin, C. T. Hsu, C. Liao, W. J. Chang, M. L. Chou et al., Transcriptome-wide analysis of the MADS-box gene family in the orchid Erycina pusilla, Plant Biotechnol. J, vol.14, pp.635-651, 2015.

L. M. Zahn, To B or Not to B a Flower: The Role of DEFICIENS and GLOBOSA orthologs in the evolution of the angiosperms, J. Hered, vol.96, pp.225-240, 2005.

S. Aoki, K. Uehara, M. Imafuku, M. Hasebe, and M. Ito, Phylogeny and divergence of basal angiosperms inferred from APETALA3-and PISTILLATA-like MADS-box genes, J. Plant Res, vol.117, pp.229-244, 2004.

E. M. Kramer, R. L. Dorit, and V. F. Irish, Molecular Evolution of Genes Controlling Petal and Stamen Development: Duplication and Divergence within the APETALA3 and PISTILLATA MADS-Box Gene Lineages, Genetics, vol.149, pp.765-783, 1998.

E. M. Kramer, H. J. Su, C. C. Wu, and J. M. Hu, A simplified explanation for the frameshift mutation that created a novel C-terminal motif in the APETALA3 gene lineage, BMC Evol. Biol, vol.6, 2006.

M. A. Jaramillo and E. M. Kramer, Molecular evolution of the petal and stamen identity genes, APETALA3 and PISTILLATA, after petal loss in the Piperales, Mol. Phylogenetics Evol, vol.44, pp.598-609, 2007.

S. M. Biewers, Sepallata Genes and Their Role during Floral Organ Formation, 2014.

G. C. Angenent, J. Franken, M. Busscher, D. Weiss, and A. J. Van-tunen, Co-suppression of the petunia homeotic gene FBP2 affects the identity of the generative meristem, Plant J, vol.5, pp.33-44, 1994.

L. Pnueli, D. Hareven, L. Broday, C. Hurwitz, and E. Lifschitz, The TM5 MADS Box gene mediates organ differentiation in the three inner whorls of tomato flowers, Plant Cell, vol.6, pp.175-186, 1994.

J. Vrebalov, D. Ruezinsky, V. Padmanabhan, R. White, D. Medrano et al., A MADS-Box Gene necessary for fruit ripening at the tomato ripening-inhibitor (Rin) locus, Science, vol.296, pp.343-346, 2002.

M. Bemer, K. Heijmans, C. Airoldi, B. Davies, and G. C. Angenent, An atlas of type I MADS box gene expression during female gametophyte and seed development in Arabidopsis, Plant Physiol, vol.154, pp.287-300, 2010.

G. Theißen, R. Melzer, and F. Rümpler, MADS-domain transcription factors and the floral quartet model of flower development: Linking plant development and evolution, vol.143, pp.3259-3271, 2016.

A. S. Rijpkema, S. Royaert, J. Zethof, D. W. Van, T. Gerats et al., Analysis of the Petunia TM6 MADS box gene reveals functional divergence within the DEF/AP3 lineage, Plant Cell, vol.18, pp.1819-1832, 2006.