
HAL Id: hal-02622580
https://hal.inrae.fr/hal-02622580v1

Submitted on 26 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Inference of breed structure in farm animals: empirical
comparison between SNP and microsatellite

performance
Abbas Laoun, Sahraoui Harkat, Mohamed Lafri, Semir Bechir Suheil Gaouar,

Ibrahim Belabdi, Elena Ciani, Maarten de Groot, Véronique V. Blanquet,
Grégoire G. Leroy, Xavier X Rognon, et al.

To cite this version:
Abbas Laoun, Sahraoui Harkat, Mohamed Lafri, Semir Bechir Suheil Gaouar, Ibrahim Belabdi, et al..
Inference of breed structure in farm animals: empirical comparison between SNP and microsatellite
performance. Genes, 2020, 11 (1), pp.1-12. �10.3390/genes11010057�. �hal-02622580�

https://hal.inrae.fr/hal-02622580v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


genes
G C A T

T A C G

G C A T

Article

Inference of Breed Structure in Farm Animals:
Empirical Comparison between SNP and
Microsatellite Performance

Abbas Laoun 1,2, Sahraoui Harkat 3,4, Mohamed Lafri 3,4, Semir Bechir Suheil Gaouar 5 ,
Ibrahim Belabdi 3,4, Elena Ciani 6, Maarten De Groot 7, Véronique Blanquet 8, Gregoire Leroy 9,
Xavier Rognon 9 and Anne Da Silva 8,*

1 Université de Djelfa, Djelfa 17000, Algeria; laounabbes@gmail.com
2 Laboratory of Exploration and Valorization of Steppic Ecosystems (EVES), University of Djelfa, BP 3117,

Djelfa 17000, Algeria
3 Science Veterinary Institute, University of Blida, BP 270, Blida 09000, Algeria; sahraoui_vet@yahoo.fr (S.H.);

medlaffri@yahoo.fr (M.L.); ibrahimveto2@gmail.com (I.B.)
4 Laboratory of Biotechnology related to Animal Reproduction (LBRA), University of Blida, BP 270,

Blida 09000, Algeria
5 Laboratory of Physiopathologie et biochimie de la Nutrition (PpBioNut) Department of Biology,

Abou Bekr Belkaid Tlemcen University, Tlemcen 13000, Algeria; suheilgaouar@gmail.com
6 Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 74100 Bari, Italy;

elenaciani@biologia.uniba.it
7 Dr. Van Haeringen Laboratorium BV, Agro Business Park 100, 6708PW Wageningen, The Netherlands;

mgr@molg3n.com
8 Univ. Limoges, INRAE, EA7500, USC1061 GAMAA, F-87000 Limoges, France; veronique.blanquet@unilim.fr
9 Université Paris-Saclay, INRA, AgroParisTech, GABI 78350 Jouy-en-Josas, France;

gregoire.leroy@agroparistech.fr (G.L.); xavier.rognon@agroparistech.fr (X.R.)
* Correspondence: anne.blondeau@unilim.fr

Received: 15 December 2019; Accepted: 1 January 2020; Published: 4 January 2020
����������
�������

Abstract: Knowledge of population structure is essential to improve the management and conservation
of farm animal genetic resources. Microsatellites, which have long been popular for this type of
analysis, are more and more neglected in favor of whole-genome single nucleotide polymorphism
(SNP) chips that are now available for the main farmed animal species. In this study, we compared
genetic patterns derived from microsatellites to that inferred by SNPs, considering three pairs of
datasets of sheep and cattle. Population genetic differentiation analyses (Fixation index, FST), as
well as STRUCTURE analyses showed a very strong consistency between the two types of markers.
Microsatellites gave pictures that were largely concordant with SNPs, although less accurate. The best
concordance was found in the most complex dataset, which included 17 French sheep breeds (with a
Pearson correlation coefficient of 0.95 considering the 136 values of pairwise FST, obtained with both
types of markers). The use of microsatellites reduces the cost and the related analyses do not require
specific computer equipment (i.e., information technology (IT) infrastructure able to provide adequate
computing and storage capacity). Therefore, this tool may still be a very appropriate solution to
evaluate, in a first stage, the general state of livestock at national scales. At a time when local breeds
are disappearing at an alarming rate, it is urgent to improve our knowledge of them, in particular by
promoting tools accessible to the greatest number.

Keywords: livestock diversity; cross-breeding; simple sequence repeat; short tandem repeat; single
nucleotide polymorphism
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1. Introduction

According to the “Second Report on the State of the World’s Animal Genetic Resources for Food
and Agriculture” [1], indiscriminate cross-breeding (i.e., breeding not carried out within the framework
of selection plans) and the increased use of imported exotic breeds have been identified as the main
causes leading to the genetic erosion of livestock. These practices directly threaten the genetic integrity
of local breeds. Developing countries, under increasing economic pressure, are the most exposed
to this phenomenon. Moreover, in these countries, locally adapted breeds are still mainly reared
under traditional practices and generally there is less formal organization of the livestock sector. Thus,
they are made more vulnerable. In addition, the ease of herds’ mobility, which became widespread
in the age of motorization, has strengthened gene flows between populations. As emphasized by
Sponenberg et al. [2], gene flows, until recently naturally limited by geographical, historical and
cultural conditions, are intensifying, which endangers the genetic integrity of “traditional” breeds
while “standardized” and “industrial” breeds are artificially maintained in a state of protective isolation.

In such a context, knowledge of population structure appears to be essential for managing and
conserving Farm Animal Genetic Resources (FAnGR). This is particularly important in developing
countries, where local breeds adapted to environment, disease and social uses, represent an invaluable
reservoir of genetic diversity that is threatened by agricultural modernization.

In the last few decades, microsatellites (also called short tandem repeats, (STRs) or simple
sequences repeats (SSRs)) have been the marker of choice in animal population genetics. In recent
years, the use of single nucleotide polymorphisms (SNPs) has become increasingly important in this
area. Nowadays, advances in high-throughput sequencing have identified thousands of SNPs, leading
to the development of whole-genome SNP chips for the major farm animal species [3]. Illumina Inc.
provides public and commercial SNP chips for cattle (BovineSNP50v2) [4], sheep (OvineSNP50) [5],
goat (GoatSNP50) [6], chicken (chip with 57,636 SNPs) [7] and pig (PorcineSNP60) [8]. Faced with the
power of chips, microsatellites are increasingly left aside by research focused on genome diversity. At
this time of technological progress, the major concern in the Farm Animal Genetic Resources (FAnGR)
field seems to be the management of the “transition” from microsatellite data to SNP data [3]. However,
the use of array technology implies a higher cost as well as the availability of IT infrastructure able to
provide adequate computing and storage capacity, and indeed the staff to maintain and operate these
platforms. All these conditions can be difficult for developing countries to meet.

A significant amount of work has been dedicated to the comparison between microsatellites
and SNPs considering animal and plant models. If we limit the overview to vertebrates alone, we
can distinguish different types of research. Some studies have compared the effectiveness of the two
markers: (i) for the purpose of performing kinship analyses [9–13], (ii) to infer diversity parameters
e.g., [14,15], and (iii) to analyze genetic relationships between populations [16–20]. This last group is of
particular interest for this study as it aims to enrich knowledge about the precise issue of the inference
of population genetic structure. The studies [16–20] carried out comparative analyses using a few
hundred SNPs, mainly due to the limited availability of SNPs markers for the models considered at the
time of the investigation. The study by Gärke et al. [18] is an exception as it considers 29 microsatellites
and 2931 SNPs in chicken, with the aim of determining the number of SNPs required to achieve the
same differentiation power as for a given standard set of microsatellites.

In this study, we consider the case of farm animals for which the amount of SNP available is now
very high. The question asked is whether a standard set of microsatellites can provide a picture of the
population genetic structure that is comparable to the pattern deduced from a set of several tens of
thousands of SNPs. From this perspective, we empirically compared the performance of microsatellites
and SNPs to infer the relationship among breeds, considering datasets of sheep and cattle from the
literature. For each breed, genotypes were extracted from studies conducted with microsatellites and
from studies performed with SNP chips. The datasets were chosen to consider limited geographical
scales (mainly national) so as to be able to conduct fine genetic analyses. The conclusions of this study
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may lead to reconsider the possible interest toward microsatellites in current and future management
of FAnGR.

2. Materials and Methods

2.1. Datasets

We studied three pairs of datasets including (i) five local Algerian sheep breeds, (ii) 17 French
sheep breeds (mostly local with one composite), and (iii) seven local French cattle breeds. All datasets
were available online except the microsatellite dataset for French sheep [21]. For all the datasets, the
sampling aimed to limit kinship as much as possible, using pedigree when available and/or sampling
animals from as many different birth flocks as possible. As far as possible, the datasets were balanced,
i.e., 20 individuals were considered for each population. The individual inbreeding levels (FIS) obtained
with PLINK v1.07 [22] and Genepop v4.7 [23,24] software for SNPs and microsatellites, respectively,
were used as criteria in the selection of individuals to be retained. All details concerning the datasets
are shown in Table 1 and Table S1.

2.1.1. Microsatellites Datasets

The considered datasets included between 21 and 30 microsatellites (see details in Table 1). Most
microsatellites, regardless of the dataset, were selected according to ISAG/FAO recommendations [25].
The list of the microsatellites used in each dataset is shown in Table S2. Details on primers, original
references and experimental protocols (conditions of PCR, multiplexing) can be found in: [26] for the
French cattle dataset; [27] for the Algerian sheep dataset; and [21] for the French sheep dataset.

Polymorphic information content (PIC), observed heterozygosity (HO) and effective number of
alleles (Ae) were estimated for all markers using Molkin software (version 2.0) [28].

2.1.2. SNPs Datasets

Cattle genotypes [29] were obtained using the Illumina BovineSNP50v1 BeadChip. Algerian
sheep genotypes [30,31] were obtained using the Illumina OvineSNP50K BeadChip. French sheep
population genotypes [32] were obtained using the Illumina Ovine HD SNP chip; for the purpose of the
study, a subset of SNPs was extracted using the OvineSNP50K BeadChip coordinates. The following
filtering parameters were applied with PLINK: (i) SNP call rate ≤ 97%, (ii) SNP minor allele frequency
(MAF) ≤ 10%, (iii) animals with ≥10% missing genotypes, and (iv) SNPs that did not pass the HWE
test (p ≤ 0.001).

2.2. Data Analysis

We computed Nei’s [33] pair-wise FST values and the associated 95% confidence intervals using
the Hierfstat package [34] available for R version 3.5.0 [35]. Following the recommendations of
Malomane et al. [36], no linkage disequilibrium (LD)-based SNP pruning was performed prior to the
FST computations. NeighborNet graphs based on Reynolds’ [37] genetic distances were constructed
using SplitsTree [38].

To ensure that uncorrected LD did not distort the analysis, SNP pruning was used to identify a
subset of SNPs using the –indep option of PLINK with the following settings: 50 SNPs per window, a
shift of five SNPs between windows, and a variation inflation factor threshold of two (corresponding
to r2 > 0.5).

Genetic clusters of individuals were identified via a Bayesian model-based approach implemented
in STRUCTURE 2.3.4 [39–41] using: an admixture model, correlated allele frequencies, 50,000 burn-in
followed by 200,000 simulations. Convergence was checked using ten runs for each K value. The most
probable value of K was estimated on the basis of the ∆K statistic [42]. The program CLUMPAK [43]
available at http://clumpak.tau.ac.il, was used to analyze the multiple independent runs at a single K
value and to visualize the results.

http://clumpak.tau.ac.il
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3. Results and Discussion

Microsatellite datasets included 113 (Algerian sheep dataset) to 425 (French sheep dataset)
individuals (Table 1). The total number of alleles varied from 283 (French cattle dataset) to 343 (Algerian
sheep dataset) (Table 1). The informative significance of the different microsatellite datasets was
substantial (see indices, mean A, mean PIC, mean HO and mean Ae).

Table 1. Genetic diversity measured by dataset.

Algerian Sheep
Datasets

French Sheep
Datasets

French Cattle
Datasets

no. of breeds 5 17 7
Microsatellite datasets:

nb. of individuals 113 425 175
nb. of microsatellites 29 21 30

nb. of alleles 343 292 283
mean A (s.d.) 11.83 (13.29) 13.90 (21.59) 9.43 (11.97)

mean HO (s.d.) 0.77 (0.008) 0.73 (0.018) 0.71 (0.015)
mean PIC (s.d.) 0.74 (0.010) 0.70 (0.018) 0.67 (0.018)
mean Ae (s.d.) 5.06 (4.67) 4.46 (3.89) 3.98 (3.02)
SNP datasets:

nb. of individuals * 36 346 152
nb. of SNP 52,412 40,454 52,324

nb. of SNP after filtration 36,493 39,800 47,286
nb. of SNP after Pruning ** 15,560 31,184 24,841

Mean FST from microsatellites datasets (s.d.) 0.048 (<0.001) 0.104 (0.004) 0.076 (<0.001)
Mean FST from SNP datasets (s.d.) 0.048 (<0.001) 0.105 (0.004) 0.078 (<0.001)

r Pearson *** (p-value) 0.87 (0.001) 0.95 (<0.001) 0.77 (<0.001)

no.: number; s.d.: standard deviation; A: number of alleles; HO: observed heterozygosity; PIC: polymorphic
information content; Ae: effective number of alleles; *: after filtration (see Material and Methods); **: see Material
and Methods; ***: Pearson correlation coefficient between pairwise FST values obtained with the microsatellite
dataset and the SNP dataset.

The SNP datasets included 36 (Algerian sheep dataset) to 346 individuals (French sheep dataset).
The number of SNPs available after filtration ranged from 36,493 (Algerian sheep dataset) to 47,286
(French cattle dataset) (Table 1).

Mean values of FST obtained from microsatellite datasets were very close to those obtained from
SNP datasets (Table 1). Pearson correlation coefficient between pairwise FST values obtained for the
microsatellite dataset and the SNP dataset ranged from 0.77 (French cattle dataset) to 0.95 (French sheep
dataset). All correlation coefficients were significantly different from zero (Table 1). By considering
in detail the 95% confidence intervals for each pair (values obtained from microsatellite and SNP
datasets) of pairwise FST values, the following was observed: for the French sheep dataset, four pairs
of confidence intervals were non-overlapping considering the 136 pairs available (Table S3). For the
Algerian sheep dataset, out of the 10 pairs of FST values, one showed non-overlapping confidence
intervals (Table S4). For the French cattle dataset, one pair on the 21 pairs of FST values showed no
overlapping (Table S5).

NeighborNet graphs, based on Reynolds genetic distances, obtained from microsatellite
genotyping or SNP genotyping gave highly coherent pictures of the breed relationships for each dataset
(Figures 1–3). The major difference was overestimation of genetic distance between Ouled-Djellal
and Rembi in the Algerian dataset (Figure 1), by microsatellites compared to results obtained with
SNP. The same situation occurred for Salers and Aubrac (cattle dataset, Figure 2). The French sheep
dataset, comprising 17 breeds, requires more commentary (Figure 3). Both analyses correctly ordered
the breeds according to their location of origin. Moreover, they clearly distinguished the breeds of the
Massif Central/South of France from the others. In the same way, the genetic peculiarity of Mérinos
de Rambouillet, a patrimonial breed maintained as a closed flock for around 230 years [21], was
obvious. The Romane, a recent composite breed, appeared grouped with the Berrichon du Cher, an
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expected result given the breed was developed by crossing Romanov (not included in the dataset)
with Berrichon du Cher. Differences were mainly seen in the cluster including North-West breeds
(i.e., Roussin de la Hague, Rouge de l’Ouest) and Charmoise. This cluster appeared quite far from the
cluster including Berrichon du Cher/Romane in the microsatellite analysis whereas the SNP analysis
emphasized proximity for these two clusters versus the breeds of the Massif Central/South of France.
Charmoise was developed in the middle of the 19th century by crossing local breeds (i.e., Berrichon du
Cher, Solognot (not included in the dataset), and Mérinos de Rambouillet) with Romney sheep (not
included in the dataset) imported from the United Kingdom. Moreover, Roussin de la Hague, Rouge
de l’Ouest and Berrichon du Cher were largely subjected to the influences of English sheep breeds, to
which is added the substantial influence of Merinos de Rambouillet for the Berrichon du Cher breed.
The history of these breeds explains their grouping, which was only captured as a whole by the SNP
analysis, whereas the microsatellite analysis was more sensitive to the strong link between Berrichon
du Cher and Merinos de Rambouillet.
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STRUCTURE analyses also showed very consistent patterns between the two types of markers
(Figures 4–6). In general, patterns obtained from microsatellite datasets were noisier than those from
SNP datasets.

Considering the French sheep dataset (Figure 4), the most likely number of clusters according
to the ∆K criterion was K = 3 for the microsatellite dataset, highlighting the existence of the three
groups: (i) the Massif Central/South of France group, (ii) the Charmoise/Rouge de l’Ouest/Roussin
de la Hague group, and (iii) the Berrichon/Romane/Mérinos de Rambouillet group. For the SNP
analysis, the ∆K criterion identified K = 2 as the most likely number of clusters, highlighting Mérinos
de Rambouillet as the major distinction versus the other breeds. Both analyses underlined the clear
distinction between the Massif Central/South of France breeds and the others (K3 and K4). Considering
the Massif Central/South of France group, both analyses emphasized the genetic peculiarity of
Manech Tête Rousse, the proximity of Noire du Velay/Rava/Causse du Lot, as well as of Lacaune
meat/Lacaune milk, and also Blanche du Massif Central/Préalpes du Sud/Moureros/Tarasconnaise.
The major distinctions were as follows: for K = 2, the microsatellites clustered Charmoise/Roussin de
la Hague/Rouge de l’Ouest/Berrichon/Romane/Mérinos de Rambouillet. Then, at K = 3, they postulate
a split within this group, with Charmoise/Rouge de l’Ouest/Roussin de la Hague on one hand and
Berrichon/Romane/Mérinos de Rambouillet on the other. The SNP analysis, on the contrary, grouped all
these breeds together with the exception of the Mérinos de Rambouillet breed (K = 3). This difference
was already discussed in relation with the results of the NeighborNet analysis (Figure 3).

Considering the Algerian sheep dataset (Figure 5), the most likely number of clusters according to
the ∆K criterion was K = 3 for the microsatellite dataset, emphasizing the existence of the three groups:
Sidaoun/D’Men, Ouled-Djellal/Rembi and Hamra. For the SNP analysis, K = 4 was identified as the
most likely number of clusters. At this K value, all breeds were discriminated by both methods except
the admixed Ouled-Djellal and Rembi breeds. Moreover, a clear link appeared between the Sidaoun
and D’Men breeds. Hence, the two figures show a similar picture of the Algerian genetic structure.

Considering the French cattle dataset (Figure 6), the most likely number of clusters according to
the ∆K criterion was K = 2 for both analyses. At this K value, the peculiarity of Rouge des Prés and its
link with Bretonne Pie Noire and Charolais were highlighted. Both analyses were highly correlated
and the main distinction was observed for Aubrac and Charolais, which show a clearer admixture
with the SNP analysis (K = 7) than with microsatellites.
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(d) graph showing ∆K calculated according to [42] for the SNP dataset. Comp.: composite breeds;
information concerning the region of origin of each breed was extracted from [21]; for breed names see
codes in Table S1.
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(a) STRUCTURE plot obtained from the microsatellite dataset; (b) graph showing ∆K calculated
according to [42] for the microsatellite dataset; (c) STRUCTURE plot obtained from the SNP dataset;
(d) graph showing ∆K calculated according to [42] for the SNP dataset. For breed names see codes in
Table S1.
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(a) STRUCTURE plot obtained from the microsatellite dataset; (b) graph showing ∆K calculated
according to [42] for the microsatellite dataset; (c) STRUCTURE plot obtained from the SNP dataset;
(d) graph showing ∆K calculated according to [42] for the SNP dataset. For breed names see codes in
Table S1.

This study compared genetic structures derived from microsatellites to that inferred by SNPs,
considering three pairs of datasets for two species of domesticated mammals.

Population genetic differentiation analyses, as well as STRUCTURE analyses showed a very strong
consistency between the two types of markers. In particular, the French sheep dataset, including 17
breeds shaped by a rich history (English and Spanish influences among others), made it possible to
fully appreciate the usefulness of microsatellite data. It must be noted that, for each pair of datasets
(whatever the species considered), it is not the same individuals in each breed who have been genotyped
with microsatellites and SNPs. Thus, it is quite remarkable to find such a correlation in the obtained
patterns, while the variability introduced by this “sampling effect” constitutively limits the overlap of
results from the beginning.

Faced with the power of SNP chips, which are able to capture even tenuous relationships
between breeds and to estimate confidence intervals with the highest precision, etc., it turns out that
microsatellites gave pictures that were largely concordant, although with less accuracy. Microsatellite
markers were able to capture genetic patterns (gene flows, admixture, etc.) considering national scales,
which is one of the first requirements for defining and prioritizing conservation measures.

According to the Food and Agriculture Organization (FAO) [1], the risk status for more than 80%
of mammalian breeds in Africa and Latin America is unknown. These alarming figures reveal the
extent to which ignorance about livestock is high in most developing countries. When the number of
head per flock is often not even known, the implementation of expensive genetic analyses is difficult to
envisage. In such a context, the use of microsatellites seems to be the most appropriate solution for
various reasons. (i) The cost associated with microsatellite genotyping is significantly lower than that
of the SNP chip. Indeed, commercially available kits (e.g., the Bovine Genotypes Panel 3.1, the Equine
Genotypes Panel 1.1 Kit, the Canine ISAG STR Parentage Kit 2014) provide reagents for the genotyping
of about twenty multiplexed microsatellites for an average sum of 13 USD per individual. Moreover,
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in-house genotyping may substantially reduce this price (i.e., approximately 7 USD per individual).
For sheep, goat, pig and cattle the genotyping cost, via Beadchip of around 50K SNP markers, is 67
USD/individual on average, depending on the species and the manufacturer. (ii) High throughput
genotyping techniques generate huge data files, the analyses of which require a powerful computing
cluster and associated computer knowledge [44]. (iii) Finally, it should be stressed that breeds are still
largely managed in the traditional way in developing countries. In order to understand the genetic
pattern at a national scale and to answer very practical concerns such as the assessment of introgression
and indiscriminate cross-breeding within local populations [45], a broad sample should be undertaken
first. Indeed, sampling must be sufficiently broad to cover the global range of the breeds. Only this
type of sampling will make it possible to really grasp the situation, knowing that a whole range of
situations can be encountered between the preserved populations and the diluted populations [46].
The current cost of genetic chips is hardly compatible with the need for broad sampling, and once
again emphasizes the appeal of using microsatellites to provide a first rough, but broad picture of the
national situation (see [47]).

It should also be noted that microsatellite kits are still widely used in the private sector for
paternity testing. As a result, there is a significant amount of data, especially for cattle and horses, that
could be interesting to collect and analyze as part of studies focusing on genetic diversity.

By publishing microsatellite sets for different species of domestic animals [25], the FAO, has
created an interesting dynamic in this context. For example, the use of common sets in different studies
allows a comparison, although partial, between the datasets Indeed, data sets can be merged only
when standardized protocols are followed (i.e., ISAG/ICAR standards) and laboratories use the same
microsatellite panels and share a few individuals, playing the role of control, in common. The use of
SNP chips, which implies a higher cost as well as the possession of associated computer platforms,
could occur and be beneficial at the second stage in order to refine the conclusions, to push the studies
towards much finer research (e.g., the search for selection signatures), or given the ease of merging, to
compare datasets from different countries.

4. Conclusions

In conclusion, this study highlights the role that microsatellites still play in the management
of FAnGR. Indeed, our results show that microsatellites provide a picture of the genetic structure,
and even though it is less accurate than that obtained with SNPs, it is absolutely relevant. Therefore,
microsatellites are a suitable tool to make an initial evaluation of the situation. Because the effects of
climate change are becoming more pressing, it does not seem appropriate to wait until access to high
throughput techniques is widespread to characterize the breeds of developing countries. These breeds,
which are largely adapted to their environments, constitute an invaluable heritage that can help us to
face climate changes [48].

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/1/57/s1,
Table S1: Details of the datasets used, Table S2: List of microsatellites used for each dataset, Table S3: Pair-wise
FST among French sheep breeds (with confidence intervals at 95, Table S4: Pair-wise FST among Algerian sheep
breeds (with confidence intervals at 95%), Table S5: Pair-wise FST among French cattle breeds (with confidence
intervals at 95%).
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