K. Apel and H. Hirt, Reactive oxygen species: metabolism, oxidative stress, and signal transduction, Annu Rev Plant Biol, vol.55, pp.373-99, 2004.

R. Mittler, S. Vanderauwera, N. Suzuki, G. Miller, V. B. Tognetti et al., ROS signaling: the new wave?, Trends Plant Sci, vol.16, issue.6, pp.300-309, 2011.

J. H. Schippers, C. H. Foyer, and J. T. Van-dongen, Redox regulation in shoot growth, SAM maintenance and flowering, Curr Opin Plant Biol, vol.29, pp.121-129, 2016.

R. Schmidt and J. H. Schippers, ROS-mediated redox signaling during cell differentiation in plants, Biochim Biophys Acta, vol.1850, issue.8, pp.1497-508, 2015.

R. Singh, P. Parihar, S. Singh, R. K. Mishra, V. P. Singh et al., Reactive oxygen species signaling and stomatal movement: Current updates and future perspectives, Redox Biol, vol.11, p.5192041, 2017.

R. Singh, S. Singh, P. Parihar, R. K. Mishra, D. K. Tripathi et al., Reactive Oxygen Species (ROS): Beneficial Companions of Plants' Developmental Processes, Front Plant Sci, vol.7, p.5037240, 2016.

S. Swanson and S. Gilroy, ROS in plant development, Physiol Plant, vol.138, issue.4, pp.384-92, 2010.

M. A. Torres, ROS in biotic interactions, Physiol Plant, vol.138, issue.4, pp.414-443, 2010.

G. Kocsy, T. I. Vankova, R. Zechmann, B. Gulyas, Z. Poor et al., Redox control of plant growth and development, Plant Sci, vol.211, pp.77-91, 2013.

R. Mittler, S. Vanderauwera, M. Gollery, V. Breusegem, and F. , Reactive oxygen gene network of plants, Trends Plant Sci, vol.9, issue.10, pp.490-498, 2004.

N. Smirnoff, Ascorbic acid: metabolism and functions of a multi-facetted molecule, Curr Opin Plant Biol, vol.3, issue.3, pp.229-264, 2000.

N. Smirnoff and G. L. Wheeler, Ascorbic acid in plants: biosynthesis and function, Crit Rev Biochem Mol Biol, vol.35, issue.4, pp.291-314, 2000.

D. R. Gallie, Acid: a multifunctional molecule supporting plant growth and development. Scientifica (Cairo), p.795964, 2013.

E. Olmos, G. Kiddle, T. Pellny, S. Kumar, and C. Foyer, Modulation of plant morphology, root architecture, and cell structure by low vitamin C in Arabidopsis thaliana, J Exp Bot, vol.57, issue.8, pp.1645-55, 2006.

W. M. Gray, Hormonal regulation of plant growth and development, PLoS Biol, vol.2, issue.9, p.516799, 2004.

J. M. Daviere and P. Achard, A Pivotal Role of DELLAs in Regulating Multiple Hormone Signals, Molecular plant, vol.9, issue.1, pp.10-20, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02302932

S. Depuydt and C. S. Hardtke, Hormone signalling crosstalk in plant growth regulation, Curr Biol, vol.21, issue.9, pp.365-73, 2011.

M. Vanstraelen and E. Benkova, Hormonal interactions in the regulation of plant development, Annu Rev Cell Dev Biol, vol.28, pp.463-87, 2012.

X. J. Xia, Y. H. Zhou, K. Shi, J. Zhou, C. H. Foyer et al., Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance, J Exp Bot, vol.66, issue.10, pp.2839-56, 2015.

V. Nahirñak, N. I. Almasia, H. E. Hopp, and C. Vazquez-rovere, Snakin/GASA proteins: involvement in hormone crosstalk and redox homeostasis, Plant Signal Behav, vol.7, issue.8, p.3474668, 2012.

D. Aubert, M. Chevillard, A. M. Dorne, G. Arlaud, and M. Herzog, Expression patterns of GASA genes in Arabidopsis thaliana: the GASA4 gene is up-regulated by gibberellins in meristematic regions, Plant Mol Biol, vol.36, issue.6, pp.871-83, 1998.

N. Wigoda, G. Ben-nissan, D. Granot, A. Schwartz, and D. Weiss, The gibberellin-induced, cysteine-rich protein GIP2 from Petunia hybrida exhibits in planta antioxidant activity, Plant J, vol.48, issue.5, p.17076804, 2006.

L. Rubinovich and D. Weiss, The Arabidopsis cysteine-rich protein GASA4 promotes GA responses and exhibits redox activity in bacteria and in planta, Plant J, vol.64, issue.6, pp.1018-1045, 2010.

S. Sun, H. Wang, H. Yu, C. Zhong, X. Zhang et al., GASA14 regulates leaf expansion and abiotic stress resistance by modulating reactive oxygen species accumulation, J Exp Bot, vol.64, issue.6, pp.1637-1684, 2013.

L. Rubinovich, S. Ruthstein, and D. Weiss, The Arabidopsis cysteine-rich GASA5 is a redox-active metalloprotein that suppresses gibberellin responses, Molecular plant, vol.7, issue.1, pp.244-251, 2014.

L. Wang, Z. Wang, Y. Xu, S. H. Joo, S. K. Kim et al., OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice, Plant J, vol.57, issue.3, pp.498-510, 2009.

A. Alonso-ramirez, D. Rodriguez, D. Reyes, J. A. Jimenez, G. Nicolas et al., Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds, Plant Physiol, vol.150, issue.3, pp.1335-1379, 2009.

P. Central and P. , , p.2705047

S. Zhang and X. Wang, Overexpression of GASA5 increases the sensitivity of Arabidopsis to heat stress, J Plant Physiol, vol.168, issue.17, pp.2093-101, 2011.

A. Segura, M. Moreno, F. Madueno, A. Molina, and F. Garcia-olmedo, Snakin-1, a peptide from potato that is active against plant pathogens. Molecular plant-microbe interactions: MPMI, vol.12, pp.16-23, 1999.

N. I. Almasia, A. A. Bazzini, H. E. Hopp, and C. Vazquez-rovere, Overexpression of snakin-1 gene enhances resistance to Rhizoctonia solani and Erwinia carotovora in transgenic potato plants, Mol Plant Pathol, vol.9, issue.3, pp.329-367, 2008.

V. Nahirñak, N. I. Almasia, P. V. Fernandez, H. E. Hopp, J. M. Estevez et al., Potato snakin-1 gene silencing affects cell division, primary metabolism, and cell wall composition, Plant Physiol, vol.158, issue.1, p.3252113, 2012.

V. Nahirñak, M. Rivarola, M. Gonzalez-de-urreta, N. Paniego, H. E. Hopp et al., Genome-wide Analysis of the Snakin/GASA Gene Family in Solanum tuberosum cv, Kennebec. American Journal of Potato Research, vol.93, issue.2, pp.172-88, 2016.

H. Thordal-christensen, Z. Zhang, Y. Wei, and D. B. Collinge, Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction, The Plant Journal, vol.11, issue.6, pp.1187-94, 1997.

B. Ezaki, R. C. Gardner, Y. Ezaki, and H. Matsumoto, Expression of aluminum-induced genes in transgenic arabidopsis plants can ameliorate aluminum stress and/or oxidative stress, Plant Physiol, vol.122, issue.3, p.58900, 2000.

S. G. Rhee, T. S. Chang, W. Jeong, and D. Kang, Methods for detection and measurement of hydrogen peroxide inside and outside of cells, Mol Cells, vol.29, issue.6, p.20526816, 2010.

H. Wohlgemuth, K. Mittelstrass, S. Kschieschan, J. Bender, H. J. Weigel et al., Activation of an oxidative burst is a general feature of sensitive plants exposed to the air pollutant ozone, Plant, Cell and Environment, vol.25, pp.717-743, 2002.

P. L. Rosello, A. E. Vigliocco, A. M. Andrade, N. V. Riera, M. Calafat et al., Differential hormonal and gene expression dynamics in two inbred sunflower lines with contrasting dormancy level. Plant physiology and biochemistry: PPB, vol.102, pp.133-173, 2016.

G. Conti, M. C. Rodriguez, C. A. Manacorda, and S. Asurmendi, Transgenic expression of Tobacco mosaic virus capsid and movement proteins modulate plant basal defense and biotic stress responses in Nicotiana tabacum. Molecular plant-microbe interactions: MPMI, vol.25, pp.1370-84, 2012.

C. Trapnell, D. G. Hendrickson, M. Sauvageau, L. Goff, J. L. Rinn et al., Differential analysis of gene regulation at transcript resolution with RNA-seq, Nat Biotechnol, vol.31, issue.1, p.3869392, 2013.

E. Mizrachi, C. A. Hefer, M. Ranik, F. Joubert, and A. A. Myburg, De novo assembled expressed gene catalog of a fast-growing Eucalyptus tree produced by Illumina mRNA-Seq, BMC Genomics, vol.11, p.3053591, 2010.

A. Mortazavi, B. A. Williams, K. Mccue, L. Schaeffer, and B. Wold, Mapping and quantifying mammalian transcriptomes by RNA-Seq, Nat Methods, vol.5, issue.7, pp.621-629, 2008.

C. Ramakers, J. M. Ruijter, R. H. Deprez, and A. F. Moorman, Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data, Neurosci Lett, vol.339, issue.1, pp.62-68, 2003.

N. Nicot, J. F. Hausman, L. Hoffmann, and D. Evers, Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress, J Exp Bot, vol.56, issue.421, pp.2907-2921, 2005.

C. Gehl, R. Waadt, J. Kudla, R. R. Mendel, and R. Hansch, New GATEWAY vectors for high throughput analyses of protein-protein interactions by bimolecular fluorescence complementation. Molecular plant, vol.2, pp.1051-1059, 2009.

M. M. Ricardi, F. F. Guaimas, R. M. Gonzalez, H. P. Burrieza, M. P. Lopez-fernandez et al., Nuclear import and dimerization of tomato ASR1, a water stress-inducible protein exclusive to plants, PloS one, vol.7, issue.8, p.3416805, 2012.

M. Del-vas, Obtenció n y caracterizació n de plantas de interés agropecuario, 1992.

R. A. Jefferson, M. Bevan, and T. Kavanagh, The use of the Escherichia coli beta-glucuronidase as a gene fusion marker for studies of gene expression in higher plants, Biochem Soc Trans, vol.15, issue.1, pp.17-25, 1987.

M. W. Pfaffl, G. W. Horgan, and L. Dempfle, Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR, Nucleic acids research, vol.30, issue.9, p.113859, 2002.

H. Mi, X. Huang, A. Muruganujan, H. Tang, C. Mills et al., PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic acids research, vol.45, p.5210595, 2017.

C. E. Paulsen and K. S. Carroll, Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery, Chem Rev, vol.113, issue.7, pp.4633-79, 2013.

P. Central and P. , , p.4303468

S. Lee, S. Han, and S. Kim, Salt-and ABA-inducible OsGASR1 is Involved in Salt Tolerance, J Plant Biol, vol.58, issue.2, pp.96-101, 2015.

M. Mukherjee, K. E. Larrimore, N. J. Ahmed, T. S. Bedick, N. T. Barghouthi et al., Ascorbic acid deficiency in arabidopsis induces constitutive priming that is dependent on hydrogen peroxide, salicylic acid, and the NPR1 gene. Molecular plant-microbe interactions: MPMI, vol.23, pp.340-51, 2010.

C. Zhang, B. Ouyang, C. Yang, X. Zhang, H. Liu et al., Reducing AsA leads to leaf lesion and defence response in knock-down of the AsA biosynthetic enzyme GDP-D-mannose pyrophosphorylase gene in tomato plant, PloS one, vol.8, issue.4, p.3633959, 2013.

M. Fenech, I. Amaya, V. Valpuesta, and M. A. Botella, Vitamin C Content in Fruits: Biosynthesis and Regulation, Front Plant Sci, vol.9, 2006.

P. Souza, Y. Lima-melo, F. E. Carvalho, J. P. Reichheld, A. R. Fernie et al., Function and Compensatory Mechanisms Among the Components of the Chloroplastic Redox Network. Critical Reviews in Plant Sciences, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02115944

V. R. Franceschi and N. M. Tarlyn, L-Ascorbic acid is accumulated in source leaf phloem and transported to sink tissues in plants, Plant Physiol, vol.130, issue.2, pp.649-56, 2002.

N. J. Chinoy, On the specificity of the alcoholic, acidic silver nitrate reagent for the histochemical localization of ascorbic acid, Histochemie, vol.20, issue.2, pp.105-112, 1969.

C. B. Munshi and N. I. Mondy, Ascorbic Acid and Protein Content of Potatoes in Relation to Tuber Anatomy, Journal of Food Science, vol.54, issue.1, pp.220-221, 1989.

S. D. Clouse, Arabidopsis mutants reveal multiple roles for sterols in plant development, Plant Cell, vol.14, issue.9, p.543216, 2002.

P. Benveniste, Biosynthesis and accumulation of sterols, Annu Rev Plant Biol, vol.55, pp.429-57, 2004.

H. Schaller, New aspects of sterol biosynthesis in growth and development of higher plants. Plant physiology and biochemistry: PPB, vol.42, pp.465-76, 2004.

S. Choe, B. P. Dilkes, B. D. Gregory, A. S. Ross, H. Yuan et al., The Arabidopsis dwarf1 mutant is defective in the conversion of 24-methylenecholesterol to campesterol in brassinosteroid biosynthesis, Plant Physiol, vol.119, issue.3, pp.897-907, 1999.

S. Choe, T. Noguchi, S. Fujioka, S. Takatsuto, C. P. Tissier et al., The Arabidopsis dwf7/ste1 mutant is defective in the delta7 sterol C-5 desaturation step leading to brassinosteroid biosynthesis, Plant Cell, vol.11, issue.2, pp.207-228, 1999.

U. Klahre, T. Noguchi, S. Fujioka, S. Takatsuto, T. Yokota et al., The Arabidopsis DIMINUTO/ DWARF1 gene encodes a protein involved in steroid synthesis, Plant Cell, vol.10, issue.10, p.143945, 1998.

H. Schaller, The role of sterols in plant growth and development, Prog Lipid Res, vol.42, issue.3, pp.163-75, 2003.