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ABSTRACT

There is a need to quantify methane (CH,) emissions
with alternative methods. For the past decade, milk
fatty acids (MFA) could be used as proxies to predict
CH, emissions from dairy cows because of potential
common rumen biochemical pathways. However, equa-
tions have been developed based on a narrow range
of diets and with limited data. The objectives of this
study were to (1) construct a set of empirical models
based on individual data of CH, emissions and MFA
from a large number of lactating dairy cows fed a wide
range of diets; (2) further increase the models’ level
of complexity (from farm to research level) with ad-
ditional independent variables such as dietary chemical
composition (organic matter, neutral detergent fiber,
crude protein, starch, and ether extract), dairy per-
formance (milk yield and composition), and animal
characteristics (days in milk or body weight); and (3)
evaluate the performance of the developed models on
independent data sets including measurements from
individual animals or average measurements of groups
of animals. Prediction equations based only on MFA
[C10:0, iso C17:0 + trans-9 C16:1,cis-11 C18:1, and
trans-11,cis-15 C18:2 for CH, production (g/d); iso
C16:0, cis-11 C18:1, trans-10 C18:1, and c¢is-9,cis-12
C18:2 for CH, yield (g/kg of dry matter intake, DMI);
and iso C16:0, cis-15 C18:1, and trans-10 + trans-11
C18:1 for CH, intensity (g/kg of milk)] had a root mean
squared error of 65.1 g/d, 2.8 g/kg of DMI, and 2.9
g/kg of milk, respectively, whereas complex equations
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that additionally used DMI, dietary neutral detergent
fiber, ether extract, days in milk, and body weight had
a lower root mean squared error of 46.6 g/d, 2.6 g/kg
of DMI, and 2.7 g/kg of milk, respectively). External
evaluation with individual or mean data not used for
equation development led to variable results. When
evaluations were performed using individual cow data
from an external data set, accurate predictions of CH,
production (g/d) were obtained using simple equations
based on MFA. Better performance was observed on
external evaluation with individual data for the simple
equation of CH, production (g/d, based on MFA),
whereas better performance was observed on external
evaluation mean data for the simple equation of CHy
yield (g/kg of DMI). The performance of evaluation of
the models is dependent on the domain of validity of
the evaluation data sets used (individual or mean).
Key words: dairy cow, methane emissions, prediction
model, milk fatty acids

INTRODUCTION

Enteric methane (CH,) emissions have been recog-
nized as a major source of greenhouse gases in livestock
farming. Dairy cow CH, emissions account for 46% of
the total greenhouse gas emissions in the world dairy
supply chain when expressed as carbon dioxide (CO,)
equivalents (Gerber et al., 2013). The global demand
for livestock products is constantly increasing (FAO,
2013). Ruminants are almost the sole source of milk
for humans, providing 644 million tonnes per year of
fat- and protein-corrected milk, of which dairy cattle
contribute 80% (Gerber et al., 2013). The increasing
demand for dairy products has led to the expansion
of dairy herds. Therefore, there is a need for strategies
to reduce CH, emissions to limit the negative effect of
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dairy cows on the environment. Several dietary strate-
gies, such as formulating diets rich in concentrate (and,
more particularly, in starch) or supplementing diets
with lipids or other chemical additives [3-nitrooxypro-
panol (3-NOP), nitrate, monensin; Odongo et al., 2007;
Martin et al., 2010; Hristov et al., 2013], have proven
their efficacy to reduce CH, emissions from dairy cows.
Methanogenesis is the main pathway that uses hydro-
gen (H,), an unavoidable by-product resulting from di-
etary carbohydrate fermentation (48-80%; Mills et al.,
2001), whereas rumen biohydrogenation of UFA uses
up to 3% of rumen H, (Mills et al., 2001). Fermenta-
tion in the rumen also leads to the production of VFA,
which are precursors for de novo synthesis of short- and
medium-chain fatty acids (FA) in the mammary gland.
In addition, certain VFA production pathways, such as
acetate or butyrate, lead to production of H,, whereas
propionate production pathway uses H,. Thus, direct
interactions exist between rumen fermentation, CHy
production, and milk FA (MFA) composition.

Predictive tools such as empirical equations or mech-
anistic models for estimating CH, emissions are useful
for evaluating potential strategies for methane mitiga-
tion, especially because measurement techniques, such
as open respiratory chambers or SFy tracer technique,
are costly and may be difficult to apply on large-scale
dairy farms. Although numerous models have been
developed to predict CH, emissions from dairy cows
based only on MFA (as reviewed in van Gastelen and
Dijkstra, 2016) or with MFA and other variables such
as milk production (Weill et al., 2008) or forage intake
(Chilliard et al., 2009), the equations generally accu-
rately predict CH, emissions only for specific diets and
situations similar to those under which the equations
were developed. For example, the prediction equations
presented by Chilliard et al. (2009) were developed us-
ing data from dairy cows consuming corn silage-based
diets containing linseed. Furthermore, previous studies
usually involved small numbers of dairy cows [e.g., 8
cows in Chilliard et al. (2009), 16 cows in Mohammed
et al. (2011), 100 cows in Dijkstra et al. (2011), 146
cows in van Lingen et al. (2014), 32 cows in van Gas-
telen et al. (2017), and 218 cows in van Gastelen et al.
(2018)].

The objectives of the present study were to (1) to
construct a set of empirical models based on individual
data of CH, emissions and milk composition (MFA)
from a large number of lactating dairy cows consuming
a wide range of diets; (2) further increase the level of
complexity (from research to farm level) of the devel-
oped models based on additional independent variables
such as dietary chemical composition, production
performance (milk yield and composition), and animal
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characteristics (DIM and BW); and (3) evaluate the
performance of these models using independent data
sets.

MATERIALS AND METHODS

Databases and Variable Selection

Indiwidual Animal Data. The database was cre-
ated using measurements made on individual animal
data received from collaborators to develop prediction
equations for CH, based on MFA. For inclusion in the
database, experiments must have met the following
criteria: (1) CH, production measured on individual
dairy cows by means of respiration chambers, the
SF; tracer technique, or GreenFeed system; (2) MFA
profiles of individual cows analyzed by GC (detailed
description of the methods used to analyze the FA in
milk was provided in each of the relevant cited papers);
(3) measurements of daily DMI of individual cows; (4)
measurements of dietary composition; (5) measure-
ments of milk production and composition of individual
cows; and (6) characteristics of individual cows (BW
and DIM) recorded. Details of experiments used in the
analysis are given in Supplemental Table S1 (https://
doi.org/10.3168/jds.2018-15940). Briefly, the data set
contained 312 observations from published and unpub-
lished experiments (17 experiments) by INRA-UMRH
(Saint-Geneés-Champanelle, France), 119 individual
observations (5 experiments) from Aarhus University
(Foulum, Denmark), 218 observations (7 experiments)
from Ellinbank Research Centre (Australia), and 177
observations (5 experiments) from Agriculture and
Agri-Food Canada. A total of 825 observations of CHy
emissions (g/d) from individual lactating Holstein
dairy cows and related DMI and diet chemical com-
position [OM, NDF, CP, starch, ether extract (EE)],
animal characteristics (BW, DIM), milk performance
(milk yield and milk composition: fat, protein, lactose,
MFA), and CH, mitigation treatments were obtained
from the 34 in vivo experiments (15 randomized block
and 19 Latin square designs). A wide range of dietary
treatments was included in the data set. Main dietary
forages were corn silage (n = 297), grass silage (n =
157), or legume hay (n = 157). Main concentrate ingre-
dients included in the diets were rapeseed (n = 264),
corn grain (n = 198), barley (n = 124), and wheat (n =
83). The database included control diets (n = 198) and
CH,-mitigating treatments as described in Martin et
al. (2010), including lipid supplementation (n = 198),
different forage or concentrate types (e.g., main forage
of the diet, n = 149; main ingredient in the concentrate,
n = 140), probiotics (n = 58), plant extract (n = 33),
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and nitrate (n = 16). Experiments are summarized in
Supplemental Table S1 (https://doi.org/10.3168/jds
.2018-15940). The data set gathered studies that tested
lipid dose effects [mean EE of lipid-supplemented diets
=7+ 3.9% (SD) of DM], effects of lipid source (linseed,
rapeseed, Ca salt of palm oil, sunflower, dry distillers
grain with solubles; mean EE = 5.5 £ 0.8% of DM;
n = 4 experiments) or form (crushed, extruded, cake,
oil; mean EE = 6.0 £ 0.4% of DM; n = 1 experiment),
forage source effects (mean NDF = 35 + 6.4% of DM;
n = 7), and the effect of different compositions of con-
centrate (starch rich, sugar rich, lipid rich, protein rich;
mean starch = 23 4+ 9.9% of DM; n = 6 experiments)
on CH, emissions. In several experiments, various ad-
ditives were tested for the effects of type or dose of
additive on CH, emissions. These included probiotics (4
experiments), tannins (2 experiments), lipid + calcium
nitrate (2 experiments), saponin (2 experiments), and
other plant extracts (3 experiments).

Milk FA fractions were expressed in grams per 100
grams of total MFA. Some studies reported coelution
of different MFA, but no information regarding operat-
ing conditions (e.g., HPLC columns, temperatures) was
provided by the authors. Thus, when these MFA were
individually identified in other studies (e.g., iso C17:0
+ trans-9 C16:1), they were grouped together. Further-
more, MFA with concentrations <0.1 g/100 g of total
FA were not included in the data set.

The data set (34 experiments; n = 825) including the
individual animal observations was randomly divided
into 2 data sets: (1) a data set that contained 70% of
experiments (n = 24, called the training data set) that
was used to develop prediction models and (2) a data
set that contained the remaining 30% of the experi-
ments (n = 10, called the external individual data set)
that was used to evaluate the robustness of the models
(Tables 1 and 2).

Mean Database. Another database, called the ex-
ternal mean data set, was built with treatment means
from the literature and was used to further evaluate
the robustness of the models (Tables 1 and 2). A com-
prehensive literature search (up to January 2018) was
conducted using Science Direct, CAB International,
SCOPUS, and Web of Knowledge online databases
with the following search terms: “methane” or “meth-
ane emission,” “dairy,” “cows” or “livestock” or “cattle,”
and "milk fatty acid.” To be included in the data set,
the studies were required to meet the same criteria
used for selecting individual animal data. A total of
25 studies (Supplemental Table S2, https://doi.org/10
.3168/jds.2018-15940) were selected and used for model
evaluation, and summary statistics are given in Tables
1 and 2. Briefly, the external mean data set included
studies testing the effect of different dietary strategies
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on CH, emissions as described in Martin et al. (2010):
(1) lipid dose [mean EE = 5 + 1.5% (SD) of DMJ;
(2) lipid type or form; (3) forage type or level (mean
NDF = 37.68 + 1.326% of DM); (4) concentrate type
or level (mean starch content = 20.7 + 7.6% of DM;
mean percentage of concentrate = 35.7 £ 13.4%); (5)
probiotics; (6) organic acids; (7) plant extracts; and (8)
feed additives such as nitrate, monensin, and 3-NOP.
There was no overlap among studies used to build the
individual and mean data sets.

Statistical Analyses

Variable Preselection for Model Development.
An exploratory data analysis was performed to evaluate
the data for completeness (e.g., missing values of nutri-
ent composition of diets), consistency in nomenclature
of variables in question, and the presence of outliers
(Pyle, 1999). When not measured, diet chemical com-
position, specifically NDF, starch, and EE, were esti-
mated using feed composition tables in INRA (2007),
NRC (2001), and Feedipedia (https://www.feedipedia
.org/). Measured or calculated variables and their sum-
mary statistics are given in Tables 1 and 2. We de-
tected outliers using the boxplot function in R (version
0.98.1102; R Foundation for Statistical Computing,
Vienna, Austria). The outliers’ values were compared
with the range of reference values. When values were
outside of this range, we requested further information
from the data owner to understand this study effect or
to decide to remove the data from further analyses (n
= 1). The number of observations for each variable is
provided in Tables 1 and 2.

Correlation Among Variables and Identifica-
tion of Predictors. Data including observations (n
= 825) made on individual animals were used in this
analysis. First, Pearson correlation coefficients were ob-
tained for pairwise relationships among CH, emissions
and the individual MFA (concentration >0.1 g/100 g
of MFA; n = 46) and to determine and select the most
correlated individual MFA among the 5 MFA families
(SFA, odd- and branched-chain FA, cis MUFA, trans
MUFA, and PUFA). Milk FA missing for more than
50% of the observations were not considered in this
analysis. Second, the Pearson correlation coefficients
were obtained for each selected MFA within its fam-
ily to determine how independent (r <0.5) they were
and thereby avoid potential collinearity in model de-
velopment. Then, principal components analysis was
performed using the “FactoMinR” and “MissMDA”
packages (versions 1.34 and 1.7.3, respectively) in R
(version 0.98.1102; R Foundation for Statistical Com-
puting) on the MFA significantly associated with daily
CH, production (g/d; r > 10.3]), CH, yield (g/kg of
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Figure 1. Diagram illustrating variable selection and model development and evaluation. MFA = milk fatty acid; FA = fatty acid; PCA
= principal component analysis; CH, = methane; EE = ether extract; BIC = Bayesian information criteria; RMSPE = root mean squared
prediction error; RSR = root mean squared deviation; ECT = error from mean bias; ER = error from regression linear bias; ED = error from

disturbance; CCC = concordance correlation coefficient.

DMI; r > |0.3]), and CH, intensity (g/kg of milk; r >
|0.2]) along with other variables to identify additional
predictors of CH, emissions.

Random-Effects Model Analysis. As mentioned,
data from the entire data set (n = 825) were obtained
from randomly selected experiments divided (“dplyr”
package in R) into a training data set (24 experiments,
n = 568 observations) for model development and an-
other data set (hereafter called the external individual
data set; 10 experiments, n = 257) for model evaluation.
A set of linear mixed-effects models was constructed to
separately predict CH, production (g/d), yield (g/kg
of DMI), and intensity (g/kg of milk). Random-effect
meta-analysis approaches (St-Pierre, 2001) were ap-
plied using the “nlme” package (version 3.1-131) in R
(version 0.98.1102; R Foundation for Statistical Com-
puting). The nlme function fits linear mixed-effects
models in the framework described in Lindstrom and
Bates (1990). Several models were developed with in-
creasing level of complexity by incrementally adding
different independent quantitative variables: dietary
content (% of DM) of CP, NDF, ADF, EE, and starch;
BW (kg); DIM (d); milk yield (kg/d); and milk fat,

protein, and lactose percentages. A first set of models
began with the MFA that was most representative (in
% of total FA) of each family selected based on pairwise
correlations and principal components analysis. Then,
DMI was added to the simplest models based on MFA,
followed by milk performance, animal characteristics,
or diet composition (Figure 1).

Finally, all significant variables were included togeth-
er, carrying the same weight, to create highly complex
models. Furthermore, this approach enabled analysis of
fixed effects of independent variables such as MFA or
DMI (Figure 1) as well as the study-specific deviation
of the CH, emission response, which was taken into
account as a random effect. The general mixed-effect
model for single and multiple regressions is represented
as

Y = B0 + 81Xy + BoXoy + -+ BuXyy + ey,
where 3y, 3:Xyy, and B,Xy, . . ., B,X,; are the fixed
effects of independent variables (intercept and effects),
and e; is the random experiment effects (i =1, ..., n
studies and j = 1, . . ., n; observations).
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Pairwise Pearson correlations for variables with an
absolute value of |r| > 0.5 were not included simul-
taneously in the model development. Indeed, multi-
collinearity can lead to issues in developing models,
such as inaccurate model parameterization, decreased
statistical power, and exclusion of significant predictor
variables during model construction (Graham, 2003).
Only variables with a P-value <0.10 were retained in
the model. We also carried out the ANOVA inflation
factor for our best models (n = 6) for the 3 CH, metrics
(CH, emissions, g/d per cow; CH, yield g/kg of DMI;
and CH, intensity, g of CH,/kg of milk).

Models associated first with the lowest Bayesian in-
formation criterion and then with the lowest root mean
square error (RMSE) with the highest coefficient of
determination (R?) were selected as the best models
to predict each CH, emission response at each level of
complexity. Adjusted dependent quantitative variable
values were calculated based on regression parameters
of the final model for each level of complexity to deter-
mine adjusted R? values corrected for random experi-
ment effect (St-Pierre, 2001).

Prediction error (predicted value minus observed val-
ue) was visually inspected for any pattern. Moreover,
qualitative factors, CH, mitigation strategies classified
according to Martin et al. (2010), were tested by run-
ning ANOVA in R using the “stats” package (version
3.6.0). These mitigation strategies were classified on
the basis of forage type (alfalfa, association of different
forages, barley, chicory, clover, cocksfoot grass, corn,
grass, red clover, and timothy), lipid type represented
by major FA from lipid supplementation (C16:0, cis-
9 C18:1, C18:2n-6, and C18:3n-3), concentrate type
(starch rich, sugar rich, lipid rich, and protein rich), or
feed additive (nitrate, tannin, saponin, and other plant
extracts).

Model Evaluation. The potential of each developed
model to accurately predict CH; production was as-
sessed on 2 independent data sets of individual or mean
observations (Figure 1). According to Appuhamy et al.
(2016), a combination of model evaluation metrics was
used to assess model performance. Briefly, we designate
the mean square of prediction error as MSPE and the
root of the MSPE as RMSPE, and we also express
the RMSPE, as a percentage of the observed mean, as
RMSPE%. Smaller RMSPE% indicates better model
performance. The RMSPE can be decomposed into 3
parts: error due to central tendency or mean bias, error
due to deviation of the regression slope or slope bias,
and error due to the disturbance or random bias (Bibby
and Toutenburg, 1977). The concordance correlation
coefficient (CCC; Lin, 1989) was calculated. The CCC
is a product of the Pearson correlation coefficient of
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the relationship between predicted and observed values
and the bias correction factor (measure of accuracy)
indicating how far the best fit line deviates from the
concordance or unity line of the observed values versus
predicted values plot. The CCC ranges from 0 to 1, with
greater values indicating better model performance.
When using different data to compare the performance
of models, we define the RMSPE-to-standard-deviation
ratio (RSR) as the RMSPE divided by the standard
deviation of the data (observed values), as it takes
into account standardized model performance relative
to the variability in observations in different data sets
(Moriasi et al., 2007). Smaller RSR (<1) indicates
better performance given the variability of observa-
tions. Model performance was primarily ranked based
on RSR, followed by RMSPE%, and then the other
criteria.

RESULTS

Database

The individual animal observations contained diets
based on 30 to 100% (% DM) forages that were pasture,
silage, hay, or haylage (alfalfa, barley, corn, timothy,
clover, chicory, ray grass, and cocksfoot grass). The
experiments included a large variety of dietary strate-
gies with different forage:concentrate ratios, types of
concentrate or forage, supplementation of lipids (fat,
oil, or FA), plant extracts (essential oils, tannins, and
saponins), chemical additives (nitrate), and probiot-
ics (Saccharomyces cerevisiae). The data set based on
mean data from the literature included other supple-
ments such as 3-NOP, monensin, or plant extracts
(Supplemental Table S2, https://doi.org/10.3168/jds
2018-15940).

Overall, individual data showed a wide range of values
of the predictors (e.g., MFA, DMI, milk) and response
variables (e.g., CH, production in g/d, CH, yield in g/
kg of DMI, and CH, intensity in g/kg of milk), enabling
the development of models capable of predicting CH,
emissions across a wide variety of production condi-
tions in dairy cows. Individual MFA were considerably
variable, with coefficients of variation (CV) ranging
from 20% to more than 100% (Tables 1 and 2). The
values of CH, emissions were also variable, with an av-
erage CV of 28%. The average DMI and milk yield were
20.5 kg/d and 28.6 kg/d per cow, respectively. In line
with individual animal observations, individual MFA
in the external mean data set had large CV. Moreover,
the means of DMI and milk yield were similar between
individual and mean data sets (21.0 and 31.3 kg/d,
respectively).


https://doi.org/10.3168/jds.2018-15940
https://doi.org/10.3168/jds.2018-15940
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Pearson Correlation Coefficients Between CH,
Emissions and Individual MFA

Among individual MFA concentrations, C10:0 and
C8:0 had positive relationships with CH, production (r
= 0.33 and 0.35, respectively; P < 0.05; Supplemental
Table S3, https://doi.org/10.3168/jds.2018-15940). The
CH, yield and intensity were positively related to C16:0
(r = 0.24 and 0.26, respectively; P < 0.05). Production
of CH, was inversely related to iso C17:0 (coeluted with
trans-9 C16:1; r = —0.32; P < 0.05). The CH, yield and
intensity had positive relationships with iso C16:0 (r =
—0.27 and 0.33, respectively; P < 0.05). Negative cor-
relations between CH, production, yield, and intensity
were observed with cis-10 C18:1, cis-11 C18:1, and cis-
15 C18:1. However, less than 50% of the data were re-
ported for cis-10 C18:1 (data not shown). Methane pro-
duction, yield, and intensity were negatively correlated
with trans-10 C18:1 and trans-10+trans-11 C18:1, with
Pearson coefficient correlations varying from —0.34 to
—0.45 (P < 0.05); trans-11,cis-15 C18:2 was inversely
correlated with CH, production (r = —0.29; P < 0.05),
and cis-9,cis-12 C18:2 was negatively correlated with
CH, yield (r = —0.30; P < 0.05). All ANOVA inflation
factors are <5 for the best models developed below.

Mixed-Effect Models

Models for Daily CH,; Production. Models to
predict daily CH, production are given in Table 3.
Daily CH, production had positive relationships with
C10:0, DMI, NDF, milk yield, milk fat and protein per-
centages, and BW. There were negative relationships
between CH, production and several MFA, such as iso
C17:0 (+trans-9 C16:1), cis-11 C18:1, trans-10 C18:1,
and trans-11,cis-15 C18:2. The best simple model
included 4 MFA and had an RMSE of 65.1 g/d (R’
= 0.84; RMSE % = 15.7%; Table 3). The RSR was
0.86 and 1.12, CCC was 0.23 and 0.02, and RMSPE
was 22.3 and 25.5% with the external individual and
mean data sets, respectively (equation 1; Table 3). The
MFA model’s error was mainly associated with error
due to disturbance (error due to disturbance = 96%)
in the evaluation with the external individual data set,
whereas with the external mean data set, the error was
mainly due to the central tendency (52%) as expected.

When DMI was added to the simple model based
on MFA, RMSE percentage decreased from 15.7% to
13.7% and R? increased from 0.84 to 0.89 (equation 2;
Table 3). We also observed better prediction ability as
RSR decreased from 0.86 and 1.13 to 0.76 and 0.90 in
the external individual data set and external mean data
set used for model evaluations, respectively. Moreover,
RMSPE% decreased from 22.3 to 19.7% and from 25.5
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to 20.3% with the external individual data set and the
external mean data set, respectively. We observed the
best performance when DMI, dietary NDF and EE
contents, and BW were included along with the MFA
(iso C17:0 + trans-16 C16:1, cis-11 C18:1, and trans-
11,cis-15 C18:2) in equation 9 (RMSE = 46.6 g/d; R”
= 0.92). The RSR and CCC analysis showed the lowest
RSR (0.62) and the greatest CCC (0.73) for equation
9 compared with other models when evaluated on the
external mean data set. Consistently, equation 9 was
related to the smallest RMSPE when evaluated in both
external data sets (18.6 and 14.0% on external individ-
ual and mean data sets, respectively). Error was due to
random variability of data as indicated by substantial
dispersion error (85.7 and 93.9% when evaluated on
external individual and mean data sets, respectively).
The model including all the variables (equation 11) had
RSR, RMSPE, and CCC similar to those of equation
9, indicating that no additional explanatory power was
gained from increasing model complexity beyond equa-
tion 9.

Models for CH), Yield. There were positive rela-
tionships between CH, yield and C16:0 and iso C16:0
but negative relationships between CH, yield and UFA,
such as cis-11 C18:1, trans-10 C18:1, and c¢is-9,cis-12
C18:2 (equations 12, 13, and 14). The CH, yield had
positive and negative relationships with dietary NDF
and EE and milk yield, respectively. The MFA model
(equation 12) had an RMSE of 2.8 g/kg of DMI (13.9%)
and R* = 0.82 (Table 4). The evaluation resulted in an
RSR of 1.13 and 1.00 and a CCC of 0.29 and 0.44 for
the external individual data set and external mean data
set, respectively. Equation 13 (RMSE = 2.6; R* = 0.85)
based on MFA (n = 5) and dietary NDF and EE had
the best prediction abilities (Table 4), with lower RSR
(1.01 and 0.90) and higher CCC (0.41 and 0.72) in
both external evaluation data sets compared with the
other models. The RMSPE values were 20.1 and 16.6%
in the external individual data set and external mean
data set, respectively. Random error accounted for
the biggest part of the total prediction error (>85%).
When all variables were included (equation 14), the
RSR (1.10 and 0.93) were close to those from equation
13, but RMSPE was increased when this equation was
evaluated in both external evaluation data sets.

Models for CH, Intensity. Milk iso C16:0 con-
tent was positively related to CH, intensity, whereas a
negative association was found with milk cis-15 C18:1
and trans-10+trans-11 C18:1 contents in equation 15
(Table 5), which had an RMSE of 2.9 g/kg of milk
(18.7%) and R* = 0.70. The evaluation of the model
in the external individual data set and external mean
data set resulted in an RSR of 0.96 and 1.07, CCC of
0.37 and 0.47, and RMSPE of 38.4 and 26.3%, respec-
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1.13
1.00

CCC RSR

0.29
0.44

ED
(%)

69.00

3.44

ER
(%)
4.09

87.17

(%)
26.91
9.38

22.4
18.4

(%)

Model performance evaluation based on evaluation data sets”
RMSPE ECT

Individual

Data set
Mean

n
360

(+£0.54) — 0.8 x trans-10 C18:1 (£0.13) — 1.1 x cis-9,cis-12 C18:2

21.0 (+1.09) + 10.5 x iso C16:0 (+£2.32) — 2.7 x cis-11 C18:1
(£0.28)

Model development based on training data set’
Prediction equation

Milk composition

Level

Table 4. Prediction equations (+SE) of methane yield (g/kg of DMI) according to different complexity levels and model performance evaluation

Equation
12
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tively. Equation 19 (RMSE = 2.7 g/kg of milk; R* =

— O oM
=2 =2 0.77; Table 5), based on milk C16:0, iso C16:0, trans-10
. - C18:1, dietary NDF, and animal characteristics (DIM),
== R had the best prediction abilities with low RSR (0.58
o e and 0.64) and high CCC (0.82 and 0.84) in both ex-
22 ST ternal evaluation data sets compared with the other
= = models. The RMSPE values were 32.7 and 16.7% when
20 a9 equation 19 was evaluated in the external individual
o A %S data set and external mean data set, respectively. As
o o already observed for CH, yield (g/kg of DMI), there
o se were positive relationships between CH, intensity and
o - C16:0, iso C16:0, and NDF, whereas there were nega-
e - tive relationships between CH, intensity and trans-10
S8 on C18:1.

Dietary Strategies Effects. Marginal effects for-
_ _ age type and different feed additives (nitrate, essential
;5’ ;5’ oil, saponin, tannin, and other plant extracts) were
E E tested on the residuals of equations 1 and 9, but no
Eﬁ Eﬁ associations were observed (P > 0.05). The analysis

of residuals indicated that the type of the major FA
in lipid-supplemented diets explained a considerable
proportion of the residuals of equation 12 (P < 0.05).
In addition, several FA (C16:0, cis-9 C18:1, cis-9,cis-12
(C18:2, and C18:3n-3) tended to be associated with the
residuals of equation 13 (P < 0.10). No effects of the
other dietary mitigation strategies were observed on
the residuals of CH, yield prediction equations. Sapo-
nin supplementation, specifically tea saponin, tended to
have an effect (P < 0.10) on MFA model residuals of
equation 15 (P < 0.10). No other effect of CH, mitiga-
tion strategies was observed.

324

9.3 (£3.10) + 0.1 x C16:0 (£0.05) + 6.0 x iso C16:0 (£2.30) — 2.8 360
x cis-11 C18:1 (£0.53) — 0.6 x trans-10 C18:1 (+£0.13) — 1.0 x cis-
9,cis-12 C18:2 (+0.28) + 0.3 x NDF (£0.05) — 0.4 x EE (£0.14)

2.7 x cis-11 C18:1 (+£0.50) — 0.7 x trans-10 C18:1 (+0.13) — 0.9 x

14.9 (£2.29) + 0.1 x C16:0 (£0.04) + 8.2 x iso C16:0 (£2.26) —

(RMSE = 2.8; R* = 0.82)

RMSPE = root mean squared prediction error; ECT = error from mean bias; ER = error from regression linear bias; ED = error from disturbance; CCC = concordance correlation

'n = number of observations used to construct equations; RMSE = root mean square error (expressed in g/kg of DMI); EE = ether extract.

=
S
o
Nl
=
m
X
S DISCUSSION
|
=830 The compilation of experiments in the 825 individual
3 23 data sets used for model development (n = 568) con-
K ﬁ/ﬁ” tained a larger variety of diets from experiments con-
=Ll ducted across 5 countries in Europe, North America,
= © = and Asia—Australia (Supplemental Table S1, https://
I 7! g doi.org/10.3168/jds.2018-15940) compared with the
@ g@ 5 data used for development of previously reported equa-
Bt g3 tions to predict CH, emissions (n = 246 observations
g in Williams et al., 2014; n = 218 observation in van
N L8 g Gastelen et al., 2018).
=. =Y z
23 S 88 E . . .
Z 5 Z 2% P Key MFA Predictors in Simple Models
2% ii: -
g E g g;‘; 3 The data set showed a wide range of values in con-
= ; = B8 [ centrations of individual MFA, with CV ranging from
=5 Z2<E & 20% to more than 100% (Table 1). This wide range
Q.j in individual MFA concentrations was desirable for
§ predictive purposes because previous meta-analyses
g have shown that concentrations of individual FA are
2 3 3 highly variable (van Lingen et al., 2014). As expected,
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we observed positive relationships between iso C16:0
and CH, yield (g/kg of DMI) and intensity (g/kg of
milk). The relationships between branched-chain FA
and CH, emissions have been reported in several other
studies [van Gastelen et al. (2017) and Chilliard et
al. (2009) for CH, production in g/d; Dijkstra et al.
(2011) for CH, yield in g/kg of DMI; van Lingen et al.
(2014) for CH, intensity in g/kg of milk]. Indeed, outer
membranes of fibrolytic bacteria are rich in branched-
chain FA, and more specifically in iso FA (Vlaeminck
et al., 2006). Fibrolytic bacteria are in great number in
fiber-rich diets, which are known to be linked to high
CH, emissions (Morvan et al., 1996). Vlaeminck et al.
(2006) also reported increasing odd-iso FA content in
milk from cows fed increasing proportions of forage.
Thus, the negative relationship between iso C17:0 (coe-
luted with ¢rans-9 C16:1) and CH, production (g/d)
was unexpected. Vlaeminck et al. (2006) also observed
greater iso C17:0 content with the inclusion of corn
silage or lipid (rich in C18:3 n-3) supplementation in
the diet. These dietary strategies (replacing grass silage
by corn silage or adding lipids in the diet) are known
to lower CH, emissions in dairy cows (Hristov et al.,
2013). We also report negative relationships among
milk cis MUFA (cis-11 C18:1 and cis-15 C18:1), trans-
MUFA (trans-10 C18:1 and trans-10+trans-11 C18:1),
and PUFA (trans-11,cis-15 18:2 and cis-9,cis-12 C18:2)
and CH, emissions. Negative associations between milk
C18:1, C18:2, and C18:3 isomers and CH, emissions
have also been observed by Chilliard et al. (2009), Di-
jkstra et al. (2011), van Lingen et al. (2014), Rico et
al. (2016), and van Gastelen et al. (2018). Milk FA
composition, ruminal metabolism, and ruminal metha-
nogenesis are linked in several ways. For example,
biohydrogenation of unsaturated long-chain FA in the
rumen uses up to 2.6% of metabolic hydrogen, thus
limiting its availability for CH, production. Dietary
strategies, such as high-concentrate diets, modify the
rumen environment (pH, H, availability, microbial
population), resulting in altered MFA composition and
reduced CH, emissions (Martin et al., 2010). These
rumen conditions (i.e., lower ruminal pH) are often as-
sociated with incomplete ruminal biohydrogenation, re-
sulting in production of UFA intermediates that, after
absorption from the intestines, are incorporated in milk
fat (Ferlay et al., 2017). Diets supplemented with lipids
rich in UFA also tend to decrease DMI (Martin et al.,
2008) due to lower gut motility of added dietary fats
(Bradford et al., 2008). Therefore, lower CH, emissions
can be observed because DMI and CH, are positively
correlated (Hristov et al., 2013).

The RSR (1.0), CCC (0.44), and RMPSE percentage
(18.4%) values for the simple prediction equation of
CH, yield including only MFA (equation 12) suggest
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that this equation performed better than those for
CH, production (equation 1) and CH, intensity (equa-
tion 15) on the external mean data set. In contrast,
prediction with a simple equation of CH, emissions
(g/d; equation 1) had better performance than those
for CH4 yield (equation 12) and CH, intensity (equa-
tion 15) when evaluated with the external individual
data set. The best complex equations for CH, emissions
(equations 9, 13, and 19) had better performance when
evaluated with the external mean data set than with
the external individual data set. These discrepancies
between evaluation performance could be explained by
the lower RMSPE percentage and standard deviation
of the external mean data set compared with the stan-
dard deviation from the external individual data set for
CH, emission (85 vs. 106 g/d, 4.5 vs. 4.7 g/kg of DMI,
and 4.7 vs. 5.0 g/kg of milk, respectively). In addition,
some dietary strategies (monensin or cardanol) are rep-
resented only in the external mean data set. This could
further explain why equation 1 (based on MFA) had
low performance (RMSPE percentage) when challenged
against the external mean data set and seems to be
unsuitable for diets supplemented with such additives.
The performances of evaluation of the models (RSR,
RMSPE percentage) are dependent on the domain of
validity of the evaluation data sets used (individual or
mean), whereas the performances of development of the
models (RMSE and R?) are dependent on their predic-
tors.

The potential relationships between CH, and in-
dividual MFA have been studied either in individual
experiments (Mohammed et al., 2011; Williams et al.,
2014; van Gastelen et al., 2017) or in meta-analysis
(Dijkstra et al., 2011; van Lingen et al., 2014; Rico et
al., 2016; van Gastelen et al., 2018), and predictions
have been developed using different individual MFA
only as predictors of CH, emissions. Milk cis-11 C18:1
and trans-10 C18:1 were the only MFA related to CH,
emissions that were found in this study and in several of
the aforementioned studies (Dijkstra et al., 2011; Mo-
hammed et al., 2011; Rico et al., 2016; van Gastelen et
al., 2018). Thus, few MFA are commonly found among
developed prediction equations in this study and in the
literature. In addition, performance of these prediction
equations is not consistent, meaning that MFA used
alone have a limited potential to predict CH, emissions.

Key Predictors in Complex Models

Dry matter intake is a key factor of daily CH, pro-
duction (Reynolds et al., 2011). A significant positive
relationship between DMI and CH, production demon-
strated that increasing DMI led to greater CH, emis-
sions because of greater availability of substrates for
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microbial fermentation in the rumen (Niu et al., 2018).
Equation 2 further verified that DMI is a major driver
of enteric CH, production in dairy cows and thus is a
strong predictor of CH, emissions (Hristov et al., 2013).
Dietary NDF, which represents the effect of forage
inclusion rates, was included as a positive predictor in
several equations showing the best performance (equa-
tions 9, 13, and 19) for all 3 CH, emission responses.
Studies focusing on the effect of types of carbohydrates
have indicated that diets rich in NDF generally promote
high acetate and butyrate production and, in turn, high
CH, emissions (Moe and Tyrrell, 1979; Johnson and
Johnson, 1995; Bannink et al., 2008; Bougouin et al.,
2018). On the other hand, nonstructural carbohydrates,
primarily starch, favor production of propionate, result-
ing in less CH, production in the rumen. Additionally,
it has been shown that substituting wheat, which is
rapidly fermented in the rumen, in place of pasture,
which is rich in structural carbohydrates, in the diet
reduced CH, production and yield in dairy cows with
no negative effect on milk production, although feeding
high levels (i.e., >40% of DMI) of wheat decreased milk
fat content (Williams et al., 2013; Moate et al., 2014).
Regardless of the CH, emission response, dietary EE
content was also identified as a key negative predictor
variable in the best-performing equations. Dietary EE
is indicative of the total lipid content in the diet, and
the lipid-mitigating effect on enteric CH, production
is well established (Beauchemin et al., 2008; Eugene
et al., 2008; Martin, et al., 2010; Knapp et al., 2014).
Increased dietary lipid content likely results in low
availability of substrate for fermentation in the rumen
as lipids are often supplemented at the expense of
carbohydrates in the diet. Moreover, lipids can have a
toxic effect on methanogens and on protozoa known to
produce a great amount of H, that promotes CH, pro-
duction in the rumen (Grainger and Beauchemin, 2011;
Guyader et al., 2014). Consistently, dietary EE in all
of the equations was significantly and negatively corre-
lated with CH, emissions. Several prediction equations
developed in the literature have also included EE as a
negative predictor of CH, emissions but with different
effect size (regression coefficient) estimates. Indeed,
Moate et al. (2011) conducted a meta-analysis using
17 experiments and developed a CH, yield prediction
equation with a coefficient of —0.08 per unit increase in
dietary EE content (12 to 114 g/kg of DM). Grainger
and Beauchemin (2011) also proposed a prediction
equation for CHy yield, developed with lactating cows
fed 44 dietary treatments, with a coefficient of —0.1 per
unit of dietary EE (% of DM). In the present study, the
coefficient for dietary EE content was —0.4 for equation
13 using EE as a predictor of CH, yield. However, a
similar coefficient for dietary EE (from —0.29 to —0.45)
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was found in intercontinental prediction equations for
CH, yield developed by Niu et al. (2018). Additional
factors were considered in our study, and the size and
consistency of the data sets differed compared with
the studies of Moate et al. (2011) and Grainger and
Beauchemin (2011); this could explain the difference
of slopes observed in this study, because they explain
another part of the variability not taken into account
with EE alone.

Body weight was positively related to CH production
and intensity as reported in a prediction equation de-
veloped by Niu et al. (2018). As mentioned by Hristov
et al. (2013), BW and DMI are positively related to
each other, which led to more rumen feed fermentation,
resulting in greater CH, production.

Complex equations developed in this study exhibited
better performance when the above-stated variables
were added to the simple equations including only
MFA in predicting CH, production (RMSE = 46.6 vs.
65.1 g/d; R* = 0.92 and 0.84, respectively), CH, yield
(RMSE = 2.6 vs. 2.8 g/kg of DMI; R* = 0.85 and 0.82,
respectively), or CH, intensity (RMSE = 2.7 vs. 2.9 g/
kg of milk; R* = 0.77 and 0.70, respectively). Moreover,
we observed that accuracy of prediction of CH, produc-
tion improved (RSR = 0.69 and 0.62; —4% RMSPE
with the external individual data set; —11% RMSPE
with the external mean data set) when the independent
variables (e.g., DMI, dietary NDF and EE, DIM, and
BW) were added to the equation based on MFA. Our
results confirm that increasing the complexity of pre-
dicting equations leads to better goodness of fit most
of the time (Moraes et al., 2014; Santiago-Juarez et al.,
2016; Niu et al., 2018), probably because more complex
equations explain an additional proportion of the vari-
ability not taken into account in simple equations with
MFA alone.

The ability of equations to predict CH, emissions is
increased when other variables (intake, diet composi-
tion, or BW) are included along with MFA, probably
because they explain another part of the variability
not taken into account with MFA alone. In that sense,
dietary FA would be a variable of interest to increase a
model’s ability to predict CH, emissions. We were not
able to include dietary FA in our analysis because very
few data were available, but future studies should take
it into account for model development.

Effects of Qualitative Factors on Prediction
Equation Residuals

When the class of lipids, forage type, and different
feed additives were further tested on the prediction er-
ror, no further marginal effects were observed for CH,
production. We only observed an effect of the major FA
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supplemented on the residuals for CH, yield in equation
12. The major FA responsible for this effect was C18:
3n-3, compared with cis-9 C18:1, and led to a decrease
of the intercept in equation 12. This result is in line
with Doreau et al. (2011), who also observed an effect
of the lipid class on the slope of the overall relationship
between CH, yield and EE. Conversely, Grainger and
Beauchemin (2011) did not observe such an effect in
their meta-analysis. This discrepancy, which occurred
across different studies, could be due to the variabil-
ity in composition of the database. Indeed, not all the
studies that focused on the effect of lipid class on CH,
emission were included in our data set that was used to
develop the equations. In this study, saponin or essential
oil had an effect on the residuals of the CH, intensity
prediction equation, but we cannot draw conclusions
on the effect of the type of these additives because only
tea saponin and 2 types of essential oil were present in
the database.

Furthermore, measurement of CH, emissions, even
when done using the gold standard methods, unavoid-
ably includes several associated errors because these
techniques need to be correctly and appropriately
used to generate reliable and accurate data (Hristov
et al., 2018). In addition, even when cows are fed a
fixed amount of a specific diet for a period of up to
16 wk, there may be substantial changes over time in
CH, emissions, probably associated with adaption of
ruminal microbial populations (Moate et al., 2018).
Thus, these issues continue to present challenges for
the development of models that can accurately predict
CH, production, yield, and intensity.

Application of CH, Prediction Equations on Farm

The best CH, prediction equation developed in this
study has a low potential of applicability on farm.
Indeed, milk samples could be routinely obtained on
farm, but the GC technique, which is the gold stan-
dard method to determine MFA, is rather expensive
and time consuming. Moreover, research has been di-
rected toward the use of near-infrared reflectance or
mid-infrared (MIR) spectrometry, which are rapid,
less expensive, and easier methods to determine MFA
concentrations. Furthermore, MIR spectrometry is
already implemented in laboratories of milk recording
organizations, in France and Belgium for instance, to
quantify major milk components used for milk pay-
ment and can be used to estimate various MFA, such
as C12:0, C14:0, C16:0, cis-9 C16:1, and c¢is-9 C18:1,
and SFA and MUFA in cow milk (Soyeurt et al., 2006).

Unfortunately, the best 5 MFA predictors of CH,
emissions reported in the current study are not all well
quantified with MIR spectrometry, except for C8:0,
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C10:0, C16:0, and cis-11 C18:1 (Soyeurt et al., 2006;
Ferrand-Calmels et al., 2014). Thus, for on-farm esti-
mation of CH, emissions (yield and intensity) in the
near future, the MIR spectrometry technique should
evolve to accurately estimate the key MFA used in the
CH, prediction equations developed in this study.

CONCLUSIONS

Our analysis, based on a relatively large data set in-
cluding a wide range of diets from 5 countries, indicated
that MFA have better potential to accurately predict
enteric CH, production, yield, and intensity of dairy
cows when combined with other variables (e.g., DMI)
compared with on their own. Equations based only on
MFA performed well, with RMSPE percentage ranging
from 18 to 38%. Inclusion of DMI, dietary NDF, EE,
DIM, and BW in the equation further improved pre-
diction performance, with RMSPE percentage ranging
from 14 to 32% for the best ones. Nevertheless, DMI is
difficult to measure routinely in commercial farms.
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