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ABSTRACT

There is a need to quantify methane (CH4) emissions 
with alternative methods. For the past decade, milk 
fatty acids (MFA) could be used as proxies to predict 
CH4 emissions from dairy cows because of potential 
common rumen biochemical pathways. However, equa-
tions have been developed based on a narrow range 
of diets and with limited data. The objectives of this 
study were to (1) construct a set of empirical models 
based on individual data of CH4 emissions and MFA 
from a large number of lactating dairy cows fed a wide 
range of diets; (2) further increase the models’ level 
of complexity (from farm to research level) with ad-
ditional independent variables such as dietary chemical 
composition (organic matter, neutral detergent fiber, 
crude protein, starch, and ether extract), dairy per-
formance (milk yield and composition), and animal 
characteristics (days in milk or body weight); and (3) 
evaluate the performance of the developed models on 
independent data sets including measurements from 
individual animals or average measurements of groups 
of animals. Prediction equations based only on MFA 
[C10:0, iso C17:0 + trans-9 C16: 1 ,cis -11 C18:1, and 
trans-11,cis-15 C18:2 for CH4 production (g/d); iso 
C16:0, cis-11 C18:1, trans-10 C18:1, and cis-9,cis-12 
C18:2 for CH4 yield (g/kg of dry matter intake, DMI); 
and iso C16:0, cis-15 C18:1, and trans-10 + trans-11 
C18:1 for CH4 intensity (g/kg of milk)] had a root mean 
squared error of 65.1 g/d, 2.8 g/kg of DMI, and 2.9 
g/kg of milk, respectively, whereas complex equations 

that additionally used DMI, dietary neutral detergent 
fiber, ether extract, days in milk, and body weight had 
a lower root mean squared error of 46.6 g/d, 2.6 g/kg 
of DMI, and 2.7 g/kg of milk, respectively). External 
evaluation with individual or mean data not used for 
equation development led to variable results. When 
evaluations were performed using individual cow data 
from an external data set, accurate predictions of CH4 
production (g/d) were obtained using simple equations 
based on MFA. Better performance was observed on 
external evaluation with individual data for the simple 
equation of CH4 production (g/d, based on MFA), 
whereas better performance was observed on external 
evaluation mean data for the simple equation of CH4 
yield (g/kg of DMI). The performance of evaluation of 
the models is dependent on the domain of validity of 
the evaluation data sets used (individual or mean).
Key words: dairy cow, methane emissions, prediction 
model, milk fatty acids

INTRODUCTION

Enteric methane (CH4) emissions have been recog-
nized as a major source of greenhouse gases in livestock 
farming. Dairy cow CH4 emissions account for 46% of 
the total greenhouse gas emissions in the world dairy 
supply chain when expressed as carbon dioxide (CO2) 
equivalents (Gerber et al., 2013). The global demand 
for livestock products is constantly increasing (FAO, 
2013). Ruminants are almost the sole source of milk 
for humans, providing 644 million tonnes per year of 
fat- and protein-corrected milk, of which dairy cattle 
contribute 80% (Gerber et al., 2013). The increasing 
demand for dairy products has led to the expansion 
of dairy herds. Therefore, there is a need for strategies 
to reduce CH4 emissions to limit the negative effect of 
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dairy cows on the environment. Several dietary strate-
gies, such as formulating diets rich in concentrate (and, 
more particularly, in starch) or supplementing diets 
with lipids or other chemical additives [3-nitrooxypro-
panol (3-NOP), nitrate, monensin; Odongo et al., 2007; 
Martin et al., 2010; Hristov et al., 2013], have proven 
their efficacy to reduce CH4 emissions from dairy cows. 
Methanogenesis is the main pathway that uses hydro-
gen (H2), an unavoidable by-product resulting from di-
etary carbohydrate fermentation (48–80%; Mills et al., 
2001), whereas rumen biohydrogenation of UFA uses 
up to 3% of rumen H2 (Mills et al., 2001). Fermenta-
tion in the rumen also leads to the production of VFA, 
which are precursors for de novo synthesis of short- and 
medium-chain fatty acids (FA) in the mammary gland. 
In addition, certain VFA production pathways, such as 
acetate or butyrate, lead to production of H2, whereas 
propionate production pathway uses H2. Thus, direct 
interactions exist between rumen fermentation, CH4 
production, and milk FA (MFA) composition.

Predictive tools such as empirical equations or mech-
anistic models for estimating CH4 emissions are useful 
for evaluating potential strategies for methane mitiga-
tion, especially because measurement techniques, such 
as open respiratory chambers or SF6 tracer technique, 
are costly and may be difficult to apply on large-scale 
dairy farms. Although numerous models have been 
developed to predict CH4 emissions from dairy cows 
based only on MFA (as reviewed in van Gastelen and 
Dijkstra, 2016) or with MFA and other variables such 
as milk production (Weill et al., 2008) or forage intake 
(Chilliard et al., 2009), the equations generally accu-
rately predict CH4 emissions only for specific diets and 
situations similar to those under which the equations 
were developed. For example, the prediction equations 
presented by Chilliard et al. (2009) were developed us-
ing data from dairy cows consuming corn silage-based 
diets containing linseed. Furthermore, previous studies 
usually involved small numbers of dairy cows [e.g., 8 
cows in Chilliard et al. (2009), 16 cows in Mohammed 
et al. (2011), 100 cows in Dijkstra et al. (2011), 146 
cows in van Lingen et al. (2014), 32 cows in van Gas-
telen et al. (2017), and 218 cows in van Gastelen et al. 
(2018)].

The objectives of the present study were to (1) to 
construct a set of empirical models based on individual 
data of CH4 emissions and milk composition (MFA) 
from a large number of lactating dairy cows consuming 
a wide range of diets; (2) further increase the level of 
complexity (from research to farm level) of the devel-
oped models based on additional independent variables 
such as dietary chemical composition, production 
performance (milk yield and composition), and animal 

characteristics (DIM and BW); and (3) evaluate the 
performance of these models using independent data 
sets.

MATERIALS AND METHODS

Databases and Variable Selection

Individual Animal Data. The database was cre-
ated using measurements made on individual animal 
data received from collaborators to develop prediction 
equations for CH4 based on MFA. For inclusion in the 
database, experiments must have met the following 
criteria: (1) CH4 production measured on individual 
dairy cows by means of respiration chambers, the 
SF6 tracer technique, or GreenFeed system; (2) MFA 
profiles of individual cows analyzed by GC (detailed 
description of the methods used to analyze the FA in 
milk was provided in each of the relevant cited papers); 
(3) measurements of daily DMI of individual cows; (4) 
measurements of dietary composition; (5) measure-
ments of milk production and composition of individual 
cows; and (6) characteristics of individual cows (BW 
and DIM) recorded. Details of experiments used in the 
analysis are given in Supplemental Table S1 (https: / / 
doi .org/ 10 .3168/ jds .2018 -15940). Briefly, the data set 
contained 312 observations from published and unpub-
lished experiments (17 experiments) by INRA-UMRH 
(Saint-Genès-Champanelle, France), 119 individual 
observations (5 experiments) from Aarhus University 
(Foulum, Denmark), 218 observations (7 experiments) 
from Ellinbank Research Centre (Australia), and 177 
observations (5 experiments) from Agriculture and 
Agri-Food Canada. A total of 825 observations of CH4 
emissions (g/d) from individual lactating Holstein 
dairy cows and related DMI and diet chemical com-
position [OM, NDF, CP, starch, ether extract (EE)], 
animal characteristics (BW, DIM), milk performance 
(milk yield and milk composition: fat, protein, lactose, 
MFA), and CH4 mitigation treatments were obtained 
from the 34 in vivo experiments (15 randomized block 
and 19 Latin square designs). A wide range of dietary 
treatments was included in the data set. Main dietary 
forages were corn silage (n = 297), grass silage (n = 
157), or legume hay (n = 157). Main concentrate ingre-
dients included in the diets were rapeseed (n = 264), 
corn grain (n = 198), barley (n = 124), and wheat (n = 
83). The database included control diets (n = 198) and 
CH4-mitigating treatments as described in Martin et 
al. (2010), including lipid supplementation (n = 198), 
different forage or concentrate types (e.g., main forage 
of the diet, n = 149; main ingredient in the concentrate, 
n = 140), probiotics (n = 58), plant extract (n = 33), 
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and nitrate (n = 16). Experiments are summarized in 
Supplemental Table S1 (https: / / doi .org/ 10 .3168/ jds 
.2018 -15940). The data set gathered studies that tested 
lipid dose effects [mean EE of lipid-supplemented diets 
= 7 ± 3.9% (SD) of DM], effects of lipid source (linseed, 
rapeseed, Ca salt of palm oil, sunflower, dry distillers 
grain with solubles; mean EE = 5.5 ± 0.8% of DM; 
n = 4 experiments) or form (crushed, extruded, cake, 
oil; mean EE = 6.0 ± 0.4% of DM; n = 1 experiment), 
forage source effects (mean NDF = 35 ± 6.4% of DM; 
n = 7), and the effect of different compositions of con-
centrate (starch rich, sugar rich, lipid rich, protein rich; 
mean starch = 23 ± 9.9% of DM; n = 6 experiments) 
on CH4 emissions. In several experiments, various ad-
ditives were tested for the effects of type or dose of 
additive on CH4 emissions. These included probiotics (4 
experiments), tannins (2 experiments), lipid + calcium 
nitrate (2 experiments), saponin (2 experiments), and 
other plant extracts (3 experiments).

Milk FA fractions were expressed in grams per 100 
grams of total MFA. Some studies reported coelution 
of different MFA, but no information regarding operat-
ing conditions (e.g., HPLC columns, temperatures) was 
provided by the authors. Thus, when these MFA were 
individually identified in other studies (e.g., iso C17:0 
+ trans-9 C16:1), they were grouped together. Further-
more, MFA with concentrations <0.1 g/100 g of total 
FA were not included in the data set.

The data set (34 experiments; n = 825) including the 
individual animal observations was randomly divided 
into 2 data sets: (1) a data set that contained 70% of 
experiments (n = 24, called the training data set) that 
was used to develop prediction models and (2) a data 
set that contained the remaining 30% of the experi-
ments (n = 10, called the external individual data set) 
that was used to evaluate the robustness of the models 
(Tables 1 and 2).

Mean Database. Another database, called the ex-
ternal mean data set, was built with treatment means 
from the literature and was used to further evaluate 
the robustness of the models (Tables 1 and 2). A com-
prehensive literature search (up to January 2018) was 
conducted using Science Direct, CAB International, 
SCOPUS, and Web of Knowledge online databases 
with the following search terms: “methane” or “meth-
ane emission,” “dairy,” “cows” or “livestock” or “cattle,” 
and ”milk fatty acid.” To be included in the data set, 
the studies were required to meet the same criteria 
used for selecting individual animal data. A total of 
25 studies (Supplemental Table S2, https: / / doi .org/ 10 
.3168/ jds .2018 -15940) were selected and used for model 
evaluation, and summary statistics are given in Tables 
1 and 2. Briefly, the external mean data set included 
studies testing the effect of different dietary strategies 

on CH4 emissions as described in Martin et al. (2010): 
(1) lipid dose [mean EE = 5 ± 1.5% (SD) of DM]; 
(2) lipid type or form; (3) forage type or level (mean 
NDF = 37.68 ± 1.326% of DM); (4) concentrate type 
or level (mean starch content = 20.7 ± 7.6% of DM; 
mean percentage of concentrate = 35.7 ± 13.4%); (5) 
probiotics; (6) organic acids; (7) plant extracts; and (8) 
feed additives such as nitrate, monensin, and 3-NOP. 
There was no overlap among studies used to build the 
individual and mean data sets.

Statistical Analyses

Variable Preselection for Model Development. 
An exploratory data analysis was performed to evaluate 
the data for completeness (e.g., missing values of nutri-
ent composition of diets), consistency in nomenclature 
of variables in question, and the presence of outliers 
(Pyle, 1999). When not measured, diet chemical com-
position, specifically NDF, starch, and EE, were esti-
mated using feed composition tables in INRA (2007), 
NRC (2001), and Feedipedia (https: / / www .feedipedia 
.org/ ). Measured or calculated variables and their sum-
mary statistics are given in Tables 1 and 2. We de-
tected outliers using the boxplot function in R (version 
0.98.1102; R Foundation for Statistical Computing, 
Vienna, Austria). The outliers’ values were compared 
with the range of reference values. When values were 
outside of this range, we requested further information 
from the data owner to understand this study effect or 
to decide to remove the data from further analyses (n 
= 1). The number of observations for each variable is 
provided in Tables 1 and 2.

Correlation Among Variables and Identifica-
tion of Predictors. Data including observations (n 
= 825) made on individual animals were used in this 
analysis. First, Pearson correlation coefficients were ob-
tained for pairwise relationships among CH4 emissions 
and the individual MFA (concentration >0.1 g/100 g 
of MFA; n = 46) and to determine and select the most 
correlated individual MFA among the 5 MFA families 
(SFA, odd- and branched-chain FA, cis MUFA, trans 
MUFA, and PUFA). Milk FA missing for more than 
50% of the observations were not considered in this 
analysis. Second, the Pearson correlation coefficients 
were obtained for each selected MFA within its fam-
ily to determine how independent (r ≤0.5) they were 
and thereby avoid potential collinearity in model de-
velopment. Then, principal components analysis was 
performed using the “FactoMinR” and “MissMDA” 
packages (versions 1.34 and 1.7.3, respectively) in R 
(version 0.98.1102; R Foundation for Statistical Com-
puting) on the MFA significantly associated with daily 
CH4 production (g/d; r ≥ |0.3|), CH4 yield (g/kg of 
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DMI; r ≥ |0.3|), and CH4 intensity (g/kg of milk; r ≥ 
|0.2|) along with other variables to identify additional 
predictors of CH4 emissions.

Random-Effects Model Analysis. As mentioned, 
data from the entire data set (n = 825) were obtained 
from randomly selected experiments divided (“dplyr” 
package in R) into a training data set (24 experiments, 
n = 568 observations) for model development and an-
other data set (hereafter called the external individual 
data set; 10 experiments, n = 257) for model evaluation. 
A set of linear mixed-effects models was constructed to 
separately predict CH4 production (g/d), yield (g/kg 
of DMI), and intensity (g/kg of milk). Random-effect 
meta-analysis approaches (St-Pierre, 2001) were ap-
plied using the “nlme” package (version 3.1-131) in R 
(version 0.98.1102; R Foundation for Statistical Com-
puting). The nlme function fits linear mixed-effects 
models in the framework described in Lindstrom and 
Bates (1990). Several models were developed with in-
creasing level of complexity by incrementally adding 
different independent quantitative variables: dietary 
content (% of DM) of CP, NDF, ADF, EE, and starch; 
BW (kg); DIM (d); milk yield (kg/d); and milk fat, 

protein, and lactose percentages. A first set of models 
began with the MFA that was most representative (in 
% of total FA) of each family selected based on pairwise 
correlations and principal components analysis. Then, 
DMI was added to the simplest models based on MFA, 
followed by milk performance, animal characteristics, 
or diet composition (Figure 1).

Finally, all significant variables were included togeth-
er, carrying the same weight, to create highly complex 
models. Furthermore, this approach enabled analysis of 
fixed effects of independent variables such as MFA or 
DMI (Figure 1) as well as the study-specific deviation 
of the CH4 emission response, which was taken into 
account as a random effect. The general mixed-effect 
model for single and multiple regressions is represented 
as

 Y = β0 + β1X1ij + β2X2ij + . . . + βnXnij + eij, 

where β0, β1X1ij, and β2X2ij, . . ., βnXnij are the fixed 
effects of independent variables (intercept and effects), 
and eij is the random experiment effects (i = 1, . . ., n 
studies and j = 1, . . ., ni observations).

Figure 1. Diagram illustrating variable selection and model development and evaluation. MFA = milk fatty acid; FA = fatty acid; PCA 
= principal component analysis; CH4 = methane; EE = ether extract; BIC = Bayesian information criteria; RMSPE = root mean squared 
prediction error; RSR = root mean squared deviation; ECT = error from mean bias; ER = error from regression linear bias; ED = error from 
disturbance; CCC = concordance correlation coefficient.
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Pairwise Pearson correlations for variables with an 
absolute value of |r| ≥ 0.5 were not included simul-
taneously in the model development. Indeed, multi-
collinearity can lead to issues in developing models, 
such as inaccurate model parameterization, decreased 
statistical power, and exclusion of significant predictor 
variables during model construction (Graham, 2003). 
Only variables with a P-value <0.10 were retained in 
the model. We also carried out the ANOVA inflation 
factor for our best models (n = 6) for the 3 CH4 metrics 
(CH4 emissions, g/d per cow; CH4 yield g/kg of DMI; 
and CH4 intensity, g of CH4/kg of milk).

Models associated first with the lowest Bayesian in-
formation criterion and then with the lowest root mean 
square error (RMSE) with the highest coefficient of 
determination (R2) were selected as the best models 
to predict each CH4 emission response at each level of 
complexity. Adjusted dependent quantitative variable 
values were calculated based on regression parameters 
of the final model for each level of complexity to deter-
mine adjusted R2 values corrected for random experi-
ment effect (St-Pierre, 2001).

Prediction error (predicted value minus observed val-
ue) was visually inspected for any pattern. Moreover, 
qualitative factors, CH4 mitigation strategies classified 
according to Martin et al. (2010), were tested by run-
ning ANOVA in R using the “stats” package (version 
3.6.0). These mitigation strategies were classified on 
the basis of forage type (alfalfa, association of different 
forages, barley, chicory, clover, cocksfoot grass, corn, 
grass, red clover, and timothy), lipid type represented 
by major FA from lipid supplementation (C16:0, cis-
9 C18:1, C18: 2n -6, and C18: 3n -3), concentrate type 
(starch rich, sugar rich, lipid rich, and protein rich), or 
feed additive (nitrate, tannin, saponin, and other plant 
extracts).

Model Evaluation. The potential of each developed 
model to accurately predict CH4 production was as-
sessed on 2 independent data sets of individual or mean 
observations (Figure 1). According to Appuhamy et al. 
(2016), a combination of model evaluation metrics was 
used to assess model performance. Briefly, we designate 
the mean square of prediction error as MSPE and the 
root of the MSPE as RMSPE, and we also express 
the RMSPE, as a percentage of the observed mean, as 
RMSPE%. Smaller RMSPE% indicates better model 
performance. The RMSPE can be decomposed into 3 
parts: error due to central tendency or mean bias, error 
due to deviation of the regression slope or slope bias, 
and error due to the disturbance or random bias (Bibby 
and Toutenburg, 1977). The concordance correlation 
coefficient (CCC; Lin, 1989) was calculated. The CCC 
is a product of the Pearson correlation coefficient of 

the relationship between predicted and observed values 
and the bias correction factor (measure of accuracy) 
indicating how far the best fit line deviates from the 
concordance or unity line of the observed values versus 
predicted values plot. The CCC ranges from 0 to 1, with 
greater values indicating better model performance. 
When using different data to compare the performance 
of models, we define the RMSPE-to-standard-deviation 
ratio (RSR) as the RMSPE divided by the standard 
deviation of the data (observed values), as it takes 
into account standardized model performance relative 
to the variability in observations in different data sets 
(Moriasi et al., 2007). Smaller RSR (<1) indicates 
better performance given the variability of observa-
tions. Model performance was primarily ranked based 
on RSR, followed by RMSPE%, and then the other 
criteria.

RESULTS

Database

The individual animal observations contained diets 
based on 30 to 100% (% DM) forages that were pasture, 
silage, hay, or haylage (alfalfa, barley, corn, timothy, 
clover, chicory, ray grass, and cocksfoot grass). The 
experiments included a large variety of dietary strate-
gies with different forage: concentrate ratios, types of 
concentrate or forage, supplementation of lipids (fat, 
oil, or FA), plant extracts (essential oils, tannins, and 
saponins), chemical additives (nitrate), and probiot-
ics (Saccharomyces cerevisiae). The data set based on 
mean data from the literature included other supple-
ments such as 3-NOP, monensin, or plant extracts 
(Supplemental Table S2, https: / / doi .org/ 10 .3168/ jds 
.2018 -15940).

Overall, individual data showed a wide range of values 
of the predictors (e.g., MFA, DMI, milk) and response 
variables (e.g., CH4 production in g/d, CH4 yield in g/
kg of DMI, and CH4 intensity in g/kg of milk), enabling 
the development of models capable of predicting CH4 
emissions across a wide variety of production condi-
tions in dairy cows. Individual MFA were considerably 
variable, with coefficients of variation (CV) ranging 
from 20% to more than 100% (Tables 1 and 2). The 
values of CH4 emissions were also variable, with an av-
erage CV of 28%. The average DMI and milk yield were 
20.5 kg/d and 28.6 kg/d per cow, respectively. In line 
with individual animal observations, individual MFA 
in the external mean data set had large CV. Moreover, 
the means of DMI and milk yield were similar between 
individual and mean data sets (21.0 and 31.3 kg/d, 
respectively).

https://doi.org/10.3168/jds.2018-15940
https://doi.org/10.3168/jds.2018-15940
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Pearson Correlation Coefficients Between CH4 
Emissions and Individual MFA

Among individual MFA concentrations, C10:0 and 
C8:0 had positive relationships with CH4 production (r 
= 0.33 and 0.35, respectively; P < 0.05; Supplemental 
Table S3, https: / / doi .org/ 10 .3168/ jds .2018 -15940). The 
CH4 yield and intensity were positively related to C16:0 
(r = 0.24 and 0.26, respectively; P < 0.05). Production 
of CH4 was inversely related to iso C17:0 (coeluted with 
trans-9 C16:1; r = −0.32; P < 0.05). The CH4 yield and 
intensity had positive relationships with iso C16:0 (r = 
−0.27 and 0.33, respectively; P < 0.05). Negative cor-
relations between CH4 production, yield, and intensity 
were observed with cis-10 C18:1, cis-11 C18:1, and cis-
15 C18:1. However, less than 50% of the data were re-
ported for cis-10 C18:1 (data not shown). Methane pro-
duction, yield, and intensity were negatively correlated 
with trans-10 C18:1 and trans-10+trans-11 C18:1, with 
Pearson coefficient correlations varying from −0.34 to 
−0.45 (P < 0.05); trans-11,cis-15 C18:2 was inversely 
correlated with CH4 production (r = −0.29; P < 0.05), 
and cis-9,cis-12 C18:2 was negatively correlated with 
CH4 yield (r = −0.30; P < 0.05). All ANOVA inflation 
factors are <5 for the best models developed below.

Mixed-Effect Models

Models for Daily CH4 Production. Models to 
predict daily CH4 production are given in Table 3. 
Daily CH4 production had positive relationships with 
C10:0, DMI, NDF, milk yield, milk fat and protein per-
centages, and BW. There were negative relationships 
between CH4 production and several MFA, such as iso 
C17:0 (+trans-9 C16:1), cis-11 C18:1, trans-10 C18:1, 
and trans-11,cis-15 C18:2. The best simple model 
included 4 MFA and had an RMSE of 65.1 g/d (R2 
= 0.84; RMSE % = 15.7%; Table 3). The RSR was 
0.86 and 1.12, CCC was 0.23 and 0.02, and RMSPE 
was 22.3 and 25.5% with the external individual and 
mean data sets, respectively (equation 1; Table 3). The 
MFA model’s error was mainly associated with error 
due to disturbance (error due to disturbance = 96%) 
in the evaluation with the external individual data set, 
whereas with the external mean data set, the error was 
mainly due to the central tendency (52%) as expected.

When DMI was added to the simple model based 
on MFA, RMSE percentage decreased from 15.7% to 
13.7% and R2 increased from 0.84 to 0.89 (equation 2; 
Table 3). We also observed better prediction ability as 
RSR decreased from 0.86 and 1.13 to 0.76 and 0.90 in 
the external individual data set and external mean data 
set used for model evaluations, respectively. Moreover, 
RMSPE% decreased from 22.3 to 19.7% and from 25.5 

to 20.3% with the external individual data set and the 
external mean data set, respectively. We observed the 
best performance when DMI, dietary NDF and EE 
contents, and BW were included along with the MFA 
(iso C17:0 + trans-16 C16:1, cis-11 C18:1, and trans-
11,cis-15 C18:2) in equation 9 (RMSE = 46.6 g/d; R2 
= 0.92). The RSR and CCC analysis showed the lowest 
RSR (0.62) and the greatest CCC (0.73) for equation 
9 compared with other models when evaluated on the 
external mean data set. Consistently, equation 9 was 
related to the smallest RMSPE when evaluated in both 
external data sets (18.6 and 14.0% on external individ-
ual and mean data sets, respectively). Error was due to 
random variability of data as indicated by substantial 
dispersion error (85.7 and 93.9% when evaluated on 
external individual and mean data sets, respectively). 
The model including all the variables (equation 11) had 
RSR, RMSPE, and CCC similar to those of equation 
9, indicating that no additional explanatory power was 
gained from increasing model complexity beyond equa-
tion 9.

Models for CH4 Yield. There were positive rela-
tionships between CH4 yield and C16:0 and iso C16:0 
but negative relationships between CH4 yield and UFA, 
such as cis-11 C18:1, trans-10 C18:1, and cis-9,cis-12 
C18:2 (equations 12, 13, and 14). The CH4 yield had 
positive and negative relationships with dietary NDF 
and EE and milk yield, respectively. The MFA model 
(equation 12) had an RMSE of 2.8 g/kg of DMI (13.9%) 
and R2 = 0.82 (Table 4). The evaluation resulted in an 
RSR of 1.13 and 1.00 and a CCC of 0.29 and 0.44 for 
the external individual data set and external mean data 
set, respectively. Equation 13 (RMSE = 2.6; R2 = 0.85) 
based on MFA (n = 5) and dietary NDF and EE had 
the best prediction abilities (Table 4), with lower RSR 
(1.01 and 0.90) and higher CCC (0.41 and 0.72) in 
both external evaluation data sets compared with the 
other models. The RMSPE values were 20.1 and 16.6% 
in the external individual data set and external mean 
data set, respectively. Random error accounted for 
the biggest part of the total prediction error (>85%). 
When all variables were included (equation 14), the 
RSR (1.10 and 0.93) were close to those from equation 
13, but RMSPE was increased when this equation was 
evaluated in both external evaluation data sets.

Models for CH4 Intensity. Milk iso C16:0 con-
tent was positively related to CH4 intensity, whereas a 
negative association was found with milk cis-15 C18:1 
and trans-10+trans-11 C18:1 contents in equation 15 
(Table 5), which had an RMSE of 2.9 g/kg of milk 
(18.7%) and R2 = 0.70. The evaluation of the model 
in the external individual data set and external mean 
data set resulted in an RSR of 0.96 and 1.07, CCC of 
0.37 and 0.47, and RMSPE of 38.4 and 26.3%, respec-

https://doi.org/10.3168/jds.2018-15940
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tively. Equation 19 (RMSE = 2.7 g/kg of milk; R2 = 
0.77; Table 5), based on milk C16:0, iso C16:0, trans-10 
C18:1, dietary NDF, and animal characteristics (DIM), 
had the best prediction abilities with low RSR (0.58 
and 0.64) and high CCC (0.82 and 0.84) in both ex-
ternal evaluation data sets compared with the other 
models. The RMSPE values were 32.7 and 16.7% when 
equation 19 was evaluated in the external individual 
data set and external mean data set, respectively. As 
already observed for CH4 yield (g/kg of DMI), there 
were positive relationships between CH4 intensity and 
C16:0, iso C16:0, and NDF, whereas there were nega-
tive relationships between CH4 intensity and trans-10 
C18: 1 .

Dietary Strategies Effects. Marginal effects for-
age type and different feed additives (nitrate, essential 
oil, saponin, tannin, and other plant extracts) were 
tested on the residuals of equations 1 and 9, but no 
associations were observed (P > 0.05). The analysis 
of residuals indicated that the type of the major FA 
in lipid-supplemented diets explained a considerable 
proportion of the residuals of equation 12 (P < 0.05). 
In addition, several FA (C16:0, cis-9 C18:1, cis-9,cis-12 
C18:2, and C18: 3n -3) tended to be associated with the 
residuals of equation 13 (P < 0.10). No effects of the 
other dietary mitigation strategies were observed on 
the residuals of CH4 yield prediction equations. Sapo-
nin supplementation, specifically tea saponin, tended to 
have an effect (P < 0.10) on MFA model residuals of 
equation 15 (P < 0.10). No other effect of CH4 mitiga-
tion strategies was observed.

DISCUSSION

The compilation of experiments in the 825 individual 
data sets used for model development (n = 568) con-
tained a larger variety of diets from experiments con-
ducted across 5 countries in Europe, North America, 
and Asia–Australia (Supplemental Table S1, https: / / 
doi .org/ 10 .3168/ jds .2018 -15940) compared with the 
data used for development of previously reported equa-
tions to predict CH4 emissions (n = 246 observations 
in Williams et al., 2014; n = 218 observation in van 
Gastelen et al., 2018).

Key MFA Predictors in Simple Models

The data set showed a wide range of values in con-
centrations of individual MFA, with CV ranging from 
20% to more than 100% (Table 1). This wide range 
in individual MFA concentrations was desirable for 
predictive purposes because previous meta-analyses 
have shown that concentrations of individual FA are 
highly variable (van Lingen et al., 2014). As expected, T
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we observed positive relationships between iso C16:0 
and CH4 yield (g/kg of DMI) and intensity (g/kg of 
milk). The relationships between branched-chain FA 
and CH4 emissions have been reported in several other 
studies [van Gastelen et al. (2017) and Chilliard et 
al. (2009) for CH4 production in g/d; Dijkstra et al. 
(2011) for CH4 yield in g/kg of DMI; van Lingen et al. 
(2014) for CH4 intensity in g/kg of milk]. Indeed, outer 
membranes of fibrolytic bacteria are rich in branched-
chain FA, and more specifically in iso FA (Vlaeminck 
et al., 2006). Fibrolytic bacteria are in great number in 
fiber-rich diets, which are known to be linked to high 
CH4 emissions (Morvan et al., 1996). Vlaeminck et al. 
(2006) also reported increasing odd-iso FA content in 
milk from cows fed increasing proportions of forage. 
Thus, the negative relationship between iso C17:0 (coe-
luted with trans-9 C16:1) and CH4 production (g/d) 
was unexpected. Vlaeminck et al. (2006) also observed 
greater iso C17:0 content with the inclusion of corn 
silage or lipid (rich in C18:3 n-3) supplementation in 
the diet. These dietary strategies (replacing grass silage 
by corn silage or adding lipids in the diet) are known 
to lower CH4 emissions in dairy cows (Hristov et al., 
2013). We also report negative relationships among 
milk cis-MUFA (cis-11 C18:1 and cis-15 C18:1), trans-
MUFA (trans-10 C18:1 and trans-10+trans-11 C18:1), 
and PUFA (trans-11,cis-15 18:2 and cis-9,cis-12 C18:2) 
and CH4 emissions. Negative associations between milk 
C18:1, C18:2, and C18:3 isomers and CH4 emissions 
have also been observed by Chilliard et al. (2009), Di-
jkstra et al. (2011), van Lingen et al. (2014), Rico et 
al. (2016), and van Gastelen et al. (2018). Milk FA 
composition, ruminal metabolism, and ruminal metha-
nogenesis are linked in several ways. For example, 
biohydrogenation of unsaturated long-chain FA in the 
rumen uses up to 2.6% of metabolic hydrogen, thus 
limiting its availability for CH4 production. Dietary 
strategies, such as high-concentrate diets, modify the 
rumen environment (pH, H2 availability, microbial 
population), resulting in altered MFA composition and 
reduced CH4 emissions (Martin et al., 2010). These 
rumen conditions (i.e., lower ruminal pH) are often as-
sociated with incomplete ruminal biohydrogenation, re-
sulting in production of UFA intermediates that, after 
absorption from the intestines, are incorporated in milk 
fat (Ferlay et al., 2017). Diets supplemented with lipids 
rich in UFA also tend to decrease DMI (Martin et al., 
2008) due to lower gut motility of added dietary fats 
(Bradford et al., 2008). Therefore, lower CH4 emissions 
can be observed because DMI and CH4 are positively 
correlated (Hristov et al., 2013).

The RSR (1.0), CCC (0.44), and RMPSE percentage 
(18.4%) values for the simple prediction equation of 
CH4 yield including only MFA (equation 12) suggest 

that this equation performed better than those for 
CH4 production (equation 1) and CH4 intensity (equa-
tion 15) on the external mean data set. In contrast, 
prediction with a simple equation of CH4 emissions 
(g/d; equation 1) had better performance than those 
for CH4 yield (equation 12) and CH4 intensity (equa-
tion 15) when evaluated with the external individual 
data set. The best complex equations for CH4 emissions 
(equations 9, 13, and 19) had better performance when 
evaluated with the external mean data set than with 
the external individual data set. These discrepancies 
between evaluation performance could be explained by 
the lower RMSPE percentage and standard deviation 
of the external mean data set compared with the stan-
dard deviation from the external individual data set for 
CH4 emission (85 vs. 106 g/d, 4.5 vs. 4.7 g/kg of DMI, 
and 4.7 vs. 5.0 g/kg of milk, respectively). In addition, 
some dietary strategies (monensin or cardanol) are rep-
resented only in the external mean data set. This could 
further explain why equation 1 (based on MFA) had 
low performance (RMSPE percentage) when challenged 
against the external mean data set and seems to be 
unsuitable for diets supplemented with such additives. 
The performances of evaluation of the models (RSR, 
RMSPE percentage) are dependent on the domain of 
validity of the evaluation data sets used (individual or 
mean), whereas the performances of development of the 
models (RMSE and R2) are dependent on their predic-
tors.

The potential relationships between CH4 and in-
dividual MFA have been studied either in individual 
experiments (Mohammed et al., 2011; Williams et al., 
2014; van Gastelen et al., 2017) or in meta-analysis 
(Dijkstra et al., 2011; van Lingen et al., 2014; Rico et 
al., 2016; van Gastelen et al., 2018), and predictions 
have been developed using different individual MFA 
only as predictors of CH4 emissions. Milk cis-11 C18:1 
and trans-10 C18:1 were the only MFA related to CH4 
emissions that were found in this study and in several of 
the aforementioned studies (Dijkstra et al., 2011; Mo-
hammed et al., 2011; Rico et al., 2016; van Gastelen et 
al., 2018). Thus, few MFA are commonly found among 
developed prediction equations in this study and in the 
literature. In addition, performance of these prediction 
equations is not consistent, meaning that MFA used 
alone have a limited potential to predict CH4 emissions.

Key Predictors in Complex Models

Dry matter intake is a key factor of daily CH4 pro-
duction (Reynolds et al., 2011). A significant positive 
relationship between DMI and CH4 production demon-
strated that increasing DMI led to greater CH4 emis-
sions because of greater availability of substrates for 
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microbial fermentation in the rumen (Niu et al., 2018). 
Equation 2 further verified that DMI is a major driver 
of enteric CH4 production in dairy cows and thus is a 
strong predictor of CH4 emissions (Hristov et al., 2013).

Dietary NDF, which represents the effect of forage 
inclusion rates, was included as a positive predictor in 
several equations showing the best performance (equa-
tions 9, 13, and 19) for all 3 CH4 emission responses. 
Studies focusing on the effect of types of carbohydrates 
have indicated that diets rich in NDF generally promote 
high acetate and butyrate production and, in turn, high 
CH4 emissions (Moe and Tyrrell, 1979; Johnson and 
Johnson, 1995; Bannink et al., 2008; Bougouin et al., 
2018). On the other hand, nonstructural carbohydrates, 
primarily starch, favor production of propionate, result-
ing in less CH4 production in the rumen. Additionally, 
it has been shown that substituting wheat, which is 
rapidly fermented in the rumen, in place of pasture, 
which is rich in structural carbohydrates, in the diet 
reduced CH4 production and yield in dairy cows with 
no negative effect on milk production, although feeding 
high levels (i.e., >40% of DMI) of wheat decreased milk 
fat content (Williams et al., 2013; Moate et al., 2014).

Regardless of the CH4 emission response, dietary EE 
content was also identified as a key negative predictor 
variable in the best-performing equations. Dietary EE 
is indicative of the total lipid content in the diet, and 
the lipid-mitigating effect on enteric CH4 production 
is well established (Beauchemin et al., 2008; Eugène 
et al., 2008; Martin, et al., 2010; Knapp et al., 2014). 
Increased dietary lipid content likely results in low 
availability of substrate for fermentation in the rumen 
as lipids are often supplemented at the expense of 
carbohydrates in the diet. Moreover, lipids can have a 
toxic effect on methanogens and on protozoa known to 
produce a great amount of H2 that promotes CH4 pro-
duction in the rumen (Grainger and Beauchemin, 2011; 
Guyader et al., 2014). Consistently, dietary EE in all 
of the equations was significantly and negatively corre-
lated with CH4 emissions. Several prediction equations 
developed in the literature have also included EE as a 
negative predictor of CH4 emissions but with different 
effect size (regression coefficient) estimates. Indeed, 
Moate et al. (2011) conducted a meta-analysis using 
17 experiments and developed a CH4 yield prediction 
equation with a coefficient of −0.08 per unit increase in 
dietary EE content (12 to 114 g/kg of DM). Grainger 
and Beauchemin (2011) also proposed a prediction 
equation for CH4 yield, developed with lactating cows 
fed 44 dietary treatments, with a coefficient of −0.1 per 
unit of dietary EE (% of DM). In the present study, the 
coefficient for dietary EE content was −0.4 for equation 
13 using EE as a predictor of CH4 yield. However, a 
similar coefficient for dietary EE (from −0.29 to −0.45) 

was found in intercontinental prediction equations for 
CH4 yield developed by Niu et al. (2018). Additional 
factors were considered in our study, and the size and 
consistency of the data sets differed compared with 
the studies of Moate et al. (2011) and Grainger and 
Beauchemin (2011); this could explain the difference 
of slopes observed in this study, because they explain 
another part of the variability not taken into account 
with EE alone.

Body weight was positively related to CH production 
and intensity as reported in a prediction equation de-
veloped by Niu et al. (2018). As mentioned by Hristov 
et al. (2013), BW and DMI are positively related to 
each other, which led to more rumen feed fermentation, 
resulting in greater CH4 production.

Complex equations developed in this study exhibited 
better performance when the above-stated variables 
were added to the simple equations including only 
MFA in predicting CH4 production (RMSE = 46.6 vs. 
65.1 g/d; R2 = 0.92 and 0.84, respectively), CH4 yield 
(RMSE = 2.6 vs. 2.8 g/kg of DMI; R2 = 0.85 and 0.82, 
respectively), or CH4 intensity (RMSE = 2.7 vs. 2.9 g/
kg of milk; R2 = 0.77 and 0.70, respectively). Moreover, 
we observed that accuracy of prediction of CH4 produc-
tion improved (RSR = 0.69 and 0.62; −4% RMSPE 
with the external individual data set; −11% RMSPE 
with the external mean data set) when the independent 
variables (e.g., DMI, dietary NDF and EE, DIM, and 
BW) were added to the equation based on MFA. Our 
results confirm that increasing the complexity of pre-
dicting equations leads to better goodness of fit most 
of the time (Moraes et al., 2014; Santiago-Juarez et al., 
2016; Niu et al., 2018), probably because more complex 
equations explain an additional proportion of the vari-
ability not taken into account in simple equations with 
MFA alone.

The ability of equations to predict CH4 emissions is 
increased when other variables (intake, diet composi-
tion, or BW) are included along with MFA, probably 
because they explain another part of the variability 
not taken into account with MFA alone. In that sense, 
dietary FA would be a variable of interest to increase a 
model’s ability to predict CH4 emissions. We were not 
able to include dietary FA in our analysis because very 
few data were available, but future studies should take 
it into account for model development.

Effects of Qualitative Factors on Prediction  
Equation Residuals

When the class of lipids, forage type, and different 
feed additives were further tested on the prediction er-
ror, no further marginal effects were observed for CH4 
production. We only observed an effect of the major FA 
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supplemented on the residuals for CH4 yield in equation 
12. The major FA responsible for this effect was C18: 
3n -3, compared with cis-9 C18:1, and led to a decrease 
of the intercept in equation 12. This result is in line 
with Doreau et al. (2011), who also observed an effect 
of the lipid class on the slope of the overall relationship 
between CH4 yield and EE. Conversely, Grainger and 
Beauchemin (2011) did not observe such an effect in 
their meta-analysis. This discrepancy, which occurred 
across different studies, could be due to the variabil-
ity in composition of the database. Indeed, not all the 
studies that focused on the effect of lipid class on CH4 
emission were included in our data set that was used to 
develop the equations. In this study, saponin or essential 
oil had an effect on the residuals of the CH4 intensity 
prediction equation, but we cannot draw conclusions 
on the effect of the type of these additives because only 
tea saponin and 2 types of essential oil were present in 
the database.

Furthermore, measurement of CH4 emissions, even 
when done using the gold standard methods, unavoid-
ably includes several associated errors because these 
techniques need to be correctly and appropriately 
used to generate reliable and accurate data (Hristov 
et al., 2018). In addition, even when cows are fed a 
fixed amount of a specific diet for a period of up to 
16 wk, there may be substantial changes over time in 
CH4 emissions, probably associated with adaption of 
ruminal microbial populations (Moate et al., 2018). 
Thus, these issues continue to present challenges for 
the development of models that can accurately predict 
CH4 production, yield, and intensity.

Application of CH4 Prediction Equations on Farm

The best CH4 prediction equation developed in this 
study has a low potential of applicability on farm. 
Indeed, milk samples could be routinely obtained on 
farm, but the GC technique, which is the gold stan-
dard method to determine MFA, is rather expensive 
and time consuming. Moreover, research has been di-
rected toward the use of near-infrared reflectance or 
mid-infrared (MIR) spectrometry, which are rapid, 
less expensive, and easier methods to determine MFA 
concentrations. Furthermore, MIR spectrometry is 
already implemented in laboratories of milk recording 
organizations, in France and Belgium for instance, to 
quantify major milk components used for milk pay-
ment and can be used to estimate various MFA, such 
as C12:0, C14:0, C16:0, cis-9 C16:1, and cis-9 C18:1, 
and SFA and MUFA in cow milk (Soyeurt et al., 2006).

Unfortunately, the best 5 MFA predictors of CH4 
emissions reported in the current study are not all well 
quantified with MIR spectrometry, except for C8:0, 

C10:0, C16:0, and cis-11 C18:1 (Soyeurt et al., 2006; 
Ferrand-Calmels et al., 2014). Thus, for on-farm esti-
mation of CH4 emissions (yield and intensity) in the 
near future, the MIR spectrometry technique should 
evolve to accurately estimate the key MFA used in the 
CH4 prediction equations developed in this study.

CONCLUSIONS

Our analysis, based on a relatively large data set in-
cluding a wide range of diets from 5 countries, indicated 
that MFA have better potential to accurately predict 
enteric CH4 production, yield, and intensity of dairy 
cows when combined with other variables (e.g., DMI) 
compared with on their own. Equations based only on 
MFA performed well, with RMSPE percentage ranging 
from 18 to 38%. Inclusion of DMI, dietary NDF, EE, 
DIM, and BW in the equation further improved pre-
diction performance, with RMSPE percentage ranging 
from 14 to 32% for the best ones. Nevertheless, DMI is 
difficult to measure routinely in commercial farms.
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