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Abstract
2

Background: Grain yield of wheat is greatly associated with the population of wheat spikes, i.e,, spike number m==.
To obtain this index in a reliable and efficient way, it is necessary to count wheat spikes accurately and automatically.
Currently computer vision technologies have shown great potential to automate this task effectively in a low-end
manner. In particular, counting wheat spikes is a typical visual counting problem, which is substantially studied under
the name of object counting in Computer Vision. TasselNet, which represents one of the state-of-the-art counting
approaches, is a convolutional neural network-based local regression model, and currently benchmarks the best
record on counting maize tassels. However, when applying TasselNet to wheat spikes, it cannot predict accurate
counts when spikes partially present.

Results: In this paper, we make an important observation that the counting performance of local regression net-
works can be significantly improved via adding visual context to the local patches. Meanwhile, such context can be
treated as part of the receptive field without increasing the model capacity. We thus propose a simple yet effective
contextual extension of TasselNet—TasselNetv2. If implementing TasselNetv2 in a fully convolutional form, both
training and inference can be greatly sped up by reducing redundant computations. In particular, we collected and
labeled a large-scale wheat spikes counting (WSC) dataset, with 1764 high-resolution images and 675,322 manually-
annotated instances. Extensive experiments show that, TasselNetv2 not only achieves state-of-the-art performance
on the WSC dataset (91.01% counting accuracy) but also is more than an order of magnitude faster than TasselNet
(13.82fpson 912 x 1216images). The generality of TasselNetv2 is further demonstrated by advancing the state of the
art on both the Maize Tassels Counting and ShanghaiTech Crowd Counting datasets.

Conclusions: This paper describes TasselNetv2 for counting wheat spikes, which simultaneously addresses two
important use cases in plant counting: improving the counting accuracy without increasing model capacity, and improv-
ing efficiency without sacrificing accuracy. It is promising to be deployed in a real-time system with high-throughput
demand. In particular, TasselNetv2 can achieve sufficiently accurate results when training from scratch with small
networks, and adopting larger pre-trained networks can further boost accuracy. In practice, one can trade off the
performance and efficiency according to certain application scenarios. Code and models are made available at: https
///tinyurl.com/TasselNetv2.
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Background

In agricultural production, crop yield is one of the key
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grain yield is mainly associated to spike number m~2,

grain number m™%  and  thousand  grain  weight
[1]. Among these traits, spike number m™2 is the
most important index [2, 3]. Conventional manual
approaches to counting wheat spikes are tedious and
labor-intensive. The counting results are also error-
prone and unrepresentative due to small sampling areas
used. To meet the need of large-scale analyses in the
era of intelligent agriculture and to obtain the index
of spike number m~2 accurately in real time, counting
wheat spikes must be automated in a reliable way, and
possibly with low cost.

With the rapid development of recent deep learn-
ing technologies, large-scale visual databases and
cost-effective graphical processing units, image-based
approaches appear to be promising alternatives to auto-
mate the task of wheat spikes counting.

Counting wheat spikes is a typical object counting
problem in Computer Vision, and currently convolu-
tional neural network (CNN)-based local regression
models have shown remarkable performance in count-
ing crowd [4, 5], vehicles [6], cells [7], animals [8], and
plants [9-12]. However, when turning to the scenario
of counting wheat spikes in the wild, things are much
difficult due to the non-rigid nature of spikes and sub-
stantial visual challenges. As shown in Fig. 1, these
challenges are:

+ Wheats planted in different regions show significant
visual differences, due to differences in varieties and
geographical environment (Fig. 1a);

+ The color, size and shape of wheat spikes vary greatly
and unevenly at different growth stages of wheats
(Fig. 1b);

Fig. 1 Challenges of counting wheat spikes in the wild. a different
planting regions, b various growth stages, ¢ degraded image quality
due to blurring, d visual differences caused by changing illumination,
e extremely dense spatial distributions and severe occlusions, f size
and pose variations
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+ If the imaging equipment lacks manual maintenance,
or fog droplets and dust cover the lens, images will be
blurred (Fig. 1c);

+ Dramatic illumination changes result in completely
different visual characteristics of wheat (Fig. 1d);

+ The intensive cultivation of wheats gives rise to
extremely dense distributions and severe occlusions
(Fig. le). In these extremely dense areas, even an
expert has to count wheat spikes for multiple times
to obtain a reliable measure;

+ The perspective changes due to the imaging angle.
Some wheats may be perpendicular to the lens and
only occupy a small number of pixels in the image,
which renders difficulties to distinguish wheat spikes
from background. This also leads to large size varia-
tions of wheat spikes (Fig. 1f).

Above visual challenges make wheat spikes count-
ing a good study case for counting non-rigid objects.
Recent literatures emerge on counting wheat spikes but
are mainly based on detection. [13-16] first segment
the wheats using the RGB images, and then detect each
object based on the segmentation result. After detec-
tion, the wheat counts can be easily inferred from the
objects detected. [17] fuses multi-sensor information
(RGB images and multispectral images) to help segmen-
tation. [18] and [19] utilize R-CNN [20] to detect wheat
spikes. However, the camera is close to the wheat spikes
in these methods, which allows for capturing high-reso-
lution images and obtaining accurate detection but leads
to small observation areas. The efficiency of R-CNN
processing high-resolution images is also an issue. [21]
benefits from active learning to reduce human labe-
ling efforts and use a RetinaNet [22] for detecting and
counting sorghum head in UAV-based images in a large
region. In order to meet the need of high-throughput
plant phenotype analysis over a large area, we leverage
images captured from a fixed platform (4 m/5 m above
the ground) for counting. These images cover wheat
spikes over around 30 m?. However, wheat spikes pre-
sent extremely dense distributions and severe overlaps in
such images. We notice that non-maximum suppression
is regularly used at the end of detection-based methods,
which makes it hard to distinguish overlapping objects.
Furthermore, there are more than 10,000 wheat spikes in
just one image, which makes the bounding boxes annota-
tion nearly impossible. Overall, these counting-by-detec-
tion methods render difficulties for counting dense wheat
spikes within a large area.

Current state-of-the-art counting approaches typically
pursue the idea of local regression with CNNs. Images
are often divided into small local patches, and these
patches are then processed by the networks individually.
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Most CNN-based local regression methods adopt density
maps as the regression target [4, 5, 23—25]. These meth-
ods intend to regress the per-pixel density maps, which
is a dense prediction problem. But the problem is that
the ground-truth density map is associated with specific
choices of Gaussian kernels. This means the ground-
truth density map may not be initially accurate, and the
error would be introduced before learning the model. To
alleviate this problem, [9, 26] prove it is much easier to
regress the local count than the density map. The ben-
efit is that the ground truth is no longer sensitive to the
exact choice of Gaussian kernels. Lu et al. [9] proposed a
local count regression network named TasselNet, which
counts maize tassels much more accurate than other
existing methods. We believe this idea should also be
applicable to other non-rigid objects like wheat spikes.
Albeit successful, we found that TasselNet cannot pre-
dict correct counts when spikes partially present in local
image patches. As shown in Fig. 2, it is not clear whether
there are two wheat spikes or not when only looking at
those visible regions. This situation is even more serious
when spikes are occluded. In fact, wheats are planted far
denser than maize plants, and the density of spikes typi-
cally varies between 200/m? and 600/m?, which means
partial spikes would occur frequently in cropped local
image patches and thus seriously limits the applicabil-
ity of TasselNet. To address this, our intuition tells that
we need the help of visual contextual information. This
is in consistent with the fact that, when one cannot infer
the exact number of partially occluded objects within a
local area, he may look further until supporting informa-
tion, such as the border or other object parts, is identi-
fied. This kind of supporting information in real world
refers to the visual context in images, and it is a kind of
“weak context” for it only contains the local surroundings
rather than all of remaining images. Therefore, a simple
way to tackle above problem is to enable TasselNet to
receive both local images and their surrounding pixels, as

~ .'-'-: s pr « B e
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Fig. 2 Three examples of incomplete objects when only looking
at the local patches. White parts are invisible contextual regions
for the current visible patches. Wheat spikes annotated with black
dots indicate the spike is partly within the visible area, and red dots
represent spikes with severe occlusions. In both cases, accurate
wheat numbers are just hard to obtain without the help of local
visual context
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TasselNet —— Local count

TasselNetv2 — Local count

Fig. 3 A high-level overview of the approach utilizing local visual
context information. The red dashed box indicates a local patch ready
for counting, and the part outside the box refers to the context

shown in Fig. 3. This raises a subsequent question: sow to
integrate the context into CNNs in a principled way? One
way is to use large convolutional kernels but at the cost
of introducing extra parameters. In this paper, we show
that a much clever way is to include the context as part
of the receptive field so that the model can keep the same
number of parameters. This idea is particularly useful
for local counting models, such as TasselNet, that do not
make full use of their receptive field. As a consequence,
we make a simple yet effective extension to TasselNet so
that contextual information could be received, leading to
an extended version of TasselNet—contextual TasselNet
(TasselNetv2 for short).

Another limitation of TasselNet is its low efficiency
due to the need of densely sampling local image patches.
This introduces many redundant computations. We won-
der whether these redundant computations could be
avoided in TasselNetv2. Inspired by Fast R-CNN [27],
we show that one actually can first extract the features
maps of the whole image and then densely sample the
feature maps to obtain local features, rather than pro-
cessing local patches individually. Based on this idea, we
implement a fully convolutional form of TasselNetv2,
which is proven to be an order of magnitude faster than
TasselNet. In particular, we created a large-scale Wheat
Spikes Counting (WSC) dataset to validate the effective-
ness of TasselNetv2.

Extensive experiments show that, TasselNetv2 reaches
91.01% relative counting accuracy and achieves the state-
of-the-art performance on the WSC dataset, and nota-
bly, can process images 13.21 times faster than TasselNet
(13.82 fps for TasselNetv2 vs. 1.05 fps for TasselNet).
Further experiments demonstrate that TasselNetv2
also reports state-of-the-art counting performance on
the Maize Tassels Counting (MTC) and ShanghaiTech
Crowd Counting datasets [5], which confirms a good gen-
erality of TasselNetv2. Several interesting ablative studies
are conducted to justify the effectiveness and necessity to
include the context for better counting performance.

Overall, the main contributions of this paper are:
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+ We introduce a principled way to supplement the
local visual context into convolutional models by
treating it as part of the receptive field, which can
improve the counting performance without increas-
ing extra parameters;

+ We propose a simple yet effective extension of Tas-
selNet to its contextual version TasselNetv2. Tas-
selNetv2 not only improves the counting perfor-
mance but also speeds up the computation with an
order of magnitude;

+ We collect and annotate a large-scale WSC dataset
with 1764 high-resolution images and 675,322 man-
ually-labeled instances;

+ We report state-of-the-art counting performance on
the WSC, MTC and ShanghaiTech datasets.

Method

Image acquisition

Field wheat images in the WSC dataset are collected
from three experimental fields of Gucheng, Hebei,
Zhengzhou, Henan, and Tai’an, Shandong, containing
seven sequences from 2011 to 2013. Due to the differ-
ent local geology and climate conditions, three culti-
vars were planted, respectively, including Zimai No. 24
in Taian, Jimai No. 22 in Gucheng, and Zhengmai No.
366 in Zhengzhou.

Figure 4 shows the image capturing device, main
components include a high-resolution CCD digital
camera (E450 Olympus), a low-resolution monitoring
equipment, a 3G wireless data transmission system, and
several solar panels for power supply. The CCD digital
camera is set with a height of 5 m above the ground,
and the focal length is fixed to 16 mm. From 8 a.m. to
17 p.m., images are captured from a perspective oblique
to the ground once an hour. After images are acquired,
wheat images are transmitted to the remote server
through the 3G wireless network, and then we can

Fig. 4 Imaging device in the Zhengzhou, Henan Province. The main
components include a high resolution CCD digital camera (E450
Olympus) and low-resolution monitoring equipment. The camera is
set 5 m high above the ground
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access the image data. For detailed information of the
image capturing equipment, readers can refer to [28].

Wheat spikes counting dataset

There are tens of thousands of wheat spikes in the wheat
images, and they present a high degree of similarity when
the time interval is short, which makes the annotations
for all of the captured images costly and needless. This
means only a subset of images is essential to build the
dataset, but this subset should be large enough to cover
wheat spikes in various scenarios. We pick out this sub-
set with a two-stage selection strategy. At the first stage,
we choose images according to the date, after the head-
ing stage of wheat. Before obvious emergence of spikes,
the sampling interval is set to 3 days. After wheat spikes
emerge, the number of wheat spikes changes rapidly, and
thus the sampling interval is shortened to 2 days. At the
second stage, 10 candidate images collected in each day
(from 8 a.m. to 17 p.m.) are taken into account. Consid-
ering the illumination characteristics in one day, three
images are chosen from three time periods, i.e., morning
(8 am. to 11 a.m.), noon (12 a.m. to 14p.m.), and after-
noon (15 p.m. to 17 p.m.), to maintain the diversity of the
dataset.

Finally, a total of 196 images, with the resolution of
3648 x 2736, were chosen. The number of wheat spikes
varies from 0 to over 10, 000. Since the image resolu-
tion is very high, and wheat spikes are extremely dense
(it brings tremendous difficulties for the annotation pro-
cess), each original image is cropped to 9 sub-images
with a resolution of 1216 x 912. Thus, 1764 images in all
are used to construct the dataset. Table 1 presents the
information of each sequence in the dataset.

With seven sequences in the WSC dataset, the train-
ing set, validation set and test set are divided, as shown
in Table 2. Images from the Shandong Taian (2012-2013
Camera 1) sequence exhibit a relatively clear distinction

Table 1 Constitution of the WSC dataset

Sequence Images Spikes Min Max
Hebei Gucheng (2011-2012) 324 82,578 0 661
Henan Zhengzhou (2011-2012) 234 118,022 0 1462
Henan Zhengzhou (2012-2013) 171 104,847 0 1331
Shandong Taian (2011-2012 Camera 1) 279 97695 0 1010
Shandong Taian (2011-2012 Camera 2) 261 78887 0 908
Shandong Taian (2012-2013 Camera 1) 234 94454 0 1090
Shandong Taian (2012-2013 Camera 2) 261 98839 0 971
Total 1764 675322 0 1462

Images denote the number of images in each sequence. Spikes refer to the
number of wheat spikes in each sequence. Min and Max indicate the minimum
and maximum number of wheat spikes per image
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Table 2 Training set (train), validation set (val) and test set
(test) settings of the WSC dataset

Sequence Train Val Test
Hebei Gucheng (2011-2012) v v

Henan Zhengzhou (2011-2012) N v

Henan Zhengzhou (2012-2013) v
Shandong Taian (2011-2012 Camera 1) v v

Shandong Taian (2011-2012 Camera 2) v v

Shandong Taian (2012-2013 Camera 1) v
Shandong Taian (2012-2013 Camera 2) v v

e
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Fig. 5 An example of dotted annotation. A red dot is marked at each

location of the wheat spike

between spikes and background. Spikes in this sequence
also appear to have a high density and are with dramatic
changes caused by illumination. In the Henan Zhengzhou
(2012-2013) sequence, it is hard to distinguish the spikes
from the background. The presence of severe occlusions
makes this task even more challenging. Evaluations on
these sequences can sufficiently show the adaptability
and robustness of the counting method. Local visual con-
text may be helpful for identifying overlapped objects, as
shown in Fig. 2. We embed local visual context in Tas-
selNetv2 to alleviate such a problem.

Following [9], dotted annotation is adopted where
a point is marked at the location of each wheat spike.
Figure 5 shows an example of annotated image. Six
colleagues in our laboratory first participated in the
annotation process. After the dataset is annotated, we
double-checked the annotations and corrected some
missing and wrong annotations. Especially for the second
round checking, we trained a TasselNet to predict counts
and identified the areas with high counting errors. With
this kind of auxiliary information, particular attentions
are paid to these areas for careful checking further, and
other areas are also checked again.

Design of TasselNetv2
We first highlight the concepts of “input image’, “input
patch” and “input patch with context” in Fig. 7. They
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are prerequisites for readers to better understand
TasselNetv2.

Local patches from an image may have severe overlaps
due to dense sampling, but TasselNet requires extracting
the local feature from each patch first and then mapping
it to the local count. In this paradigm, many redundant
calculations appear during feature extraction. Inspired by
Fast R-CNN [30], redundant calculations can be avoided
by first extracting the feature maps of the whole image,
then densely sampling the feature maps to obtain local
features and finally mapping them to local counts in a
light-weight manner.

Notice that fully-connected layers in TasselNet can also
be implemented as convolutional layers with 1 x 1 ker-
nels [31]. When the convolutional kernel slides over the
image and manipulates a local area of pixels at a time, it
performs a form of dense sampling. This inspires us to
replace the explicit dense sampling with convolution.

Motivation

The local visual context, in the framework of local regres-
sion, refers to the surrounding pixels of local sampling
patches. In Fig. 2, if the visible parts belong to local sam-
pling patches, those invisible parts represent the con-
text. Unfortunately, since the context is not within local
patches, it remains invisible to local regression networks
like TasselNet. If a network can see the context, overlap-
ping objects or part of objects may be inferred easily and
counted accurately. The high-level idea is thus to enable
the network to process both local patches along with the
context, as shown in Fig. 3.

Adding context

The main idea of TasselNetv2 is to process local patches
with the context. Notice that there is a massive waste of
the receptive field in TasselNet. It is natural to think how
to reduce such a waste. In this paper, we show that one
can cancel zero paddings to enable the network receiving
extra context and to make full use of the receptive field.
The way to achieve this is simply to delete paddings in all
of convolutional layers, as shown in Fig. 6.

We explain why this simple modification makes sense
through a visualizing analysis of the receptive field in
Fig. 7, and a brief introduction about computing the
receptive field is also provided in Additional file 1.
Assume TasselNet and TasselNetv2 regress the local
count of the 64 x 64 local area. TasselNet (a) receives the
local area without the context. It has zero paddings in all
convolutional layers, and these paddings cause the zero
area in the receptive field outside borders. However, if
removing all the zero paddings, TasselNet (b) can lever-
age the wasted receptive field to receive extra context and
keep the same amount of parameters.
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TasselNet
TasselNet
asselNet added context TasselNetv2
64x64x3 Input Patch 94x94x3 Input Patch 912x1216x3 Input Image
)
[ 33161 | | 3x3 convl, 16, 0 3x3convi, 16,1 |
¥ ¥ ¥
‘ 2x2 max pooll, 0, /2 ‘ ‘ 2x2 max pooll, 0, /2 2x2 max pooll, 0, /2 ‘
v ¥ ¥
[ 382,321 | [ 33cn2,320 33conv2,32,1 |
v ¥ v
‘ 2x2 max pool2, 0, /2 ‘ ‘ 2x2 max pool2, 0, /2 2x2 max pool2, 0, /2 ‘
¥ ¥
[ 33com3,64,1 | [ 33conv3, 64,0 33con3, 64,1 |
¥ ¥ ¥
[ 33conva, 64,1 | [ 3x3conv4, 64,0 33convd, 64,1 |
¥ ¥ ¥
[ 335,641 | [ 3x3convs, 64,0 3x3convs, 64,1 |
' ¥ '
‘ 2x2 max pool3, 0, /2 ‘ ‘ 2x2 max pool3, 0, /2 2x2 max pool2, 0, /2 ‘
¥ v
\ FCl,128 | FC1,128 8x8 conv6, 128, 0, /2|
' v
\ FC2,128 | FC2,128 1xlconv7, 128,0 |
+ ¥ v
\ FC3,1 | FG3,1 Ixlconvg, 1,0 |
¥ ¥ '
1 Local Count 1 Local Count 54x73 All Local Counts
Fig. 6 The structure of TasselNet, TasselNet added context and
TasselNetv2. All of the networks adopt AlexNet-like architectures. The
definition of the convolutional and pooling layers is in the format:
fliter size 4 layer name, number of channels, padding, /stride. Fully
connected layers are defined in the format: layer name, number of
nodes. The different settings are highlighted in red

It is worth noting that, though the network processes
94 x 94 patches, it still regresses local counts aggre-
gated from the central 64 x 64 areas. Many counting
approaches assume that CNNs are able to identify each
object within their local receptive fields [26, 29], while we
argue that one should treat part of the local receptive field
as additional context towards accurate counting. This
is what makes TasselNetv2 quite different from existing
CNN-based local regression models.

Improving efficiency

Inspired by the idea of fully convolutional networks
(FCNs) [32], we implement TasselNetv2 into a fully con-
volutional form, which speeds up both training and infer-
ence significantly, as shown in Fig. 6. In what follows,
we further explain in detail how TasselNetv2 works and
improves efficiency.

TasselNetv2 is a composition of convolutional layers. If
skipping the activation functions, the composition of con-
volutional layers can be view as a convolutional layer with
a large kernel, and the filter size equals to the size of the
receptive field. As shown in Fig. 7, the size of the recep-
tive field of the output remains 94 x 94, so TasselNetv2
can be seen as a large 94 x 94 convolutional layer and
maps each 94 x 94 local area (local patch with context) to
a local count. Meanwhile, since four layers are with a stride
of 2, this large convolutional filter slides with a stride of
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2% = 16, which is equivalent to densely sampling the input
image with a stride of 16. As a consequence, TasselNetv2
adds context into TasselNet in a FCN-like manner. It is
worth noting that the context is naturally exploited in
FCNs by most local areas. Only the context close to image
borders is partially utilized by TasselNetv2, e.g., the local
area in the upper left corner only has the lower right part
of the context. In order to keep the size of these local areas
to be 94 x 94, we supplement 15 zero paddings around
the image borders. An elegant way to embed this pre-pro-
cessing in TasselNetv2 is to use the accumulation of zero
paddings from the first five layers (these zero paddings
accumulate to 15 zero paddings around the input image).
The calculations performed in CNNs are mainly Float-
ing Point Operations (FLOPs), and FLOPs are also widely
adopted in evaluating the computation complexity of
CNN:s [33, 34] from the view of computation amount. We
remark the efficiency of TasselNetv2 using FLOPs during
testing in Table 3. The first five convolution layers extract
feature maps, and the following three layers map features
to local counts. As mentioned in [9], dense sampling is
essential to generate adequate training samples for Tas-
selNet. However, 10x extra calculations are needed in
this paradigm, compared to sampling non-overlapping
patches. This is due to the redundant computations in
both feature extraction and feature mapping. Instead, Tas-
selNetv2 directly extracts the feature maps of the whole
image, densely samples local features from the feature
map and maps them to local counts simultaneously. In
this way, TasselNetv2 avoids redundant calculations dur-
ing feature extraction and is thus much more efficient
than TasselNet. It can directly process the whole image
and regress all local counts with a single forward pass.

Inference of TasselNetv2

Here we formally introduce the processing pipeline of
TasselNetv2 during inference, as shown in Fig. 8. Tas-
selNetv2 directly processes the whole image of arbitrary
size (in this paper, the whole image refers to the image
of size 1216 x 912) and regresses all local counts at the
same time. However, since individual local areas have
overlaps, the global image count cannot be acquired by
summing over the whole count map directly. Following
the aggregation and normalization strategy mentioned in
[9], all local counts are merged to obtain the normalized
count map. After normalization, the global image count
can then be reflected by integrating over the count map.

Implementation details

We implement TasselNetv2 based on MatConvNet
[35]. During training, we use 1359 images in the train-
ing and validation sequences of the WSC dataset. 90%
images are randomly chosen for training, while the rest
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Fig. 7 Feature maps and the corresponding receptive field of TasselNet and TasselNetv2. a For TasselNet, b for adding context to TasselNet via
canceling zero-paddings and c for TasselNetv2. The above line are feature maps of each layer in the network, numbers below feature maps are in
the format: height x width x channel numbers. The following line is the corresponding receptive fields, where black dotted boxes represents the
target local area to be counted, the blue rectangular areas represents the input area, and the pink area represents the receptive field of the bottom
left element in the feature map (the part of the receptive field beyond the input area denotes zero area). Since the last few layers have receptive
fields of the same size, we use orange lines to point to the corresponding receptive fields

for validation. Before learning, mean subtraction is pre-
processed (the mean is computed from the training set).
It is worth mentioning that, no data augmentation is per-
formed because the WSC dataset already contains wheat
spikes under various scenarios.

We initialize networks with the improved Xavier
method [36]. The standard stochastic gradient descent
is applied to optimize the parameters of the net-
work. The learning rate is initially set to 0.1 and is
decreased when the training error stagnates. To speed
up and stabilize the error convergence process, a batch

normalization layer [37] is attached after each convolu-
tional layer before ReLU.

The training time of TasselNetv2 on the WSC data-
set varies from 4 h to 2 days depending on the network
architecture used (4 hours for the Alex-like architec-
ture, and 2 days when the pretrained VGG-16 is used).
When training TasselNet on the WSC dataset, the
training time varies between 4 days and 2 weeks accord-
ing to the network capacity used (Matlab 2017a, OS:
Window10 Home 64-bit, CPU: Intel i7-7700 3.60GHz,
GPU: Nvidia GeForce GTX 1070 (8GB), RAM: 16 GB).




Xiong et al. Plant Methods (2019) 15:150

Table 3 Comparison towards the floating point
computations (FLOPs) when processing images
with the resolution of 1216 x 912. Only the single-
precision floating point multiplication are taken
into account

TasselNet TasselNetv2

Non-overlap Dense sample
convl 470 x 108 6.92 x 10° 479 x 108
conv2 124 x 107 183 x 1010 128 x 107
conv3 122 % 10° 181 x 1010 128 x 107
conv4 244 % 10° 361 x 10" 2.56 % 10°
convs 244 x 10° 361 x 10" 2.56 x 10°
convé(fc) 517 x 108 207 x 10° 207 x 10°
conv7(fc2) 175 x 107 6.46 x 10 6.46 x 10
convg(fc3) 126 x 10° 505 x 10° 505 x 10°
Total 834 x 10° 116 x 10! 1.03 x 10'°

All Local Counts average

to pixel

Input Image

> TasselNetv2

A " |
Fig. 8 The processing pipeline of TasselNetv2 at the test stage. Unlike
TasselNet, TasselNetv2 directly processes the whole input image and
outputs all local counts. And the final density map can be acquired

by merging and normalizing all local counts

Results and discussion
Extensive experiments are conducted to demonstrate
the effectiveness and efficiency of TasselNetv2. First, we
perform experiments on the WSC dataset to search opti-
mal hyper parameters. After obtaining these, we verify
the effect of adding context in TasselNetv2. Next, Tas-
selNetv2 is further compared against other state-of-the-
art approaches on the WSC dataset. To demonstrate the
generality of TasselNetv2, we also evaluate it on the MTC
[9] and ShanghaiTech datasets [5].

Mean absolute error (MAE) and root mean squared
error (RMSE) are chosen to quantify the counting perfor-
mance. They are defined as

N
1 gt
MAE= > e —cf|, (1)
i=1
1 Y 2
re g
RMSE = NZ(Cf —C,.) : )

i=1

Page 8 of 14

Table 4 TasselNet configurations on the WSC dataset

Patch size 64 x 64 Gaussian size 4

Backbone of TasselNet AlexNet-like in Fig. 6

Table 5 The effect of context on the test set of the WSC
dataset. “train” denotes adding context into TasselNet
since training phase as Fig. 7b, while “test” denotes
only adding context into TasselNet in the testing phase

Method Context MAE RMSE Train (s)
TasselNet X 61.35 99.27 349529
TasselNet Test 7942 126.18 3495.29
TasselNet Train 50.17 82.16 4026.68
TasselNetv2 v 50.79 80.66 333.27

All networks are trained from scratch. Training time for one epoch is reported.
The best performance is in italics

where N denotes the number of images, Cf? " denotes
the predicted count of the i-th image, and C;gt denotes
the corresponding ground-truth count. MAE meas-
ures the accuracy of counting, and RMSE measures the
stability. Lower MAE and RMSE imply better counting
performance.

Searching optimal parameters

Since TasselNet is the direct baseline of TasselNetv2, we
set the hyper parameters of TasselNetv2 same as the Tas-
selNet, in order to demonstrate the superiority of Tas-
selNetv2 w.r.t. TasselNet and the benefit of embedding
context information. Hence, we first search the optimal
parameters on the WSC dataset using TasselNet so that
TasselNet can report the optimal performance, and we
then apply the same parameters to TasselNetv2.

Through extensive experiments, the optimal setting of
hyper parameters for TasselNet on the WSC dataset is
summarized in Table 4. Detailed procedures of searching
optimal parameters are provided in Additional file 1.

Why adding context?

Adding context is effective

We first compare TasselNet trained with/without the
context to highlight the pure effect of adding the context.
Then, TasselNetv2 is evaluated to show its efficiency and
accuracy beyond TasselNet.

Quantitative results are presented in Table 5. We
observe that, when forcibly adding the context into Tas-
selNet during only inference (trained without context),
the counting error increases notably, which suggests
that TasselNet cannot utilize contextual information
when trained without the context. This is the problem
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we call information asymmetry. However, after embed-
ding contextual information since the training phase, the
MAE decreases more than 10 without increasing model
parameters (compared to TasselNet). Adding the context
is effective. It is worth noting that this significant perfor-
mance improvement comes almost at no cost.

It also can be observed that TasselNetv2 exhibits the
same degree of improvement of adding the context.
Meanwhile, TasselNetv2 is more than 10 times faster
than TasselNet during the training stage. This is achieved
by processing input images in a FCN manner rather than
densely sampling image patches, thus avoiding redun-
dant computations in feature extraction, as analysed
in Table 3. Now we can say that TasselNetv2 is a much
more efficient implementation of adding the context into
TasselNet.

We further analyze the error distributions in Fig. 9, and
find that patch-based and image-based errors are more
likely to shift towards zero with the help of context. So
far, it can be concluded that lacking the context is the
main drawback of TasselNet, and it is important to add
the context during training.

Adding context is necessary
Notice that we treat the context as part of the recep-
tive field and regress only the local count from the cen-
tral region. One may wonder what if the network simply
regresses the local count accumulated from the whole
receptive field. Another baseline TasselNetv2 (del-c) is
used to justify this point, where we delete the context
of the input patch in TasselNetv2. Specifically, we alter
the regression target of TasselNetv2 to the object count
within the whole 94 x 94 receptive field (rather than the
64 x 64 central area in our proposition).

According to the results in Table 6, we can see that the
counting performance of TasselNetv2 (del-c) drops sig-
nificantly (66.96 MAE), even worse than TasselNet. This
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Table 6 The necessity of adding context on the test set
of the WSC dataset

Method MAE RMSE
TasselNet 61.35 99.27
TasselNetv2 50.79 80.66
TasselNetv2(del-c) 66.96 113.20

All networks are trained from scratch and with the same hyper parameters. The
best performance is in italics

implies a network may not sense everything in its recep-
tive field. A possible explanation may be given from some
recent findings on the effective receptive field. First, the
effective receptive field is much smaller than the theo-
retical receptive field [38]. According to [39], the effective
receptive field empirically obeys a Gaussian distribution,
which means pixels close to the center of the receptive
field have much larger impact on counting than mar-
ginal pixels close to the boundary of the receptive field.
A network may not capture sufficient evidence to sup-
port regressing counts at the border of the receptive field,
while our empirical study shows that adding the context
into part of the receptive field as auxiliary information
can help to improve the counting of objects located in the
center of receptive field.

The above experiments justify that it is better to use a
portion of the receptive field as the context, instead of
counting all objects within the whole receptive field [26].

Comparison with state of the art

According to the above evaluations, the optimal setting
on the WSC dataset is shown in Table 4. Next, to com-
pare TasselNetv2 with other state-of-the-art methods,
several well-established baselines are chosen:

+ Segmentation method in [13]: This is the latest
counting by segmentation method specially designed

x10%

o

BTasselNet
[fTasselNet (add-c)
[ [TasselNetv2

i I8 IR (T

0-05 05-1.0 1.0-1.5 15-2.0 >2.0

Patch Number

Absolute Error

as per Fig. 6 since the training phase

Image Number
s
o

Fig. 9 The distribution of absolute errors for local patches and test images. The left is the histogram of absolute error for local patches, and the right
is the histogram of absolute error for test images. All networks are trained from scratch. “TasselNet (add-c)” denotes adding the context in TasselNet

200
BTasselNet

[fTasselNet (add-c)
[ [TasselNetv2

-
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o
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to count wheat spikes in the field. It first applies
Laplacian frequency filtering to remove background,
then utilizes the median filter to eliminate noise, and
finally, finds the maximal to split individual wheat
spikes;

Density map regression methods: CCNN [6] and
MCNN [5] are two typical counting-by-regression
methods, which aim to regress pixel-wise density
maps. Their parameters are of the same order of
magnitude as TasselNetv2. CSRNet [23] represents
the state-of-the-art crowd counting approach and
is composed of a much deeper CNN (pretrained
VGG16) as the front-end used for feature extraction.
For a fair comparison, we replace the feature extrac-
tor in TasselNetv2 (the first 5 convolutional layers)
with all convolutional layers in VGG16 [40] and mark
it as TasselNetv2". More details about TasselNetv2'
can be found in Additional file 1.

Local count regression method: TasselNet [9]
regresses the local counts rather than density maps.
This is our direct baseline and the most closely-
related approach. A brief introduction to TasselNet
can also be found in Additional file.

Results are listed in Table 7. We can make the following
observations:

+ Segmentation method in [13] works poorly on the

WSC dataset (317.19 MAE). Due to heavy depend-
ency on the color information, this method is very
sensitive to the illumination that significantly changes
the color attributes. This also implies the problem of
counting wheat spikes in the field-based environment
cannot be addressed just by segmentation.
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+ Density map regression methods, such as CCNN and
MCNN, perform much better than the segmentation
method, with 101.39 MAE and 97.08 MAE, respec-
tively. It seems that these two CNN-based methods
can adapt to the in-field environmental variations
and the morphological variations of wheat spikes to
a certain degree. Nevertheless we remark that den-
sity map prediction may not be suitable for counting
wheat spikes, because the ground-truth density map
cannot be generated accurately. This is also true for
counting other non-rigid objects.

+ TasselNet outperforms CCNN and MCNN on the
WSC dataset (61.35 MAE). It considerably reveals
the benefit of local counts regression, which is
important for object counting problems that have
size variations.

+ CSRNet slightly outperforms TasselNetv2 (46.32
MAE versus 50.79 MAE). However, CSRNet not
only has substantial parameters, more than an order
of magnitude compared to TasselNetv2, but also is
greatly benefited from the pre-trained model. Though
with these unfair factors, TasselNetv2 still exhibits
comparable performances against CSRNet. When
TasselNetv2' uses the same pretrained VGGI6, it
outperforms CSRNet, with 44.27 MAE (91.01% rela-
tive counting accuracy), reaching the state-of-the-art
performance on the WSC dataset. As a consequence,
for time-sensitive applications, TasselNetv2 is still
our recommended choice.

Evaluation on the MTC dataset

To show that TasselNetv2 is a generic object counting
method, particularly for the application in the agricul-
ture scenario. We further evaluate the effectiveness

Table 7 Comparison with state-of-the-art counting approaches on the test set of WSC dataset. TasselNetv2 adopts
an AlexNet-like architecture in Fig. 6 and is trained from scratch

Method Henan Zhengzhou (2012-2013) Shandong Taian (2012-2013 Overall #Parameters
Camera1l)
MAE RMSE MAE RMSE MAE RMSE
Segmentation method ~ 387.09 436.84 268.03 345.78 317.19 386.22 X
in[13]

CCNN [6] 168.41 21441 52.40 72.78 101.39 149.91 5.70 x 10
MCNN [5] 149.44 188.34 58.83 75.50 97.08 135.17 133 x 10°
CSRNett [23] 64.19 88.96 33.26 46.19 46.32 67.63 163 x 107
TasselNet [9] 94.97 137.24 36.79 5737 6135 99.27 638 x 10°
TasselNetv2 74.97 113.21 3312 49.26 50.79 80.66 6.38 x 10°
TasselNetv2t 61.57 87.67 31.62 47.55 44.27 6747 1.60 x 107

+

means the model is finetuned from the pretrained VGG16, and layer-by-layer settings can be found in Additional file. The best performance is italics
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Table 8 Evaluations of different methods on the MTC [9]
dataset

Method MAE RMSE
JointSeg [41] 242 316
mTASSEL [42] 19.6 26.1
GlobalReg [43] 19.7 233
DensityReg [44] 11.9 14.8
CCNN [6] 210 255
TasselNet [9] 6.6 9.6
TasselNetv2 54 88
TasselNetv2! 5.3 94

* means the model is finetuned from the pretrained VGG16. The best
performance is in italics

Table 9 Evaluations on the ShanghaiTech [5] dataset

Method PartA Part B
MAE RMSE MAE RMSE

MCNN [5] 110.2 1732 264 413
CP-CNN [25] 736 106.4 20.1 30.1
ACSCP [24] 757 102.7 17.2 274
CSRNett [23] 68.2 115.0 106 16.0
TasselNet [9] 87.0 1389 16.7 28.1
TasselNetv2 84.1 140.1 153 27.8
TasselNetv2 ' 66.8 1121 96 175

* means the model is fine-tuned from the pretrained VGG16. The best
performance is in italics

of TasselNetv2 on the Maize Tassels Counting (MTC)
[9] dataset, following the same setting as [9]. Detailed
results are shown in Table 8.

TasselNet currently represents the state-of-the-
art approach on the MTC dataset. According to the
results, we found that TasselNetv2 outperforms Tas-
selNet and further reduces the counting error by 18.2%
(5.4 MAE versus 6.6 MAE). The context is also an
important factor for maize tassels.

With a pre-trained model, TasselNetv2" only per-
forms slightly better than TasselNetv2 but increases
more than an order of magnitude of parameters. We
conjecture the main reason is the lack of training sam-
ples in the MTC dataset (only 186 training images).
The potential of pre-trained models may not be fully
exploited with such a small dataset, while a small net-
work, such as TasselNetv2, can already produce sat-
isfactory results. In this case, TasselNetv2 is effective
and efficient, which seems to be a better choice than
TasselNetv2™,
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Evaluation on the ShanghaiTech dataset

We further evaluate TasselNetv2 on the ShanghaiTech
dataset [5] to see its generality to crowd counting, follow-
ing the same experimental setting in [5]. Results are listed
in Table 9.

On both the part A and part B subsets, the benefit of
adding the context can be reflected when comparing
TasselNetv2 with TasselNet, but the improvement is
marginal. When using a pre-trained VGG-16 model, Tas-
selNetv2' outperforms CSRNet and reaches the state-of-
the-art performance. This suggests pre-trained models
is necessary to fully exploit the benefit of context on the
ShanghaiTech dataset.

Some failure cases

Figure 10 shows some qualitative results of TasselNetv2
on the WSC dataset. In most cases, TasselNetv2 predicts
accurate counts (the first four rows). However, it exposes
prominent under-estimate phenomena in some cases,
particularly when severe overlapping and heavy blur-
ring occur. These visual patterns raise a huge challenge to
discriminate spikes even for a human expert. Efforts still
should be paid to overcome these challenges. We leave
this for future explorations.

Conclusions
In this work, we addressed an important and practi-
cal problem of counting wheat spikes in the field-based
environment using computer vision. We observe that,
some existing CNN-based local regression models, such
as TasselNet, suffer from the problem of lacking con-
textual information, so they usually cannot predict cor-
rect counts when objects partially present in local image
patches. By integrating the context into the framework of
the TasselNet, we proposed a simple but effective exten-
sion, i.e., TasselNetv2. A large-scale WSC dataset, with
1, 764 images and 675, 322 annotated wheat spikes, is
also created. The dataset is very challenging due to intrin-
sic and extrinsic variations not only in spikes per se but
also in environment, which makes it appropriate to be
used as a benchmark for counting non-rigid objects.
Extensive experiments illustrate that, TasselNetv2
achieves state-of-the-art performance on the WSC
dataset with 91.01% relative counting accuracy, and is
also more than an order of magnitude faster than Tas-
selNet. Further evaluations on the MTC and Shangha-
iTech datasets demonstrate that TasselNetv2 can also
push forward the state of the art. Sufficient analyses of
potential issues effecting the practical application of
TasselNetv2 are also described, including emphasiz-
ing the role of the context in object counting, searching
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GT: 124.37

Fig. 10 Some ground truth density maps overlaid on original images on the test set of the WSC dataset and count maps generated by TasselNetv2
(finetuned with pre-trained VGG16). The number above each original image denotes the ground truth count number of wheat spikes, while

that above each density map denotes prediction count number. The last line shows some unsuccessful predictions, and error maps of these
images are also presented. An error map denotes the difference of the ground truth and predicted density map. Over-estimate is denoted by red,
under-estimate by blue, and minor difference by gray. The darker the color is, the greater the errors are. We also zoom in some local areas with high
counting errors. 'GT'denotes ground-truth counts and 'Error’ denotes the difference compared to the ground truth. Further visualizations can be

found in Additional file 1.

optimal parameters for local counts regression, and
analyzing potential errors. We believe TasselNetv2
shows great potentials to be applied to other object
counting domains.

Albeit empirically effective, the reason why the con-
text can improve the counting performance only stays
at an intuitive level, and it remains unclear how the
context interacts with the central receptive field as aux-
iliary information. We hope such empirical findings in
this paper could inspire others to uncover the mystery
of the receptive field.

Supplementary information

Supplementary information accompanies this paper at https://doi.
0rg/10.1186/513007-019-0537-2.

Additional file 1. More details about the WSC dataset, experiment set-
tings and results. A brief introduction and analysis to the TasselNet [9] are
also included.
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