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spikes with context-augmented local regression 
networks
Haipeng Xiong1, Zhiguo Cao1, Hao Lu1* , Simon Madec2, Liang Liu1 and Chunhua Shen3

Abstract 

Background: Grain yield of wheat is greatly associated with the population of wheat spikes, i.e., spike number m−2 . 
To obtain this index in a reliable and efficient way, it is necessary to count wheat spikes accurately and automatically. 
Currently computer vision technologies have shown great potential to automate this task effectively in a low-end 
manner. In particular, counting wheat spikes is a typical visual counting problem, which is substantially studied under 
the name of object counting in Computer Vision. TasselNet, which represents one of the state-of-the-art counting 
approaches, is a convolutional neural network-based local regression model, and currently benchmarks the best 
record on counting maize tassels. However, when applying TasselNet to wheat spikes, it cannot predict accurate 
counts when spikes partially present.

Results: In this paper, we make an important observation that the counting performance of local regression net-
works can be significantly improved via adding visual context to the local patches. Meanwhile, such context can be 
treated as part of the receptive field without increasing the model capacity. We thus propose a simple yet effective 
contextual extension of TasselNet—TasselNetv2. If implementing TasselNetv2 in a fully convolutional form, both 
training and inference can be greatly sped up by reducing redundant computations. In particular, we collected and 
labeled a large-scale wheat spikes counting (WSC) dataset, with 1764 high-resolution images and 675,322 manually-
annotated instances. Extensive experiments show that, TasselNetv2 not only achieves state-of-the-art performance 
on the WSC dataset ( 91.01% counting accuracy) but also is more than an order of magnitude faster than TasselNet 
(13.82 fps on 912× 1216 images). The generality of TasselNetv2 is further demonstrated by advancing the state of the 
art on both the Maize Tassels Counting and ShanghaiTech Crowd Counting datasets.

Conclusions: This paper describes TasselNetv2 for counting wheat spikes, which simultaneously addresses two 
important use cases in plant counting: improving the counting accuracy without increasing model capacity, and improv-
ing efficiency without sacrificing accuracy. It is promising to be deployed in a real-time system with high-throughput 
demand. In particular, TasselNetv2 can achieve sufficiently accurate results when training from scratch with small 
networks, and adopting larger pre-trained networks can further boost accuracy. In practice, one can trade off the 
performance and efficiency according to certain application scenarios. Code and models are made available at: https 
://tinyu rl.com/Tasse lNetv 2.

Keywords: Wheat spikes, Object counting, Convolutional models, Local regression networks, Context fusion

© The Author(s) 2019. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other 
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statu-
tory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy 
of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

Background
In agricultural production, crop yield is one of the key 
factors when monitoring crop growth status. Wheat 
is one of the top three cereal crops in the world. Its 
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grain yield is mainly associated to spike number m−2 , 
grain number m−2 and thousand  grain  weight 
[1]. Among these traits, spike number m−2 is the 
most important index [2, 3]. Conventional manual 
approaches to counting wheat spikes are tedious and 
labor-intensive. The counting results are also error-
prone and unrepresentative due to small sampling areas 
used. To meet the need of large-scale analyses in the 
era of intelligent agriculture and to obtain the index 
of spike number m−2 accurately in real time, counting 
wheat spikes must be automated in a reliable way, and 
possibly with low cost.

With the rapid development of recent deep learn-
ing technologies, large-scale visual databases and 
cost-effective graphical processing units, image-based 
approaches appear to be promising alternatives to auto-
mate the task of wheat spikes counting.

Counting wheat spikes is a typical object counting 
problem in Computer Vision, and currently convolu-
tional neural network (CNN)-based local regression 
models have shown remarkable performance in count-
ing crowd [4, 5], vehicles [6], cells [7], animals [8], and 
plants [9–12]. However, when turning to the scenario 
of counting wheat spikes in the wild, things are much 
difficult due to the non-rigid nature of spikes and sub-
stantial visual challenges. As shown in Fig.  1, these 
challenges are:

• Wheats planted in different regions show significant 
visual differences, due to differences in varieties and 
geographical environment (Fig. 1a);

• The color, size and shape of wheat spikes vary greatly 
and unevenly at different growth stages of wheats 
(Fig. 1b);

• If the imaging equipment lacks manual maintenance, 
or fog droplets and dust cover the lens, images will be 
blurred (Fig. 1c);

• Dramatic illumination changes result in completely 
different visual characteristics of wheat (Fig. 1d);

• The intensive cultivation of wheats gives rise to 
extremely dense distributions and severe occlusions 
(Fig.  1e). In these extremely dense areas, even an 
expert has to count wheat spikes for multiple times 
to obtain a reliable measure;

• The perspective changes due to the imaging angle. 
Some wheats may be perpendicular to the lens and 
only occupy a small number of pixels in the image, 
which renders difficulties to distinguish wheat spikes 
from background. This also leads to large size varia-
tions of wheat spikes (Fig. 1f ).

Above visual challenges make wheat spikes count-
ing a good study case for counting non-rigid objects. 
Recent literatures emerge on counting wheat spikes but 
are mainly based on detection. [13–16] first segment 
the wheats using the RGB images, and then detect each 
object based on the segmentation result. After detec-
tion, the wheat counts can be easily inferred from the 
objects detected. [17] fuses multi-sensor information 
(RGB images and multispectral images) to help segmen-
tation. [18] and [19] utilize R-CNN [20] to detect wheat 
spikes. However, the camera is close to the wheat spikes 
in these methods, which allows for capturing high-reso-
lution images and obtaining accurate detection but leads 
to small observation areas. The efficiency of R-CNN 
processing high-resolution images is also an issue. [21] 
benefits from active learning to reduce human labe-
ling efforts and use a RetinaNet [22] for detecting and 
counting sorghum head in UAV-based images in a large 
region. In order to meet the need of high-throughput 
plant phenotype analysis over a large area, we leverage 
images captured from a fixed platform (4  m/5  m above 
the ground) for counting. These images cover wheat 
spikes over around 30 m2 . However, wheat spikes pre-
sent extremely dense distributions and severe overlaps in 
such images. We notice that non-maximum suppression 
is regularly used at the end of detection-based methods, 
which makes it hard to distinguish overlapping objects. 
Furthermore, there are more than 10,000 wheat spikes in 
just one image, which makes the bounding boxes annota-
tion nearly impossible. Overall, these counting-by-detec-
tion methods render difficulties for counting dense wheat 
spikes within a large area.

Current state-of-the-art counting approaches typically 
pursue the idea of local regression with CNNs. Images 
are often divided into small local patches, and these 
patches are then processed by the networks individually. 

Fig. 1 Challenges of counting wheat spikes in the wild. a different 
planting regions, b various growth stages, c degraded image quality 
due to blurring, d visual differences caused by changing illumination, 
e extremely dense spatial distributions and severe occlusions, f size 
and pose variations
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Most CNN-based local regression methods adopt density 
maps as the regression target [4, 5, 23–25]. These meth-
ods intend to regress the per-pixel density maps, which 
is a dense prediction problem. But the problem is that 
the ground-truth density map is associated with specific 
choices of Gaussian kernels. This means the ground-
truth density map may not be initially accurate, and the 
error would be introduced before learning the model. To 
alleviate this problem, [9, 26] prove it is much easier to 
regress the local count than the density map. The ben-
efit is that the ground truth is no longer sensitive to the 
exact choice of Gaussian kernels. Lu et al. [9] proposed a 
local count regression network named TasselNet, which 
counts maize tassels much more accurate than other 
existing methods. We believe this idea should also be 
applicable to other non-rigid objects like wheat spikes.

Albeit successful, we found that TasselNet cannot pre-
dict correct counts when spikes partially present in local 
image patches. As shown in Fig. 2, it is not clear whether 
there are two wheat spikes or not when only looking at 
those visible regions. This situation is even more serious 
when spikes are occluded. In fact, wheats are planted far 
denser than maize plants, and the density of spikes typi-
cally varies between 200/m2 and 600/m2 , which means 
partial spikes would occur frequently in cropped local 
image patches and thus seriously limits the applicabil-
ity of TasselNet. To address this, our intuition tells that 
we need the help of visual contextual information. This 
is in consistent with the fact that, when one cannot infer 
the exact number of partially occluded objects within a 
local area, he may look further until supporting informa-
tion, such as the border or other object parts, is identi-
fied. This kind of supporting information in real world 
refers to the visual context in images, and it is a kind of 
“weak context” for it only contains the local surroundings 
rather than all of remaining images. Therefore, a simple 
way to tackle above problem is to enable TasselNet to 
receive both local images and their surrounding pixels, as 

shown in Fig. 3. This raises a subsequent question: how to 
integrate the context into CNNs in a principled way? One 
way is to use large convolutional kernels but at the cost 
of introducing extra parameters. In this paper, we show 
that a much clever way is to include the context as part 
of the receptive field so that the model can keep the same 
number of parameters. This idea is particularly useful 
for local counting models, such as TasselNet, that do not 
make full use of their receptive field. As a consequence, 
we make a simple yet effective extension to TasselNet so 
that contextual information could be received, leading to 
an extended version of TasselNet—contextual TasselNet 
(TasselNetv2 for short).

Another limitation of TasselNet is its low efficiency 
due to the need of densely sampling local image patches. 
This introduces many redundant computations. We won-
der whether these redundant computations could be 
avoided in TasselNetv2. Inspired by Fast R-CNN [27], 
we show that one actually can first extract the features 
maps of the whole image and then densely sample the 
feature maps to obtain local features, rather than pro-
cessing local patches individually. Based on this idea, we 
implement a fully convolutional form of TasselNetv2, 
which is proven to be an order of magnitude faster than 
TasselNet. In particular, we created a large-scale Wheat 
Spikes Counting (WSC) dataset to validate the effective-
ness of TasselNetv2.

Extensive experiments show that, TasselNetv2 reaches 
91.01% relative counting accuracy and achieves the state-
of-the-art performance on the WSC dataset, and nota-
bly, can process images 13.21 times faster than TasselNet 
(13.82  fps for TasselNetv2 vs. 1.05  fps for TasselNet). 
Further experiments demonstrate that TasselNetv2 
also reports state-of-the-art counting performance on 
the Maize Tassels Counting (MTC) and ShanghaiTech 
Crowd Counting datasets [5], which confirms a good gen-
erality of TasselNetv2. Several interesting ablative studies 
are conducted to justify the effectiveness and necessity to 
include the context for better counting performance.

Overall, the main contributions of this paper are:

Fig. 2 Three examples of incomplete objects when only looking 
at the local patches. White parts are invisible contextual regions 
for the current visible patches. Wheat spikes annotated with black 
dots indicate the spike is partly within the visible area, and red dots 
represent spikes with severe occlusions. In both cases, accurate 
wheat numbers are just hard to obtain without the help of local 
visual context

Fig. 3 A high-level overview of the approach utilizing local visual 
context information. The red dashed box indicates a local patch ready 
for counting, and the part outside the box refers to the context
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• We introduce a principled way to supplement the 
local visual context into convolutional models by 
treating it as part of the receptive field, which can 
improve the counting performance without increas-
ing extra parameters;

• We propose a simple yet effective extension of Tas-
selNet to its contextual version TasselNetv2. Tas-
selNetv2 not only improves the counting perfor-
mance but also speeds up the computation with an 
order of magnitude;

• We collect and annotate a large-scale WSC dataset 
with 1764 high-resolution images and 675,322 man-
ually-labeled instances;

• We report state-of-the-art counting performance on 
the WSC, MTC and ShanghaiTech datasets.

Method
Image acquisition
Field wheat images in the WSC dataset are collected 
from three experimental fields of Gucheng, Hebei, 
Zhengzhou, Henan, and Tai’an, Shandong, containing 
seven sequences from 2011 to 2013. Due to the differ-
ent local geology and climate conditions, three culti-
vars were planted, respectively, including Zimai No. 24 
in Taian, Jimai No. 22 in Gucheng, and Zhengmai No. 
366 in Zhengzhou.

Figure  4 shows the image capturing device, main 
components include a high-resolution CCD digital 
camera (E450 Olympus), a low-resolution monitoring 
equipment, a 3G wireless data transmission system, and 
several solar panels for power supply. The CCD digital 
camera is set with a height of 5  m above the ground, 
and the focal length is fixed to 16 mm. From 8 a.m. to 
17 p.m., images are captured from a perspective oblique 
to the ground once an hour. After images are acquired, 
wheat images are transmitted to the remote server 
through the 3G wireless network, and then we can 

access the image data. For detailed information of the 
image capturing equipment, readers can refer to [28].

Wheat spikes counting dataset
There are tens of thousands of wheat spikes in the wheat 
images, and they present a high degree of similarity when 
the time interval is short, which makes the annotations 
for all of the captured images costly and needless. This 
means only a subset of images is essential to build the 
dataset, but this subset should be large enough to cover 
wheat spikes in various scenarios. We pick out this sub-
set with a two-stage selection strategy. At the first stage, 
we choose images according to the date, after the head-
ing stage of wheat. Before obvious emergence of spikes, 
the sampling interval is set to 3 days. After wheat spikes 
emerge, the number of wheat spikes changes rapidly, and 
thus the sampling interval is shortened to 2 days. At the 
second stage, 10 candidate images collected in each day 
(from 8 a.m. to 17 p.m.) are taken into account. Consid-
ering the illumination characteristics in one day, three 
images are chosen from three time periods, i.e., morning 
(8 a.m. to 11 a.m.), noon (12 a.m. to 14p.m.), and after-
noon (15 p.m. to 17 p.m.), to maintain the diversity of the 
dataset.

Finally, a total of 196 images, with the resolution of 
3648× 2736 , were chosen. The number of wheat spikes 
varies from 0 to over 10,  000. Since the image resolu-
tion is very high, and wheat spikes are extremely dense 
(it brings tremendous difficulties for the annotation pro-
cess), each original image is cropped to 9 sub-images 
with a resolution of 1216× 912 . Thus, 1764 images in all 
are used to construct the dataset. Table  1  presents the 
information of each sequence in the dataset.

With seven sequences in the WSC dataset, the train-
ing set, validation set and test set are divided, as shown 
in Table 2. Images from the Shandong Taian (2012–2013 
Camera 1) sequence exhibit a relatively clear distinction 

Fig. 4 Imaging device in the Zhengzhou, Henan Province. The main 
components include a high resolution CCD digital camera (E450 
Olympus) and low-resolution monitoring equipment. The camera is 
set 5 m high above the ground

Table 1 Constitution of the WSC dataset

Images denote the number of images in each sequence. Spikes refer to the 
number of wheat spikes in each sequence. Min and Max indicate the minimum 
and maximum number of wheat spikes per image

Sequence Images Spikes Min Max

Hebei Gucheng (2011–2012) 324 82,578 0 661

Henan Zhengzhou (2011–2012) 234 118,022 0 1462

Henan Zhengzhou (2012–2013) 171 104,847 0 1331

Shandong Taian (2011–2012 Camera 1) 279 97,695 0 1010

Shandong Taian (2011–2012 Camera 2) 261 78,887 0 908

Shandong Taian (2012–2013 Camera 1) 234 94,454 0 1090

Shandong Taian (2012–2013 Camera 2) 261 98,839 0 971

Total 1764 675,322 0 1462
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between spikes and background. Spikes in this sequence 
also appear to have a high density and are with dramatic 
changes caused by illumination. In the Henan Zhengzhou 
(2012–2013) sequence, it is hard to distinguish the spikes 
from the background. The presence of severe occlusions 
makes this task even more challenging. Evaluations on 
these sequences can sufficiently show the adaptability 
and robustness of the counting method. Local visual con-
text may be helpful for identifying overlapped objects, as 
shown in Fig.  2. We embed local visual context in Tas-
selNetv2 to alleviate such a problem.

Following [9], dotted annotation is adopted where 
a point is marked at the location of each wheat spike. 
Figure  5 shows an example of annotated image. Six 
colleagues in our laboratory first participated in the 
annotation process. After the dataset is annotated, we 
double-checked the annotations and corrected some 
missing and wrong annotations. Especially for the second 
round checking, we trained a TasselNet to predict counts 
and identified the areas with high counting errors. With 
this kind of auxiliary information, particular attentions 
are paid to these areas for careful checking further, and 
other areas are also checked again.

Design of TasselNetv2
We first highlight the concepts of “input image”, “input 
patch” and “input patch with context” in Fig.  7. They 

are prerequisites for readers to better understand 
TasselNetv2.

Local patches from an image may have severe overlaps 
due to dense sampling, but TasselNet requires extracting 
the local feature from each patch first and then mapping 
it to the local count. In this paradigm, many redundant 
calculations appear during feature extraction. Inspired by 
Fast R-CNN [30], redundant calculations can be avoided 
by first extracting the feature maps of the whole image, 
then densely sampling the feature maps to obtain local 
features and finally mapping them to local counts in a 
light-weight manner.

Notice that fully-connected layers in TasselNet can also 
be implemented as convolutional layers with 1× 1 ker-
nels [31]. When the convolutional kernel slides over the 
image and manipulates a local area of pixels at a time, it 
performs a form of dense sampling. This inspires us to 
replace the explicit dense sampling with convolution.

Motivation
The local visual context, in the framework of local regres-
sion, refers to the surrounding pixels of local sampling 
patches. In Fig. 2, if the visible parts belong to local sam-
pling patches, those invisible parts represent the con-
text. Unfortunately, since the context is not within local 
patches, it remains invisible to local regression networks 
like TasselNet. If a network can see the context, overlap-
ping objects or part of objects may be inferred easily and 
counted accurately. The high-level idea is thus to enable 
the network to process both local patches along with the 
context, as shown in Fig. 3.

Adding context
The main idea of TasselNetv2 is to process local patches 
with the context. Notice that there is a massive waste of 
the receptive field in TasselNet. It is natural to think how 
to reduce such a waste. In this paper, we show that one 
can cancel zero paddings to enable the network receiving 
extra context and to make full use of the receptive field. 
The way to achieve this is simply to delete paddings in all 
of convolutional layers, as shown in Fig. 6.

We explain why this simple modification makes sense 
through a visualizing analysis of the receptive field in 
Fig.  7, and a brief introduction about computing the 
receptive field is also provided in Additional file  1. 
Assume TasselNet and TasselNetv2 regress the local 
count of the 64 × 64 local area. TasselNet (a) receives the 
local area without the context. It has zero paddings in all 
convolutional layers, and these paddings cause the zero 
area in the receptive field outside borders. However, if 
removing all the zero paddings, TasselNet (b) can lever-
age the wasted receptive field to receive extra context and 
keep the same amount of parameters.

Table 2 Training set (train), validation set (val) and test set 
(test) settings of the WSC dataset

Sequence Train Val Test

Hebei Gucheng (2011–2012) � �

Henan Zhengzhou (2011–2012) � �

Henan Zhengzhou (2012–2013) �

Shandong Taian (2011–2012 Camera 1) � �

Shandong Taian (2011–2012 Camera 2) � �

Shandong Taian (2012–2013 Camera 1) �

Shandong Taian (2012–2013 Camera 2) � �

Fig. 5 An example of dotted annotation. A red dot is marked at each 
location of the wheat spike
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It is worth noting that, though the network processes 
94 × 94 patches, it still regresses local counts aggre-
gated from the central 64 × 64 areas. Many counting 
approaches assume that CNNs are able to identify each 
object within their local receptive fields [26, 29], while we 
argue that one should treat part of the local receptive field 
as additional context towards accurate counting. This 
is what makes TasselNetv2 quite different from existing 
CNN-based local regression models.

Improving efficiency
Inspired by the idea of fully convolutional networks 
(FCNs) [32], we implement TasselNetv2 into a fully con-
volutional form, which speeds up both training and infer-
ence significantly, as shown in Fig.  6. In what follows, 
we further explain in detail how TasselNetv2 works and 
improves efficiency.

TasselNetv2 is a composition of convolutional layers. If 
skipping the activation functions, the composition of con-
volutional layers can be view as a convolutional layer with 
a large kernel, and the filter size equals to the size of the 
receptive field. As shown in Fig. 7, the size of the recep-
tive field of the output remains 94 × 94 , so TasselNetv2 
can be seen as a large 94 × 94 convolutional layer and 
maps each 94 × 94 local area (local patch with context) to 
a local count. Meanwhile, since four layers are with a stride 
of 2, this large convolutional filter slides with a stride of 

24 = 16 , which is equivalent to densely sampling the input 
image with a stride of 16. As a consequence, TasselNetv2 
adds context into TasselNet in a FCN-like manner. It is 
worth noting that the context is naturally exploited in 
FCNs by most local areas. Only the context close to image 
borders is partially utilized by TasselNetv2, e.g., the local 
area in the upper left corner only has the lower right part 
of the context. In order to keep the size of these local areas 
to be 94 × 94 , we supplement 15 zero paddings around 
the image borders. An elegant way to embed this pre-pro-
cessing in TasselNetv2 is to use the accumulation of zero 
paddings from the first five layers (these zero paddings 
accumulate to 15 zero paddings around the input image).

The calculations performed in CNNs are mainly Float-
ing Point Operations (FLOPs), and FLOPs are also widely 
adopted in evaluating the computation complexity of 
CNNs [33, 34] from the view of computation amount. We 
remark the efficiency of TasselNetv2 using FLOPs during 
testing in Table 3. The first five convolution layers extract 
feature maps, and the following three layers map features 
to local counts. As mentioned in [9], dense sampling is 
essential to generate adequate training samples for Tas-
selNet. However, 10× extra calculations are needed in 
this paradigm, compared to sampling non-overlapping 
patches. This is due to the redundant computations in 
both feature extraction and feature mapping. Instead, Tas-
selNetv2 directly extracts the feature maps of the whole 
image, densely samples local features from the feature 
map and maps them to local counts simultaneously. In 
this way, TasselNetv2 avoids redundant calculations dur-
ing feature extraction and is thus much more efficient 
than TasselNet. It can directly process the whole image 
and regress all local counts with a single forward pass.

Inference of TasselNetv2
Here we formally introduce the processing pipeline of 
TasselNetv2 during inference, as shown in Fig.  8. Tas-
selNetv2 directly processes the whole image of arbitrary 
size (in this paper, the whole image refers to the image 
of size 1216× 912 ) and regresses all local counts at the 
same time. However, since individual local areas have 
overlaps, the global image count cannot be acquired by 
summing over the whole count map directly. Following 
the aggregation and normalization strategy mentioned in 
[9], all local counts are merged to obtain the normalized 
count map. After normalization, the global image count 
can then be reflected by integrating over the count map.

Implementation details
We implement TasselNetv2 based on MatConvNet 
[35]. During training, we use 1359 images in the train-
ing and validation sequences of the WSC dataset. 90% 
images are randomly chosen for training, while the rest 
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Fig. 6 The structure of TasselNet, TasselNet added context and 
TasselNetv2. All of the networks adopt AlexNet-like architectures. The 
definition of the convolutional and pooling layers is in the format: 
fliter size + layer name, number of channels, padding, /stride. Fully 
connected layers are defined in the format: layer name, number of 
nodes. The different settings are highlighted in red
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for validation. Before learning, mean subtraction is pre-
processed (the mean is computed from the training set). 
It is worth mentioning that, no data augmentation is per-
formed because the WSC dataset already contains wheat 
spikes under various scenarios.

We initialize networks with the improved Xavier 
method [36]. The standard stochastic gradient descent 
is applied to optimize the parameters of the net-
work. The learning rate is initially set to 0.1 and is 
decreased when the training error stagnates. To speed 
up and stabilize the error convergence process, a batch 

normalization layer [37] is attached after each convolu-
tional layer before ReLU.

The training time of TasselNetv2 on the WSC data-
set varies from 4 h to 2 days depending on the network 
architecture used (4 hours for the Alex-like architec-
ture, and 2 days when the pretrained VGG–16 is used). 
When training TasselNet on the WSC dataset, the 
training time varies between 4 days and 2 weeks accord-
ing to the network capacity used (Matlab 2017a, OS: 
Window10 Home 64-bit, CPU: Intel i7-7700 3.60GHz, 
GPU: Nvidia GeForce GTX 1070 (8GB), RAM: 16 GB).

64x64x3
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32x32x16
128 128
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Input Patch Conv3

64x644x4

Recep	ve field
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Pool1:2x2
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16x16x64 8x8x64

10x10 18x18
26x26 38x38 94x94

b

a

94x94x3
46x46x16

1x1x128 1x1x128
1

94x944x4

Recep	ve field

Local 
Count

Conv1:3x3
Pool1:2x2

Conv2:3x3
Pool2:2x2

Conv3:3x3 Conv4:3x3

22x22x32

20x20x64

Conv5:3x3
Pool5:2x2

18x18x64 8x8x64

10x10 18x18 26x26 38x38

Target 
Local 
Area

Context

64

64

64

64

94x94

Input Patch with context Conv1+Pool1 Conv2+Pool2 Conv3 Conv4 Conv5+Pool5 FC1 FC2

912x1216x3

Input Image

Recep	ve field

912x1216

Conv1:3x3
Pool1:2x2

Conv1+Pool1 Conv2+Pool2 Conv3 Conv4 Conv5+Pool5 Conv6 Conv7
All Local 
Counts

Conv2:3x3
Pool2:2x2

Conv3:3x3 Conv4:3x3 Conv5:3x3
Pool5:2x2

Conv6:8x8 Conv7:1x1 Conv8:1x1

456x608x16 228x304x32 228x304x64 228x304x64 114x152x64 54x73x128 54x73x128
54x73

4x4

64x64

10x10 18x18 26x26 38x38 94x94
c

Fig. 7 Feature maps and the corresponding receptive field of TasselNet and TasselNetv2. a For TasselNet, b for adding context to TasselNet via 
canceling zero-paddings and c for TasselNetv2. The above line are feature maps of each layer in the network, numbers below feature maps are in 
the format: height × width× channel numbers . The following line is the corresponding receptive fields, where black dotted boxes represents the 
target local area to be counted, the blue rectangular areas represents the input area, and the pink area represents the receptive field of the bottom 
left element in the feature map (the part of the receptive field beyond the input area denotes zero area). Since the last few layers have receptive 
fields of the same size, we use orange lines to point to the corresponding receptive fields
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Results and discussion
Extensive experiments are conducted to demonstrate 
the effectiveness and efficiency of TasselNetv2. First, we 
perform experiments on the WSC dataset to search opti-
mal hyper parameters. After obtaining these, we verify 
the effect of adding context in TasselNetv2. Next, Tas-
selNetv2 is further compared against other state-of-the-
art approaches on the WSC dataset. To demonstrate the 
generality of TasselNetv2, we also evaluate it on the MTC 
[9] and ShanghaiTech datasets [5].

Mean absolute error (MAE) and root mean squared 
error (RMSE) are chosen to quantify the counting perfor-
mance. They are defined as
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where N denotes the number of images, Cpre
i  denotes 

the predicted count of the i-th image, and Cgt
i  denotes 

the corresponding ground-truth count. MAE meas-
ures the accuracy of counting, and RMSE measures the 
stability. Lower MAE and RMSE imply better counting 
performance.

Searching optimal parameters
Since TasselNet is the direct baseline of TasselNetv2, we 
set the hyper parameters of TasselNetv2 same as the Tas-
selNet, in order to demonstrate the superiority of Tas-
selNetv2 w.r.t. TasselNet and the benefit of embedding 
context information. Hence, we first search the optimal 
parameters on the WSC dataset using TasselNet so that 
TasselNet can report the optimal performance, and we 
then apply the same parameters to TasselNetv2.

Through extensive experiments, the optimal setting of 
hyper parameters for TasselNet on the WSC dataset is 
summarized in Table 4. Detailed procedures of searching 
optimal parameters are provided in Additional file 1.

Why adding context?
Adding context is effective
We first compare TasselNet trained with/without the 
context to highlight the pure effect of adding the context. 
Then, TasselNetv2 is evaluated to show its efficiency and 
accuracy beyond TasselNet.

Quantitative results are presented in Table  5. We 
observe that, when forcibly adding the context into Tas-
selNet during only inference (trained without context), 
the counting error increases notably, which suggests 
that TasselNet cannot utilize contextual information 
when trained without the context. This is the problem 

Table 3 Comparison towards  the  floating point 
computations (FLOPs) when  processing images 
with  the  resolution of  1216× 912 . Only the  single-
precision floating point multiplication are taken 
into account

TasselNet TasselNetv2

Non-overlap Dense sample

conv1 4.70× 108 6.92× 109 4.79× 108

conv2 1.24× 109 1.83× 1010 1.28× 109

conv3 1.22× 109 1.81× 1010 1.28× 109

conv4 2.44× 109 3.61× 1010 2.56× 109

conv5 2.44× 109 3.61× 1010 2.56× 109

conv6(fc1) 5.17× 108 2.07× 109 2.07× 109

conv7(fc2) 1.75× 107 6.46× 107 6.46× 107

conv8(fc3) 1.26× 105 5.05× 105 5.05× 105

Total 8.34× 109 1.16× 1011 1.03× 1010

Fig. 8 The processing pipeline of TasselNetv2 at the test stage. Unlike 
TasselNet, TasselNetv2 directly processes the whole input image and 
outputs all local counts. And the final density map can be acquired 
by merging and normalizing all local counts

Table 4 TasselNet configurations on the WSC dataset

Patch size 64× 64 Gaussian size 4

Backbone of TasselNet AlexNet-like in Fig. 6

Table 5 The effect of  context on  the  test set of  the  WSC 
dataset. “train” denotes adding context into  TasselNet 
since  training phase as  Fig.  7b, while  “test” denotes 
only adding context into TasselNet in the testing phase

All networks are trained from scratch. Training time for one epoch is reported. 
The best performance is in italics

Method Context MAE RMSE Train (s)

TasselNet × 61.35 99.27 3495.29

TasselNet Test 79.42 126.18 3495.29

TasselNet Train 50.17 82.16 4026.68

TasselNetv2 � 50.79 80.66 333.27
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we call information asymmetry. However, after embed-
ding contextual information since the training phase, the 
MAE decreases more than 10 without increasing model 
parameters (compared to TasselNet). Adding the context 
is effective. It is worth noting that this significant perfor-
mance improvement comes almost at no cost.

It also can be observed that TasselNetv2 exhibits the 
same degree of improvement of adding the context. 
Meanwhile, TasselNetv2 is more than 10 times faster 
than TasselNet during the training stage. This is achieved 
by processing input images in a FCN manner rather than 
densely sampling image patches, thus avoiding redun-
dant computations in feature extraction, as analysed 
in Table  3. Now we can say that TasselNetv2 is a much 
more efficient implementation of adding the context into 
TasselNet.

We further analyze the error distributions in Fig. 9, and 
find that patch-based and image-based errors are more 
likely to shift towards zero with the help of context. So 
far, it can be concluded that lacking the context is the 
main drawback of TasselNet, and it is important to add 
the context during training.

Adding context is necessary
Notice that we treat the context as part of the recep-
tive field and regress only the local count from the cen-
tral region. One may wonder what if the network simply 
regresses the local count accumulated from the whole 
receptive field. Another baseline TasselNetv2 (del-c) is 
used to justify this point, where we delete the context 
of the input patch in TasselNetv2. Specifically, we alter 
the regression target of TasselNetv2 to the object count 
within the whole 94 × 94 receptive field (rather than the 
64 × 64 central area in our proposition).

According to the results in Table 6, we can see that the 
counting performance of TasselNetv2 (del-c) drops sig-
nificantly (66.96 MAE), even worse than TasselNet. This 

implies a network may not sense everything in its recep-
tive field. A possible explanation may be given from some 
recent findings on the effective receptive field. First, the 
effective receptive field is much smaller than the theo-
retical receptive field [38]. According to [39], the effective 
receptive field empirically obeys a Gaussian distribution, 
which means pixels close to the center of the receptive 
field have much larger impact on counting than mar-
ginal pixels close to the boundary of the receptive field. 
A network may not capture sufficient evidence to sup-
port regressing counts at the border of the receptive field, 
while our empirical study shows that adding the context 
into part of the receptive field as auxiliary information 
can help to improve the counting of objects located in the 
center of receptive field.

The above experiments justify that it is better to use a 
portion of the receptive field as the context, instead of 
counting all objects within the whole receptive field [26].

Comparison with state of the art
According to the above evaluations, the optimal setting 
on the WSC dataset is shown in Table 4. Next, to com-
pare TasselNetv2 with other state-of-the-art methods, 
several well-established baselines are chosen:

• Segmentation method in [13]: This is the latest 
counting by segmentation method specially designed 

Fig. 9 The distribution of absolute errors for local patches and test images. The left is the histogram of absolute error for local patches, and the right 
is the histogram of absolute error for test images. All networks are trained from scratch. “TasselNet (add-c)” denotes adding the context in TasselNet 
as per Fig. 6 since the training phase

Table 6 The necessity of  adding context on  the  test set 
of the WSC dataset

All networks are trained from scratch and with the same hyper parameters. The 
best performance is in italics

Method MAE RMSE

TasselNet 61.35 99.27

TasselNetv2 50.79 80.66

TasselNetv2(del-c) 66.96 113.20
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to count wheat spikes in the field. It first applies 
Laplacian frequency filtering to remove background, 
then utilizes the median filter to eliminate noise, and 
finally, finds the maximal to split individual wheat 
spikes;

• Density map regression methods: CCNN [6] and 
MCNN [5] are two typical counting-by-regression 
methods, which aim to regress pixel-wise density 
maps. Their parameters are of the same order of 
magnitude as TasselNetv2. CSRNet [23] represents 
the state-of-the-art crowd counting approach and 
is composed of a much deeper CNN (pretrained 
VGG16) as the front-end used for feature extraction. 
For a fair comparison, we replace the feature extrac-
tor in TasselNetv2 (the first 5 convolutional layers) 
with all convolutional layers in VGG16 [40] and mark 
it as TasselNetv2† . More details about TasselNetv2† 
can be found in Additional file 1.

• Local count regression method: TasselNet [9] 
regresses the local counts rather than density maps. 
This is our direct baseline and the most closely-
related approach. A brief introduction to TasselNet 
can also be found in Additional file.

Results are listed in Table 7. We can make the following 
observations:

• Segmentation method in [13] works poorly on the 
WSC dataset (317.19 MAE). Due to heavy depend-
ency on the color information, this method is very 
sensitive to the illumination that significantly changes 
the color attributes. This also implies the problem of 
counting wheat spikes in the field-based environment 
cannot be addressed just by segmentation.

• Density map regression methods, such as CCNN and 
MCNN, perform much better than the segmentation 
method, with 101.39 MAE and 97.08 MAE, respec-
tively. It seems that these two CNN-based methods 
can adapt to the in-field environmental variations 
and the morphological variations of wheat spikes to 
a certain degree. Nevertheless we remark that den-
sity map prediction may not be suitable for counting 
wheat spikes, because the ground-truth density map 
cannot be generated accurately. This is also true for 
counting other non-rigid objects.

• TasselNet outperforms CCNN and MCNN on the 
WSC dataset (61.35 MAE). It considerably reveals 
the benefit of local counts regression, which is 
important for object counting problems that have 
size variations.

• CSRNet slightly outperforms TasselNetv2 (46.32 
MAE versus 50.79 MAE). However, CSRNet not 
only has substantial parameters, more than an order 
of magnitude compared to TasselNetv2, but also is 
greatly benefited from the pre-trained model. Though 
with these unfair factors, TasselNetv2 still exhibits 
comparable performances against CSRNet. When 
TasselNetv2† uses the same pretrained VGG16, it 
outperforms CSRNet, with 44.27 MAE ( 91.01% rela-
tive counting accuracy), reaching the state-of-the-art 
performance on the WSC dataset. As a consequence, 
for time-sensitive applications, TasselNetv2 is still 
our recommended choice.

Evaluation on the MTC dataset
To show that TasselNetv2 is a generic object counting 
method, particularly for the application in the agricul-
ture scenario. We further evaluate the effectiveness 

Table 7 Comparison with  state-of-the-art counting approaches on  the  test set of  WSC dataset. TasselNetv2 adopts 
an AlexNet-like architecture in Fig. 6 and is trained from scratch

† means the model is finetuned from the pretrained VGG16, and layer-by-layer settings can be found in Additional file. The best performance is italics

Method Henan Zhengzhou (2012–2013) Shandong Taian (2012–2013 
Camera1)

Overall #Parameters

MAE RMSE MAE RMSE MAE RMSE

Segmentation method 
in [13]

387.09 436.84 268.03 345.78 317.19 386.22 ×

CCNN [6] 168.41 214.41 52.40 72.78 101.39 149.91 5.70× 105

MCNN [5] 149.44 188.34 58.83 75.50 97.08 135.17 1.33× 105

CSRNet† [23] 64.19 88.96 33.26 46.19 46.32 67.63 1.63× 107

TasselNet [9] 94.97 137.24 36.79 57.37 61.35 99.27 6.38× 105

TasselNetv2 74.97 113.21 33.12 49.26 50.79 80.66 6.38× 105

TasselNetv2† 61.57 87.67 31.62 47.55 44.27 67.47 1.60× 107
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of TasselNetv2 on the Maize Tassels Counting (MTC) 
[9] dataset, following the same setting as [9]. Detailed 
results are shown in Table 8.

TasselNet currently represents the state-of-the-
art approach on the MTC dataset. According to the 
results, we found that TasselNetv2 outperforms Tas-
selNet and further reduces the counting error by 18.2% 
(5.4 MAE versus 6.6 MAE). The context is also an 
important factor for maize tassels.

With a pre-trained model, TasselNetv2† only per-
forms slightly better than TasselNetv2 but increases 
more than an order of magnitude of parameters. We 
conjecture the main reason is the lack of training sam-
ples in the MTC dataset (only 186 training images). 
The potential of pre-trained models may not be fully 
exploited with such a small dataset, while a small net-
work, such as TasselNetv2, can already produce sat-
isfactory results. In this case, TasselNetv2 is effective 
and efficient, which seems to be a better choice than 
TasselNetv2†.

Evaluation on the ShanghaiTech dataset
We further evaluate TasselNetv2 on the ShanghaiTech 
dataset [5] to see its generality to crowd counting, follow-
ing the same experimental setting in [5]. Results are listed 
in Table 9.

On both the part A and part B subsets, the benefit of 
adding the context can be reflected when comparing 
TasselNetv2 with TasselNet, but the improvement is 
marginal. When using a pre-trained VGG-16 model, Tas-
selNetv2† outperforms CSRNet and reaches the state-of-
the-art performance. This suggests pre-trained models 
is necessary to fully exploit the benefit of context on the 
ShanghaiTech dataset.

Some failure cases
Figure 10 shows some qualitative results of TasselNetv2 
on the WSC dataset. In most cases, TasselNetv2 predicts 
accurate counts (the first four rows). However, it exposes 
prominent under-estimate phenomena in some cases, 
particularly when severe overlapping and heavy blur-
ring occur. These visual patterns raise a huge challenge to 
discriminate spikes even for a human expert. Efforts still 
should be paid to overcome these challenges. We leave 
this for future explorations.

Conclusions
In this work, we addressed an important and practi-
cal problem of counting wheat spikes in the field-based 
environment using computer vision. We observe that, 
some existing CNN-based local regression models, such 
as TasselNet, suffer from the problem of lacking con-
textual information, so they usually cannot predict cor-
rect counts when objects partially present in local image 
patches. By integrating the context into the framework of 
the TasselNet, we proposed a simple but effective exten-
sion, i.e., TasselNetv2. A large-scale WSC dataset, with 
1,  764 images and 675,  322 annotated wheat spikes, is 
also created. The dataset is very challenging due to intrin-
sic and extrinsic variations not only in spikes per se but 
also in environment, which makes it appropriate to be 
used as a benchmark for counting non-rigid objects.

Extensive experiments illustrate that, TasselNetv2 
achieves state-of-the-art performance on the WSC 
dataset with 91.01% relative counting accuracy, and is 
also more than an order of magnitude faster than Tas-
selNet. Further evaluations on the MTC and Shangha-
iTech datasets demonstrate that TasselNetv2 can also 
push forward the state of the art. Sufficient analyses of 
potential issues effecting the practical application of 
TasselNetv2 are also described, including emphasiz-
ing the role of the context in object counting, searching 

Table 8 Evaluations of  different methods on  the  MTC [9] 
dataset

† means the model is finetuned from the pretrained VGG16. The best 
performance is in italics

Method MAE RMSE

JointSeg [41] 24.2 31.6

mTASSEL [42] 19.6 26.1

GlobalReg [43] 19.7 23.3

DensityReg [44] 11.9 14.8

CCNN [6] 21.0 25.5

TasselNet [9] 6.6 9.6

TasselNetv2 5.4 8.8

TasselNetv2† 5.3 9.4

Table 9 Evaluations on the ShanghaiTech [5] dataset

† means the model is fine-tuned from the pretrained VGG16. The best 
performance is in italics

Method Part A Part B

MAE RMSE MAE RMSE

MCNN [5] 110.2 173.2 26.4 41.3

CP-CNN [25] 73.6 106.4 20.1 30.1

ACSCP [24] 75.7 102.7 17.2 27.4

CSRNet† [23] 68.2 115.0 10.6 16.0

TasselNet [9] 87.0 138.9 16.7 28.1

TasselNetv2 84.1 140.1 15.3 27.8

TasselNetv2† 66.8 112.1 9.6 17.5
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optimal parameters for local counts regression, and 
analyzing potential errors. We believe TasselNetv2 
shows great potentials to be applied to other object 
counting domains.

Albeit empirically effective, the reason why the con-
text can improve the counting performance only stays 
at an intuitive level, and it remains unclear how the 
context interacts with the central receptive field as aux-
iliary information. We hope such empirical findings in 
this paper could inspire others to uncover the mystery 
of the receptive field.

Supplementary information
Supplementary information accompanies this paper at https ://doi.
org/10.1186/s1300 7-019-0537-2.

Additional file 1. More details about the WSC dataset, experiment set-
tings and results. A brief introduction and analysis to the TasselNet [9] are 
also included.
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