M. M. Barnes, Codling moth occurrence, host race formation, and damage, Tortricid Pests: Their Biology, Natural Enemies and Control, pp.313-327, 1991.

M. J. Vreysen, J. E. Carpenter, and F. Marec, Improvement of the sterile insect technique for codling moth Cydia pomonella (Linnaeus) (Lepidoptera Tortricidae) to facilitate expansion of field application, J. Appl. Entomol, vol.134, pp.165-181, 2010.

M. D. Tadi?, The Biology of the Codling Moth (Carpocapsa pomonella L.) as a Basis for Its Control, 1957.

G. G. Shel'deshova, Ecological factors determining distribution of the codling moth Lapspeyresia pomonella L. in the northern and southern hemispheres, Entomol. Rev, vol.46, pp.349-361, 1967.

, IPPC. List of Regulated Pests, 2017.

S. Asser-kaiser, Rapid emergence of baculovirus resistance in codling moth due to dominant, sex-linked inheritance, Science, vol.317, pp.1916-1918, 2007.

P. Witzgall, L. Stelinski, L. Gut, and D. Thomson, Codling moth management and chemical ecology, Annu. Rev. Entomol, vol.53, pp.503-522, 2008.

O. Raymond, The Rosa genome provides new insights into the domestication of modern roses, Nat. Genet, vol.50, pp.772-777, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01798003

F. A. Simao, R. M. Waterhouse, P. Ioannidis, E. V. Kriventseva, and E. M. Zdobnov, BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs, Bioinformatics, vol.31, pp.3210-3212, 2015.

V. Ahola, The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera, Nat. Commun, vol.5, p.4737, 2014.

W. Traut, V. Ahola, D. A. Smith, I. J. Gordon, and R. H. Ffrench-constant, Karyotypes versus genomes: the nymphalid butterflies Melitaea cinxia, Danaus plexippus, and D. chrysippus, Cytogenet. Genome Res, vol.153, pp.46-53, 2017.

T. Cheng, Genomic adaptation to polyphagy and insecticides in a major East Asian noctuid pest, Nat. Ecol. Evol, vol.1, pp.1747-1756, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01837307

J. Liu, H. Xiao, S. Huang, and F. Li, OMIGA: optimized maker-based insect genome annotation, Mol. Genet. Genomics, vol.289, pp.567-573, 2014.

K. Wang, Prediction of piRNAs using transposon interaction and a support vector machine, BMC Bioinforma, vol.15, p.419, 2014.

T. M. Lowe and S. R. Eddy, tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence, Nucleic Acids Res, vol.25, pp.955-964, 1997.

K. Lagesen, RNAmmer: consistent and rapid annotation of ribosomal RNA genes, Nucleic Acids Res, vol.35, pp.3100-3108, 2007.

M. R. Friedlander, S. D. Mackowiak, N. Li, W. Chen, and . Rajewsky, N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades, Nucleic Acids Res, vol.40, pp.37-52, 2012.

L. Li, C. J. Stoeckert, and D. S. Roos, OrthoMCL: identification of ortholog groups for eukaryotic genomes, Genome Res, vol.13, pp.2178-2189, 2003.

G. Talavera and J. Castresana, Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments, Syst. Biol, vol.56, pp.564-577, 2007.

I. Fukova, P. Nguyen, and F. Marec, Codling moth cytogenetics: karyotype, chromosomal location of rDNA, and molecular differentiation of sex chromosomes, Genome, vol.48, pp.1083-1092, 2005.

P. Nguyen, Neo-sex chromosomes and adaptive potential in tortricid pests, Proc. Natl Acad. Sci. U SA, vol.110, pp.6931-6936, 2013.

J. Sichova, P. Nguyen, M. Dalikova, and F. Marec, Chromosomal evolution in tortricid moths: conserved karyotypes with diverged features, PLoS ONE, vol.8, p.64520, 2013.

R. Bergero and D. Charlesworth, The evolution of restricted recombination in sex chromosomes, Trends Ecol. Evol, vol.24, pp.94-102, 2009.

R. M. Joseph and J. R. Carlson, Drosophila chemoreceptors: a molecular interface between the chemical world and the brain, Trends Genet, vol.31, pp.683-695, 2015.

C. Di, C. Ning, L. Q. Huang, and C. Z. Wang, Design of larval chemical attractants based on odorant response spectra of odorant receptors in the cotton bollworm, Insect Biochem. Mol. Biol, vol.84, pp.48-62, 2017.

Y. Chen and H. Amrein, Ionotropic receptors mediate Drosophila oviposition preference through sour gustatory receptor neurons, Curr. Biol, vol.27, pp.1-10, 2017.

L. A. Weiss, A. Dahanukar, J. Y. Kwon, D. Banerjee, and J. R. Carlson, The molecular and cellular basis of bitter taste in Drosophila, Neuron, vol.69, pp.258-272, 2011.

L. B. Vosshall and M. C. Stensmyr, Wake up and smell the pheromones, Neuron, vol.45, pp.179-181, 2005.

X. G. Chen, Genome sequence of the Asian Tiger mosquito, Aedes albopictus, reveals insights into its biology, genetics, and evolution, Proc. Natl Acad. Sci. USA, vol.112, pp.5907-5915, 2015.

C. M. Crava, S. Ramasamy, L. Ometto, G. Anfora, and O. Rota-stabelli, Evolutionary insights into taste perception of the invasive pest Drosophila suzukii, Genes, Genomes, Ge, vol.3, pp.4185-4196, 2016.

J. M. Bengtsson, A predicted sex pheromone receptor of codling moth Cydia pomonella detects the plant volatile pear ester, Front. Ecol. Evol, vol.2, p.33, 2014.

J. M. Bengtsson, Putative chemosensory receptors of the codling moth, Cydia pomonella, identified by antennal transcriptome analysis, PLoS ONE, vol.7, p.31620, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01000578

M. C. Larsson, Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction, Neuron, vol.43, pp.703-714, 2004.

A. C. Bäckman, Antennal response of codling moth males, Cydia pomonella L. (Lepidoptera: Tortricidae), to the geometric isomers of codlemone and codlemone acetate, J. Comp. Physiol. A, vol.186, pp.513-519, 2000.

A. De-cristofaro, Electrophysiological responses of Cydia pomonella to codlemone and pear ester ethyl (E,Z)-2,4-decadienoate: peripheral interactions in their perception and evidences for cells responding to both compounds, Bull. Insectol, vol.57, pp.137-144, 2004.

L. Ansebo, R. Ignell, J. Lofqvist, and B. S. Hansson, Responses to sex pheromone and plant odours by olfactory receptor neurons housed in sensilla auricillica of the codling moth, Cydia pomonella (Lepidoptera: Tortricidae), J. Insect Physiol, vol.51, pp.1066-1074, 2005.

M. Reyes, Worldwide variability of insecticide resistance mechanisms in the codling moth, Cydia pomonella L.(Lepidoptera: Tortricidae). B. Entomol. Res, vol.99, pp.359-369, 2009.

J. C. Bouvier, Deltamethrin resistance in the codling moth (Lepidoptera: Tortricidae): inheritance and number of genes involved, Heredity, vol.87, pp.456-462, 2001.

A. Brun-barale, J. Bouvier, D. Pauron, J. Berge, and B. Sauphanor, Involvement of a sodium channel mutation in pyrethroid resistance in Cydia pomonella L, and development of a diagnostic test, Pest Manag. Sci, vol.61, pp.549-554, 2005.

L. B. Cichon, J. Soleno, O. L. Anguiano, S. A. Garrido, and C. M. Montagna, Evaluation of cytochrome P450 activity in field populations of Cydia pomonella (Lepidoptera: Tortricidae) resistant to azinphosmethyl, acetamiprid, and thiacloprid, J. Econ. Entomol, vol.106, pp.939-944, 2013.

H. Wang, CYP6AE gene cluster knockout in Helicoverpa armigera reveals role in detoxification of phytochemicals and insecticides, Nat. Commun, vol.9, pp.4820-4827, 2018.

B. Wang, Genome-wide analysis reveals the expansion of Cytochrome P450 genes associated with xenobiotic metabolism in rice striped stem borer, Chilo suppressalis, Biochem. Biophys. Res. Commun, vol.443, pp.756-760, 2014.

M. Reyes and B. Sauphanor, Resistance monitoring in codling moth: a need for standardization, Pest Manag. Sci, vol.64, pp.945-953, 2008.

S. Cassanelli, M. Reyes, M. Rault, G. Carlo-manicardi, and B. Sauphanor, Acetylcholinesterase mutation in an insecticide-resistant population of the codling moth Cydia pomonella (L.), Insect Biochem. Mol. Biol, vol.36, pp.642-653, 2006.

B. Sauphanor, Monitoring resistance to diflubenzuron and deltamethrin in French codling moth populations (Cydia pomonella), Pest Manag. Sci, vol.56, pp.74-82, 2000.

W. Chen, A high-quality chromosome-level genome assembly of a generalist herbivore, Trichoplusia ni. Mol. Ecol. Resour, vol.19, pp.485-496, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01988478

Y. Fu, The genome of the Hi5 germ cell line from Trichoplusia ni, an agricultural pest and novel model for small RNA biology, Elife, vol.7, p.31628, 2018.

M. You, A heterozygous moth genome provides insights into herbivory and detoxification, Nat. Genet, vol.45, pp.220-225, 2013.

A. Papanicolaou, The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species, Genome Biol, vol.17, pp.192-222, 2016.

Y. Wurm, The genome of the fire ant Solenopsis invicta, Proc. Natl Acad. Sci. USA, vol.108, pp.5679-5684, 2011.

D. D. Mckenna, Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle-plant interface, Genome Biol, vol.17, pp.227-244, 2016.

J. K. Yuvaraj, Characterization of odorant receptors from a non-ditrysian moth, Eriocrania semipurpurella sheds light on the origin of sex pheromone receptors in Lepidoptera, Mol. Biol. Evol, vol.34, pp.2733-2746, 2017.

F. Faucon, Identifying genomic changes associated with insecticide resistance in the dengue mosquito Aedes aegypti by deep targeted sequencing

, Genome Res, vol.25, pp.1347-1359, 2015.

C. S. Chin, Phased diploid genome assembly with single-molecule realtime sequencing, Nat. Methods, vol.13, pp.1050-1054, 2016.

L. P. Pryszcz and T. Gabaldon, Redundans: an assembly pipeline for highly heterozygous genomes, Nucleic Acids Res, vol.44, p.113, 2016.

B. J. Walker, Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement, PLoS ONE, vol.9, p.112963, 2014.

B. Langmead and S. L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nat. Methods, vol.9, pp.357-359, 2012.

N. Servant, HiC-Pro: an optimized and flexible pipeline for Hi-C data processing, Genome Biol, vol.16, pp.259-269, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01246671

C. Trapnell, Differential gene and transcript expression analysis of RNAseq experiments with TopHat and Cufflinks, Nat. Protoc, vol.7, pp.562-578, 2012.

M. Stanke, R. Steinkamp, S. Waack, and B. Morgenstern, AUGUSTUS: a web server for gene finding in eukaryotes, Nucleic Acids Res, vol.32, pp.309-312, 2004.

I. Korf, Gene finding in novel genomes, BMC Bioinforma, vol.5, pp.59-67, 2004.

A. Lomsadze, P. D. Burns, and M. Borodovsky, Integration of mapped RNA-Seq reads into automatic training of eukaryotic gene finding algorithm, Nucleic Acids Res, vol.42, p.119, 2014.

M. S. Campbell, C. Holt, B. Moore, and M. Yandell, Genome annotation and curation using MAKER and MAKER-P, Curr. Protoc. Bioinforma, vol.48, 2014.

E. P. Nawrocki, D. L. Kolbe, and S. R. Eddy, Infernal 1.0: inference of RNA alignments, Bioinformatics, vol.25, pp.1335-1337, 2009.

J. A. Guerra-assuncao and A. J. Enright, MapMi: automated mapping of microRNA loci, BMC Bioinforma, vol.11, p.133, 2010.

S. Griffiths-jones, R. J. Grocock, S. Van-dongen, A. Bateman, and A. Enright, miRBase: microRNA sequences, targets and gene nomenclature, Nucleic Acids Res, vol.34, pp.140-144, 2006.

M. G. Grabherr, Genome-wide synteny through highly sensitive sequence alignment: satsuma, Bioinformatics, vol.26, pp.1145-1151, 2010.

G. Wang, A. F. Carey, J. R. Carlson, and L. J. Zwiebel, Molecular basis of odor coding in the malaria vector mosquito Anopheles gambiae, Proc. Natl Acad. Sci. USA, vol.107, pp.4418-4423, 2010.

H. Li and R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics, vol.25, pp.1754-1760, 2009.

H. Li, The sequence alignment/map format and SAMtools, Bioinformatics, vol.25, pp.2078-2079, 2009.

P. Danecek and S. A. Mccarthy, BCFtools/csq: haplotype-aware variant consequences, Bioinformatics, vol.33, pp.2037-2039, 2017.

F. Faucon, Unravelling genomic changes associated with insecticide resistance in the dengue mosquito Aedes aegypti by deep targeted sequencing

, Genome Res, vol.25, pp.1-13, 2015.

S. D. Turner, qqman: an R package for visualizing GWAS results using QQ and manhattan plots, J. Open Source Softw, vol.3, p.731, 2018.

R. Tang, Identification and testing of oviposition attractant chemical compounds for Musca domestica, Sci. Rep, vol.6, p.33017, 2016.

H. Wu, Specific olfactory neurons and glomeruli are associated to differences in behavioral responses to pheromone components between two Helicoverpa species, Front. Behav. Neurosci, vol.9, p.206, 2015.

R. Tang, M. W. Su, and Z. N. Zhang, Electroantennogram responses of an invasive species fall webworm (Hyphantria cunea) to host volatile compounds, Chin. Sci. Bull, vol.57, pp.4560-4568, 2012.

H. Chang, A pheromone antagonist regulates optimal mating time in the moth Helicoverpa armigera, Curr. Biol, vol.27, pp.1610-1615, 2017.

, prepared the samples for BioNano and Hi-C, did the sequencing and data analysis. W.Q. hosted the discussions in Shenzhen Genomics Institute of CAAS. J.S. and Jianyang G. reared the Jiuquan strain of codling moth, organized the researches on the expression and function analysis of the ORs and P450 genes. R. Tang did the research on the OR3 duplication. M.C. carried out the research on insecticide resistance

A. G. , M. L. , J. W. , A. G. , F. M. et al., participated in OR analysis and discussion. C.H. and E.J. discovered the OR3 duplication. L.C., B.L., and W.F. did the GWAS analysis. Jinmeng G. did RACE to amplify the P450 genes

G. S. and Q. W. , did the RNAi injections. C.J. did the RNA extraction and transcription

Y. X. , G. S. , J. J. , W. K. , and X. ,

R. Tang, Q. W. , M. S. , J. O. , S. M. et al., Ye did the reference mining of the codling moth and made the figure of insect distribution

, Longfei Chen 3 , Longsheng Xing 2 , Yu Xi 2 , Feiling Liu 3 , Kejian Lin 1 , Mengbo Guo 1 , Wei Liu 1 , Kang He 3 , Ruizheng Tian 6, Emmanuelle Jacquin-Joly, vol.23, issue.2

, Hangzhou 310058, China. 4 MARA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China. 5 State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Agricultural Sciences, Beijing 100193, China. 2 Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, p.84914, 100101.

I. Pavia, The King's Buildings, vol.31

, Nanjing 210095, China. 19 Institute of Plant Protection, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China. 20 College of Plant Health and Medicine, Chuanlin Yin, vol.843300