C. S. Elton, Animal Ecology, 1927.

J. Memmott, N. D. Martinez, and J. E. Cohen, Predators, parasitoids and pathogens: species richness, trophic generality and body sizes in a natural food web, J Anim Ecol, vol.69, pp.1-15, 2000.

S. R. Borrett, J. Moody, and A. Edelmann, The rise of Network Ecology: Maps of the topic diversity and scientific collaboration, Ecol Modell, vol.293, pp.111-127, 2014.

S. L. Pimm, J. H. Lawton, and J. E. Cohen, Food web patterns and their consequences, Nature, vol.350, pp.669-674, 1991.

T. G. Barraclough, How Do Species Interactions Affect Evolutionary Dynamics Across Whole Communities?, Annu Rev Ecol Evol Syst, vol.46, pp.25-48, 2015.

J. Bascompte and P. Jordano, Plant-Animal Mutualistic Networks: The Architecture of Biodiversity, Annu Rev Ecol Evol Syst, vol.38, pp.567-593, 2007.

A. Traveset and D. M. Richardson, Mutualistic Interactions and Biological Invasions, Annu Rev Ecol Evol Syst, vol.45, pp.89-113, 2014.

S. Seibold, M. W. Cadotte, J. S. Macivor, S. Thorn, and J. Müller, The Necessity of Multitrophic Approaches in Community Ecology, Trends Ecol Evol, vol.33, pp.754-764, 2018.

L. E. Dee, S. Allesina, A. Bonn, A. Eklöf, S. D. Gaines et al., Operationalizing Network Theory for Ecosystem Service Assessments, Trends Ecol Evol, vol.32, pp.118-130, 2017.

E. Mcdonald-madden, R. Sabbadin, E. T. Game, P. Baxter, I. Chadès et al., Using food-web theory to conserve ecosystems, Nat Commun, vol.7, p.10245, 2016.

J. Memmott, Food Webs as a Tool for Studying Nontarget Effects in Biological Control, In Nontarget Effects of Biological Control. . Springer US, pp.147-163, 2000.

S. K. Sheppard and J. D. Harwood, Advances in molecular ecology: Tracking trophic links through predator-prey food-webs, Funct Ecol, vol.19, pp.751-762, 2005.

A. J. Willis and J. Memmott, The potential for indirect effects between a weed, one of its biocontrol agents and native herbivores: A food web approach, Biol Control, vol.35, pp.299-306, 2005.

D. M. Suckling and R. Sforza, What Magnitude Are Observed Non-Target Impacts from Weed Biocontrol?, PLoS One, vol.9, p.84847, 2014.

H. L. Hinz, R. L. Winston, and M. Schwarzländer, How Safe Is Weed Biological Control? A Global Review of Direct Nontarget Attack, Q Rev Biol, vol.94, pp.1-27, 2019.

E. Corcket, B. Giffard, and R. Sforza, Food Webs and Multiple Biotic Interactions in Plant-Herbivore Models, Adv Bot Res, vol.81, pp.111-137, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01608301

S. V. Fowler, Q. Paynter, S. Dodd, and R. Groenteman, How can ecologists help practitioners minimize non-target effects in weed biocontrol?, J Appl Ecol, vol.49, pp.307-310, 2012.

B. Frei, Y. Guenay, D. A. Bohan, M. Traugott, and C. Wallinger, Molecular analysis indicates high Comment citer ce document

M. Ollivier, V. Lesieur, S. Raghu, and J. Martin, Auteur de correspondance), 2020.

, Characterising ecological interaction networks to support risk assessment in classical biological control of weeds, Current Opinion in Insect Science, pp.1-14

J. Memmott, S. Fowler, Q. Paynter, A. W. Sheppard, and P. Syrett, The invertebrate fauna on broom, Cytisus scoparius,in two native and two exotic habitats, Acta Oecologica, vol.21, pp.213-222, 2000.

H. Cornell and B. A. Hawkins, Accumulation of native parasitoid species on introduced herbivores: a comparison of hosts as natives and hosts as invaders, Am Nat, vol.141, pp.847-65, 1993.

R. Veldtman, T. F. Lado, A. Botes, ?. Proche?, A. E. Timm et al., Creating novel food webs on introduced Australian acacias: indirect effects of galling biological control agents, Divers Distrib, vol.17, pp.958-967, 2011.

E. ??-delmas, M. Besson, M. H. Brice, L. A. Burkle, D. Riva et al., This paper reviewes the tools available in network analysis to adress ecological questions regarding species interactions. It highlights their methodological development, the appropriate metrics to analyse ecological networks, and the potential and limitations of these approaches. Furthermore, Biol Rev, 2019.

B. Eitzinger, N. Abrego, D. Gravel, T. Huotari, E. J. Vesterinen et al., Assessing changes in arthropod predator-prey interactions through DNA-based gut content analysis-variable environment, stable diet, Mol Ecol, 2019.

L. Bersier, C. Bana?ek-richter, M. Cattin, and . Matrices, Ecology, vol.83, pp.2394-2407, 2002.

C. F. Dormann, J. Frund, N. Bluthgen, and B. Gruber, Indices, Graphs and Null Models: Analyzing Bipartite Ecological Networks, Open Ecol J, vol.2, pp.7-24, 2009.

L. N. Hudson, R. Emerson, G. B. Jenkins, K. Layer, M. E. Ledger et al., Cheddar: analysis and visualisation of ecological communities in R, Methods Ecol Evol, vol.4, pp.99-104, 2013.

G. Perdomo, P. Sunnucks, and R. M. Thompson, foodweb-package: Visualisation and Analysis of Food Web Networks in foodweb: visualisation and analysis of food web networks, Methods Ecol Evol, vol.5, pp.1206-1213, 2014.

B. Barratt, F. G. Howarth, T. M. Withers, J. M. Kean, and G. S. Ridley, Progress in risk assessment for classical biological control, Biol Control, vol.52, pp.245-254, 2010.

J. M. Tylianakis and A. Binzer, Effects of global environmental changes on parasitoid-host food webs and biological control, Biol Control, vol.75, pp.77-86, 2014.

X. Mao, X. Wei, D. Yuan, Y. Jin, and J. X. , An ecological-network-analysis based perspective on the biological control of algal blooms in Ulansuhai Lake, China. Ecol Modell, vol.386, pp.11-19, 2018.

T. N. Romanuk, Y. Zhou, U. Brose, E. L. Berlow, R. J. Williams et al., Predicting invasion success in complex ecological networks, Philos Trans R Soc Lond B Biol Sci, vol.364, pp.1743-54, 2009.

M. M. Pires, Rewilding ecological communities and rewiring ecological networks, Perspect Ecol Conserv, vol.15, pp.257-265, 2017.

C. M. Baker, M. Bode, N. Dexter, D. B. Lindenmayer, C. Foster et al., Comment citer ce document

M. Ollivier, V. Lesieur, S. Raghu, and J. Martin, Auteur de correspondance), 2020.

, Characterising ecological interaction networks to support risk assessment in classical biological control of weeds, Current Opinion in Insect Science, pp.1-14

. Mcdonald-madden, E: A novel approach to assessing the ecosystem-wide impacts of reintroductions, Ecol Appl, vol.29, p.1811, 2019.

P. Jordano, Sampling networks of ecological interactions, Funct Ecol, vol.30, pp.1883-1893, 2016.

T. Poisot, D. Gravel, S. Leroux, S. A. Wood, M. Fortin et al., Synthetic datasets and community tools for the rapid testing of ecological hypotheses, Ecography (Cop), vol.39, pp.402-408, 2016.

R. Beas-luna, M. Novak, M. H. Carr, M. T. Tinker, A. Black et al., An online database for informing, PLoS One, vol.9, p.109356, 2014.

E. L. Sander, J. T. Wootton, and S. Allesina, Ecological Network Inference From Long-Term Presence-Absence Data, Sci Rep, vol.7, p.7154, 2017.

D. A. Bohan, G. Caron-lormier, S. Muggleton, A. Raybould, and A. Tamaddoni-nezhad, Automated Discovery of Food Webs from Ecological Data Using Logic-Based Machine Learning, PLoS One, vol.6, 2011.

D. Gravel, T. Poisot, C. Albouy, L. Velez, and D. Mouillot, Inferring food web structure from predator-prey body size relationships, Methods Ecol Evol, vol.4, pp.1083-1090, 2013.

C. Crea, R. A. Ali, and R. Rader, A new model for ecological networks using species-level traits, Methods Ecol Evol, vol.7, pp.232-241, 2016.

I. Bartomeus, D. Gravel, J. M. Tylianakis, M. A. Aizen, I. A. Dickie et al., A common framework for identifying linkage rules across different types of interactions, Funct Ecol, vol.30, pp.1894-1903, 2016.

D. M. Evans, J. Kitson, D. H. Lunt, N. A. Straw, and M. Pocock, Merging DNA metabarcoding and ecological network analysis to understand and build resilient terrestrial ecosystems, Funct Ecol, vol.30, pp.1904-1916, 2016.

F. Pompanon, B. E. Deagle, W. Symondson, D. S. Brown, S. N. Jarman et al., Who is eating what: Diet assessment using next generation sequencing, Mol Ecol, vol.21, pp.1931-1950, 2012.

D. Barba, M. , M. C. Boyer, F. Mercier, C. Rioux et al., DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: application to omnivorous diet, Mol Ecol Resour, vol.14, pp.306-323, 2014.

W. Symondson, Molecular identification of prey in predator diets, Mol Ecol, vol.11, pp.627-641, 2002.

M. Traugott, C. Pázmándi, R. Kaufmann, and A. Juen, Evaluating 15N/14N and 13C/12C isotope ratio analysis to investigate trophic relationships of elaterid larvae (Coleoptera: Elateridae), Soil Biol Biochem, vol.39, pp.1023-1030, 2007.

M. González-chang and M. Lefort, Food webs and biological control: A review of molecular tools used to reveal trophic interactions in agricultural systems, Food Webs, vol.9, pp.4-11, 2016.

D. Schenk and S. Bacher, Detection of shield beetle remains in predators using a monoclonal antibody, J Appl Entomol, vol.128, pp.273-278, 2004.

Y. Chen, K. L. Giles, M. E. Payton, and M. H. Greenstone, Identifying key cereal aphid predators by molecular gut analysis, Mol Ecol, vol.9, pp.1887-98, 2000.

T. Roslin and S. Majaneva, The use of DNA barcodes in food web construction-terrestrial and aquatic ecologists unite! Genome, vol.59, pp.603-628, 2016.

, Comment citer ce document

M. Ollivier, V. Lesieur, S. Raghu, and J. Martin, Auteur de correspondance), 2020.

, Characterising ecological interaction networks to support risk assessment in classical biological control of weeds, Current Opinion in Insect Science, pp.1-14

P. Taberlet, E. Coissac, F. Pompanon, C. Brochmann, and E. Willerslev, Towards next-generation biodiversity assessment using DNA metabarcoding, Mol Ecol, vol.21, pp.2045-2050, 2012.

J. Shendure and H. Ji, Next-generation DNA sequencing, Nat Biotechnol, vol.26, pp.1135-1145, 2008.

T. D. Gariepy, T. Haye, and J. Zhang, A molecular diagnostic tool for the preliminary assessment of host-parasitoid associations in biological control programmes for a new invasive pest, Mol Ecol, vol.23, pp.3912-3924, 2014.

J. Hr?ek and H. Godfray, What do molecular methods bring to host-parasitoid food webs, Trends Parasitol, vol.31, pp.30-35, 2015.

R. A. King, J. S. Davey, J. R. Bell, D. S. Read, D. A. Bohan et al., Suction sampling as a significant source of error in molecular analysis of predator diets, Bull Entomol Res, vol.102, pp.261-266, 2012.

R. A. King, D. S. Read, M. Traugott, and W. Symondson, Molecular analysis of predation: A review of best practice for DNA-based approaches, Mol Ecol, vol.17, pp.947-963, 2008.

A. Alberdi, O. Aizpurua, M. Gilbert, and K. Bohmann, Scrutinizing key steps for reliable metabarcoding of environmental samples, Methods Ecol Evol, vol.9, pp.134-147, 2018.

P. Hebert, A. Cywinska, and S. L. Ball, Biological identifications through DNA barcodes, Proc R Soc London Ser B Biol Sci, vol.270, pp.313-321, 2003.

R. Vilgalys, Taxonomic misidentification in public DNA databases, New Phytol, vol.160, pp.4-5, 2003.

T. J. Creedy, W. S. Ng, and A. P. Vogler, Toward accurate species-level metabarcoding of arthropod communities from the tropical forest canopy, Ecol Evol, vol.9, pp.3105-3116, 2019.

M. Ollivier, V. Lesieur, S. Raghu, and J. Martin, Auteur de correspondance), 2020.

, Characterising ecological interaction networks to support risk assessment in classical biological control of weeds, Current Opinion in Insect Science, pp.1-14

, Comment citer ce document

M. Ollivier, V. Lesieur, S. Raghu, and J. Martin, Auteur de correspondance), 2020.

, Characterising ecological interaction networks to support risk assessment in classical biological control of weeds, Current Opinion in Insect Science, pp.1-14

, Motifs e) and f) cannot be represented in bipartite or tripartite structure, since they represent species interacting within the same community. However, these kind of interactions occur frequently in natural ecosystems and can be visualized and studied in more complex graphs displaying intermediate trophic levels. e) Omnivory (a consumer feeding on diversified food sources, including plants and arthropods, e.g. carabid beetles feeding of crop pests and weed seeds). f) Intraguild predation, Common motifs studied in ecological networks to explore community assembly. a) 2-node motif that can be encountered in bipartite and tripartite networks, vol.2