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Abstract

Integrating data coming from different knowledge bases has been one of the most important tasks in the Semantic Web
the last years. Keys have been considered to be very useful in the data linking task. A set of properties is considered
a key if it uniquely identifies every resource in the data. To cope with the incompleteness of the data, three different
key semantics have been proposed so far. We propose BECKEY, a semantic agnostic approach that discovers keys for
all three semantics, succeeding to scale on large datasets. Our approach is able to discover keys under the presence of
erroneous data or duplicates (i.e., almost keys). A formalisation of the three semantics along with the relations among
them is provided. An extended experimental comparison of the three key semantics has taken place. The results allow
a better understanding of the three semantics, providing insights on when each semantic is more appropriate for the

task of data linking.

Keywords: Semantic Web, Key discovery, Data linking, Key semantics, RDF, Semantic agnostic approach

1. Introduction

Over the last years, the Web of data has received a
tremendous increase, containing a huge number of RDF
triples. Integrating data described in different RDF
datasets and creating semantic links among them, has
become one of the most important goals of RDF appli-
cations. These links express semantic correspondences
between ontology entities, or semantic links between
data such as owl:sameAs links. By comparing the num-
ber of resources published on the Web with the number
of owl:sameAs links, the observation is that the goal of
building a Web of data is not accomplished yet.

Many approaches that aim to automatically discover
owl:sameAs links (see [9, 14] for a survey) have been
already proposed. Some of them are knowledge-based
and guided by ontology axioms (i.e., disjunctions, (in-
verse) functional properties, composite keys) or de-
clared linkage rules.

A key expresses a set of properties whose values
uniquely identify every resource of a dataset. Keys can
be used as logical rules to clean or link data when a
high Precision is needed [12, 2, 1] or to construct more
complex similarity functions that can be used in linking
platforms that support manually specified rules such as
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[25, 15]. Moreover, keys can be also exploited by block-
ing methods that are defined to partition the data and re-
duce the search space for the linking step [6, 21]. Nev-
ertheless, in most of the datasets published on the Web,
the keys are not available and it can be difficult, even for
an expert, to determine them. Furthermore, when data
are heterogeneous and incomplete, a large set of keys
composed of different properties is needed to obtain a
high Recall.

Key discovery approaches have been proposed re-
cently in the setting of the Semantic Web [23, 5, 17, 22]
demonstrating the importance of keys in the data linking
process. These works differ not only in the method pro-
posed to discover keys from a dataset but also in the way
a key is defined. More precisely, three different key se-
mantics have been proposed so far in the context of the
Semantic Web, the S-keys [23, 17], the F-keys [22] and
the SF-keys [S]. The interpretation of the multivalued
nature of the properties in the Semantic Web along with
the incompleteness of the data has led to these three se-
mantics.

Data published on the Web are usually created au-
tomatically, thus may contain erroneous information or
duplicates. When these data are exploited to discover
keys, relevant keys can be lost. For example, let us con-
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sider a “dirty” dataset where two different people share
the same social security number (SSN). In this case,
SSN will not be considered as a key, since there exist
two people sharing the same SSN. Allowing some ex-
ceptions can prevent the system from losing keys. Fur-
thermore, there exist datasets where there exist only few
or no sets of properties that uniquely identify every in-
stance in a dataset. However, even if a set of properties
is not a key, it can be very discriminative and provide
many correct links. We call these keys with exceptions
almost keys. For example, usually a telephone number
corresponds to one restaurant. Nevertheless, there can
be cases where two different restaurants located in the
same place share phone numbers. In this scenario, the
telephone number corresponds to an almost key. While
[17] is able to discover keys only when no errors or
duplicates exist, [23, 22, 5] propose strategies for the
discovery of almost keys. [23] discovers almost keys
following the S-key semantic, [22] following the F-key
semantic and [5] following the SF-key semantic.

The main goal of this work is to provide a deep
understanding of the different key semantics and their
data linking capability. From a theoretical viewpoint,
we provide a general framework for understanding and
computing the three key semantics highlighting the
common and distinct characteristics of each semantic.
From an application viewpoint, our extended experi-
mental evaluation provides a deeper understanding of
the semantics and their capability to link efficiently data.
More precisely, this evaluation allows us to identify in
which cases each semantic is more appropriate to use.
We are the first to introduce such a wide evaluation al-
lowing to provide significant examples where each se-
mantic is more adapted to be used. While a first attempt
to present and compare the three existing semantics has
been done in [3], this work takes this comparison to a
further level presenting a deep analysis of different as-
pects of these semantics. First, we represent these key
semantics as logical linking rules and demonstrate the
existing inclusion relations between the inferred links.
Then, to provide a better understanding of the relations
among the discovered keys themselves, we also exhibit
the inclusion relations among the discovered keys. Af-
terwards, we focus on the automatic key discovery and
present BECKEY, a uniform key discovery approach
that is able to discover almost keys for the three key se-
mantics proposed in the Semantic Web. The core com-
ponent of BECKEY is an efficient semantic agnostic
approach based on different filtering and pruning tech-
niques that are able to discover all three types of key
semantics for large RDF datasets.

In order to demonstrate the data linking capability of

each semantic, an extended experimental comparison of
the different key semantics takes place in this work. We
illustrate through different examples under which con-
ditions each semantic will be more likely to bring the
best linking results. Therefore, this work provides not
only a guide for understanding the difference among the
semantics of keys but also yields a map for choosing a
given semantic depending on the nature of the data to be
linked.
More precisely, our contributions are as follows:

1. a theoretical comparison of the three semantics of
keys, the notion of exception in these semantics
and the conditions under which a set of properties
can be considered as a key

2. a methodology for rewriting datasets into a com-
mon and compact structure that eases the auto-
matic discovery for the three existing key seman-
tics

3. asemantic agnostic algorithm that ensures the dis-
covery of all three types of key semantics

4. an extended experimental comparison of the pro-
posed semantics allowing to demonstrate in which
cases each semantic is more appropriate to use.

The paper is organised as follows. Section 2 discusses
the related works on key discovery. Section 3 introduces
first the data and ontology model and then it presents the
notions of keys. Section 4 presents the semantic agnos-
tic algorithm for the discovery of keys under all three
semantics. Section 5 showcases our experiments before
Section 6 concludes.

2. Related Work

The data linking problem in data graphs has been the
main focus of numerous studies (see [9, 14] for survey),
and applied in different research fields such as knowl-
edge extraction [23, 24], geospatial analysis [27], senti-
ment analysis [19, 10], etc.

Some of the existing approaches are based on ex-
pressive linking rules that can be learned from a set of
existing reference links [18, 16]. These rules consist
of attribute-specific comparisons, aggregation functions
along with different weights and thresholds.

Some other approaches are based on keys since such
rules can be used either to infer logically owl:sameAs
links or to construct more complex data linking rules.
[11, 12] exploit a forward-reasoner that infers all the
owl:sameAs facts (and possibly owl:different-from) that
can be logically entailed from the input rules and facts.
The import-by-query algorithm developed in [2] uses



the rules to build SPARQL queries for importing from
external sources the necessary data for resolving a link
query while [1] allows to model and reason on uncertain
RDF facts and rules, based on the semantics of proba-
bilistic Datalog. In [7], the authors propose two algo-
rithms that exploit more complex keys that can be ex-
pressed as graph patterns to link data. Since such keys
are rarely available, some approaches focus on learning
keys from the data.

The problem of discovering Functional Dependencies
(FD) and keys has been intensively studied in the re-
lational databases field. However, the approaches that
have been developed in the relational setting cannot be
applied directly to knowledge graphs. Indeed, these ap-
proaches are geared towards relations that contain one
single value for each subject while in knowledge graphs
a property can contain several objects for the same sub-
ject. Additionally, most of the existing approaches do
not take into account the data incompleteness which is
very present in the data found on the Web. Finally, key
discovery approaches in the Semantic Web often bene-
fit from the knowledge found in the ontology, e.g., keys
can be discovered for a given class and are also valid
for every subclass in the ontology. OWL2 has intro-
duced the owl2:key construct allowing to declare a set
of properties as a key for a given class of an ontology.

Recent approaches have been defined that aim to dis-
cover keys from knowledge bases. These approaches
can be distinguished regarding a) the semantics of the
discovered keys and b) the strategies that are used to
explore the search space.

Key semantics. In knowledge graphs, properties can be
multivalued (e.g., a publication is described by several
authors, a person can be described by a list of email
addresses). Additionally, data may be incomplete and
depending on how the absence of some property values
is interpreted, it has led to consider different key seman-
tics. [17, 23, 24, 4] consider the OWL2 semantics [26]:
in order to infer an identity link between two instances,
it suffices that these instances share at least one value
for each property involved in the key (e.g., if the prop-
erty email is considered as a key for the class person,
a shared email address is sufficient to decide that two
people are the same). Thus, a set of properties is con-
sidered to be a key under this semantic, if there exist
no instances in the dataset sharing at least one value per
property in the key. Keys discovered under this seman-
tic are called S-keys. Unlike [17, 23, 24, 4], in [5, 22]
two instances have to share all the values for each prop-
erty involved in the key to be considered identical (e.g.,
if the property email is considered as a key, the sets of

emails must be equal to decide that two people are the
same). Thus, a set of properties is considered to be a
key under this semantic, if there exist no instances in
the dataset sharing the same set of values for all prop-
erties in the key. While [17, 23, 24, 4, 5] consider that
two instances can be compared using only the values ap-
pearing in the data, [22] introduces a new interpretation
for the absence of values. More precisely, considering
a set of properties as a key, two instances are identi-
cal for [22] if for every property in the key they either
have the exact same set of values or they both have no
value provided in the data. Keys under the semantic
proposed in [22] are called F-keys while under the se-
mantic proposed in [5] are called SF-keys. A theoreti-
cal study of S-keys and F-keys along with a preliminary
experimental comparison of S-keys, F-keys and SF-keys
has been proposed in [3]. This first comparative study
has shown that when the discovered keys are used to
link RDF datasets, the results can vary depending on
the dataset and the studied class. However, the evalu-
ation of the approaches has been conducted on a very
limited number of classes and has not provided insights
on when each semantic is more appropriate to use.

Key discovery strategies in RDF data. The number of
candidate keys for a given class is exponential w.r.t.
the number of properties used to describe the data of
that class. Therefore, different strategies and heuristics
have been proposed to optimize both the time and the
space complexity of key discovery. Approaches can be
roughly classified in two categories, the ones discov-
ering keys directly and the ones discovering first non
keys (i.e., sets of properties that are not keys) and then
using them to derive keys. In the first category, all ap-
proaches exploit the monotonic characteristic of keys to
prune the search space. In [21], discriminating data type
properties (i.e., approximate keys) are discovered from
a dataset to develop a data linking blocking method.
Keys of a specific size are explored only if there is no
smaller key with a high discriminative power. These
approximate keys are then exploited to construct blocks
of instances. In this work, the aim is not to learn the
complete set of minimal keys, but to discover a set of
properties that can be used to partition the data effi-
ciently. Therefore, no additional optimisation strategies
are addressed. In [5], the authors introduce a bottom-
up approach based on TANE [13], to discover pseudo-
keys (keys with exceptions). In order to improve the
scalability of the approach, the authors discover explore
combinations of properties that are highly instantiated.
In ROCKER [22], the authors propose a more sophisti-
cated bottom-up approach based on a refinement oper-



ator allowing to efficiently discover pseudo-keys. As
[5], [22] also filter the search space using highly in-
stantiated sets of properties. However, the key discov-
ery tool provided in this work, used in the experimental
evaluation, in some cases fails to compute the complete
set of minimal keys as expected (i.e., some of the dis-
covered keys are not minimal and some valid keys are
not discovered) (see https://github.com/danaiS/
BECKEY/tree/master/Annexe/0OtherTools for an
example). To avoid scanning all the data, some ap-
proaches [17, 23] extend [20] proposed in the context
of relation databases. This approach discovers the com-
plete set of maximal non keys first and uses them to
derive minimal keys. Such approaches exploit the anti-
monotonic characteristic of non keys to prune the search
space. KD2R [17] is based on a prefix tree structure to
store the data but can be overwhelmed by large datasets.
Indeed, deriving keys from non keys is a time consum-
ing step for such approaches. Furthermore, this ap-
proach requires datasets that fulfill the Unique Name
Assumption to discover keys that are valid in all the
dataset (i.e., no exceptions allowed). SAKey [23] dis-
covers almost keys in large datasets that may contain
errors or duplicates. SAKey introduces different addi-
tional prunings based on the detection of irrelevant sets
of properties for the non key discovery and a very effi-
cient key derivation approach allowing to scale to mil-
lions of triples. VICKEY [24] discovers conditional
keys, i.e., keys that are valid only for some instances of
class that satisfy a given condition. To scale, VICKEY
introduces a hybrid strategy discovering first maximal
non keys and then searching minimal conditional keys
in the search space defined by these non keys, using a
bottom-up approach.

In this paper, we propose a extended theoretical and
experimental comparison of the three different seman-
tics and we introduce BECKEY, a semantic agnostic ap-
proach that can discover all three types in an efficient
way.

3. Keys for data linking

The goal of this section is to present and illustrate the
different semantics of keys existing in the Semantic
Web. To do so, we introduce the notations that will as-
sist with the formalisation of a uniform framework for
key discovery in RDF datasets. We first present the data
model. Then we provide three definitions of keys that
have been envisaged for data linking before introducing
the inclusion relationships between these definitions. At
the end of this section, we introduce the common struc-

tures and definitions that will be re-used for discovering
these keys.

3.1. Data Model

In this work we consider a knowledge base as a set of
instances 7 (e.g., a specific person referred as i/), a set
of literals L, a set of properties P (e.g., FirstName), and
a set of classes C (e.g., University). Statements of in-
stances in a knowledge base are usually represented as
triples < s, p,o > where subject s € C U I, property
p € P, and object 0 € C U 7 U L, which we write as
p(s, o). Every instance is typically associated to one or
more classes by the rype property, and these classes can
be arranged in a hierarchy by the subclassOf property.
A set of such statements constitutes a knowledge base
(KB)'. Given a KB K, an RDF dataset D for a class ¢
of K is the set of all statements that have as subject an
instance of ¢ or of a subclass of c¢. Table 1 shows an ex-
ample dataset about people i1, ...,i7, each described by
the properties FirstName, LastName, SSN, DateOfBirth,
StudiedIn and HasSibling, with one or more objects for
each property. Note that given an RDF dataset D, we
write p(x,y) to mean p(x,y) € D.

3.2. Understanding and comparing key semantics

General concept of a key. A key represents a set of
properties that uniquely identifies resources stored in a
dataset. The three semantics of keys proposed in the
context of Semantic Web i.e., S-key [23], F-key [22]
and SF-key [5] also converge to define a key as a set of
properties that uniquely identifies an instance. However,
these semantics diverge on when to consider that the set
of values, associated to an instance and a given set of
properties, is unique. The S-key semantic assumes data
incompleteness and only considers a set of properties as
a key if there exist no instances sharing a value for the
given set of properties. The SF-key semantic assumes
data completeness and considers a set of properties as
a key if there exist no instances having the exact same
set of values for the given set of properties. Finally, the
F-key semantic as SF-key semantic also assumes data
completeness but in addition also considers the absence
of values for pairs of instance-property when deciding
if a set of properties is a key. In the following, we re-
call the definitions and the characteristics of the three
key semantics and exhibit the theoretical relationship in
terms of the inferred links, multivaluation and data com-
pleteness assumptions.

No blank nodes are considered in this work.



FirstName | LastName SSN DateOfBirth StudiedIn HasSibling
il Helen Dond 121558745 10/08/79 UCC, Stanford i2, i45
i2 George Dond 232351234 05/03/85 UCC, UCD il, i45
i3 Cathrine Roger 767960154 - - -
i4 Mike Jones - 28/02/75 Oxford, MIT 167
i5 George Dupont - 10/08/79 UCC, UCD, UCL -
i6 Helen James 325318695 - Stanford 175
i7 Helen Dond - 10/08/79 Stanford, UCC i2
i8 Cathrine Roger 767960154 - - -

Table 1: Example dataset D1 for instances of the class Person

Intuitively, an S-key is a rule stating that any pair of
instances sharing at least one common value for each
property of the S-key, refers to the same object. Keys
under the semantic of S-key are discovered in [23, 17].

Definition 1 (S-key). Let P = {pi,..., p,} be a set of
properties (P C P), the S-key(pi, ..., py) is the rule de-
fined as follows:

VadyYzza N\ (piCx,2) A pi3,2)) = x =)
i=1

According to the definition of S-key, two instances x and
y are considered to be identical if they share at least one
common value for all key properties p;.

In the instances of class Person shown in Table 1, if the
S-key(FirstName, LastName, HasS ibling) is declared,
the instances i1 and i7 will refer to the same person, i.e.,
il =17.

Note that, while i3 and i8 share the same first name
and last name, they have no declared sibling. Therefore,
the S-key(FirstName, LastName, HasS ibling) does not
allow to decide whether i3 and i8 refer or not to the
same instance. Implicitly here, it cannot be inferred that
an instance is identical to another, if the instance has at
least one absent value for a property expressed in the
S-key.

In OWL2?2, it is possible to declare that a set of prop-
erties is an S-key for a given class ¢. More precisely,
owl:hasKey(c(opey,...,opey,) (dpey,...,dpe,)) states
that each instance of the class ¢ is uniquely identified by
the object property expressions ope; and the data prop-
erty expressions dpe;. An object property expression is
either an object property or an inverse object property.
The semantic of the construct owl:hasKey is defined in
[26] 3.

2http://www.w3.org/TR/ow12—overview
3Note that the definition of the owl :hasKey axiom in OWL 2 ad-
ditionally enforces the considered instances to be named

F-key and SF-key have different semantics. Both def-
initions consider that property values are completely
known for all instances of a given dataset. Indeed, it can
be also meaningful to consider that the instances should
coincide for all property values (e.g., a list of authors
of a given paper, or the list of universities a person has
studied in). Keys following this semantic are referred as
F-keys or SF-keys depending on how empty values are
considered. According to the definition of F-key, two
instances x and y are considered to be the identical if
they share the exact same set of values for all properties
pi expressed in the F-key. Keys under the semantic of
F-key are discovered in [22].

Definition 2 (F-key). Let P = {py,...
properties (P C P), the F-key(pi,...
defined as follows:

, Pn} be a set of
, Pn) 1S the rule

Iy [\ (Vailpity, 20) = pilx 20)A

i=1
Ywi(pi(x, w) = pi(y,wi)))) — x=y)

In the instances of class Person shown in Table 1, if the
F-key(FirstName, LastName, HasS ibling) is declared,
the instances i3 and i8 will infer to the same person
while there is not enough information to decide for il
and ;7. Compared to an S-key, an F-key uniquely iden-
tifies each instance by the the values associated to each
property present in the F-key. Moreover, this definition
allows two instances to refer to the same real world ob-
ject even the set of values associated to some or all of
the properties expressed in F-key is empty. Implicitly
in this definition the absence of values for a property
is treated as an "known no value" rather than "possibly
missing values" for a property. This hypothesis may ap-
pear to be too permissive to identify identical instances
of real world datasets. The next definition of SF-key
overcomes this issue.



An SF-key can be viewed as a specific type of F-key
that requires two instances to be considered as identical
when they share similar non empty set values for each
properties declared in the SF-key. Keys under the SF-
key semantic are discovered in [5].

More formally we have:

Definition 3 (SF-key). Let P = {pi,..., p,} be a set of
properties (P C P), the SF-key(p1, ..., p,) is the rule
defined as follows:

vty N\ Qtpix, 1) A Qui(pily, ) —

i=1
Vzi(piy, i) = pi(x, z))A
Ywi(pi(x, wi) = pi(y,w)) — (x=y))

According to the definition of SF-key, two instances x
and y are considered to be the same when they share the
exact non empty set of values for all the properties p;
expressed in the F-key.

In the example of class Person shown in Table 1,
if the SF-key(FirstName, LastName, HasS ibling) 1is
declared, we cannot infer that i3 and i8 or il and i7 refer
to the same person. An example of identical instances
can be inferred when the SF-key(LastName, S tudiedIn)
is declared. In this case il and i7 refer to the same
person under the SF-key semantic, but not i3 and i8.

3.3. Inclusion relation between inferred links

As previously mentioned, the declaration of a set of
properties as a key leads to the inference of owl:sameAs
links among instances. Since different definitions of
keys have been proposed to declare that two instances
refer to the same real world object in the literature, we
provide a comparison among the links that can be in-
ferred. More precisely, given a set of properties de-
clared as a key, we compare the sets of owl:sameAs links
that can be inferred from each definition and deduce re-
lationships between them. Characterising the relation-
ships between the links inferred by different semantic
of keys is crucial for better understanding the conse-
quences of using one definition instead of another. It is
also the first step for designing a uniform approach that
will be able to compute different definitions of keys. In
this study, the characterisation is led by two singulari-
ties of the data: multivaluation and empty values. First,
we introduce links inferred by a set of properties P.

Definition 4 (Inferred S-Link, F-Link, SF-Link).
Given the S-key(P) (resp. F-key(P), SF-key(P)) where
P = {pi1,..., pn}, an S-Link (resp. F-Link, SF-Link) is

an owl:sameAs link inferred from an S-key(P) (resp.
F-key(P), SF-key(P)). S-Links (resp., F-Links, and
SF-Links) denotes the set of all owl:sameAs links
inferred from S-key(P), (resp. F-key(P), SF-key(P)).

Given a set of properties P, Table 2 shows the varia-
tion of the inclusion/equality relationships between in-
ferred links depending on the characteristics of the prop-
erties involved. If each instance has only one value
per property (i.e., no multivaluation and no empty val-
ues allowed), then the sets of S-Links, F-Links and SF-
Links inferred from different key semantics are identi-
cal. When the properties P are multivalued and map
at least one value to each instance (i.e., multivaluation
allowed, empty values not allowed), all links inferred
from SF-key(P) and F-key(P) will also be inferred from
S-key(P). In this case the links inferred from SF-key(P)
and F-key(P) are identical. Inversely, when for each
property all instances map to at most one value (i.e.,
no multivaluation allowed, empty values allowed), all
inferred links from SF-key(P) and S-key(P) will also be
inferred from F-key(P). In this case the links inferred
from SF-key(P) and S-key(P) are identical. In the gen-
eral case, when the properties P are single-valued, i.e.,
for each property all instances map to zero or multiple
values, all inferred SF-Links will also be inferred from
F-key(P) and S-key(P).

3.4. Key discovery under different semantics

Data on the Web are describing instances of differ-
ent classes using numerous properties. In this context,
keys that can be exploited for data linking are hidden
and cannot easily be specified even by a human expert.
Therefore, automatic methods are needed to discover
them from the data. When the Unique Name Assump-
tion (UNA) is fulfilled, a set of properties can be consid-
ered as a valid key in a dataset if every instance can be
uniquely identified using the values of this set of prop-
erties.

Thus, keys can first be discovered in each data source
and then merged according to a merging method that
computes keys that are valid in all the datasets [17] or
that rank and select keys based on quality measures [8].
In this paper, we focus on the key discovery processes
that can be defined for one dataset.

Keys with exceptions. RDF datasets may contain erro-
neous data and duplicates. Thus, discovering keys in
RDF datasets without taking into account these data
characteristics may lead to lose keys. Furthermore,
there exist sets of properties that even if they are not
keys, due to a small number of shared values, they can



Multivaluation

no

yes

no

yes

Empty values

no

no

yes

yes

Relations

S-Links = F-Links = SF-Links

F-Links = SF-Links
SF-Links C S-Links
F-Links C S-Links

SF-Links = S-Links
SF-Links C F-Links
S-Links C F-Links

SF-Links C S-Links
SF-Links C F-Links

Table 2: Relations between inferred sets of links

be useful for data linking or data cleaning. These sets
of properties are particularly necessary when a class has
no keys.

In this work we will refer to keys with exceptions as
n-almost keys, first used in [23]. A set of properties is a
n-almost key if there exist at most n instances that share
values for this set of properties. However, the different
key semantics lead to different definitions of the notion
of exception.

For an S-key defined for a class ¢ € C, the excep-
tion set Eg p corresponds to the set of instances of this
class that share at least one value with at least another
instance, for each property of the set of key properties
P.

Definition 5. (Exception set for an S-key). Let P be
a set of properties (P C P). The exception set Eg p is
defined as:

Esp={X|A¥YX£Y)A (/\ AUpX, U) A p(Y, U))}
peP

For example, in DI of Table 1 the set of exceptions for
the S-key(LastName, S tudiedIn) is: {il,i2,i7}. Indeed,
the instances i1, i2, i7 have the same last name and have
all studied in UCC. Similarly, the set of exceptions for
the S-key(FirstName, LastName) is: {il,i3,i7,i8}. In-
deed, all four instances share a first name and a last
name with another instance, i.e., the instances i1 and
i7 are called both Helen Dond and the instances i3 and
i8 are called both Catherine Roger.

The exception set Ey p for an F-key corresponds to the
set of instances that has equal sets of values (eventually
empty) with at least another instance, for each property
of the set of key properties P.

Definition 6. (Exception set for a F-key). Let P be
a set of properties (P C P). The exception set Egp is
defined as:

Epp={X|3Y(X # Y)/\(/\
pEP

Vzi(pi(y, i) = pi(x,z)) A (Ywi(pi(x, w;) = pi(y, wi))}

For example, in DI of Table | the exception set for the
F-key(LastName, S tudiedln) is: {il,i3,i7,i8}. Indeed,
the instances i1 and i7 have the same last name and they
have studied in the same institutes. Similarly, the in-
stances i3 and i8 are both called Roger and no informa-
tion is provided for the institutes where they have stud-
ied in. Therefore, there exist in total 4 instances, i.e.,
{i1,i3,i7,i8} that are belonging in the exception set of
the F-key(LastName, S tudiedIn).

The set of exceptions Egp p for an SF-key corresponds
to the set of instances that share all values with at least
one instance, for each property of a given set of proper-
ties P.

Definition 7. (Exception set for a SF-key). Let P be
a set of properties (P C P). The exception set Egpp is
defined as:

Esrp =X |3Y(X % Y) A (/\ JUPX. U) A p(X. U)
peP

ANVzZi(pi(y, zi) = pix, 2D ANVWwi(pi(x, wi) — pi(y, w)))}

In DI of Table 1 the set of exceptions for the SF-
key(LastName, S tudiedln) is: {il,i7}.
Using the corresponding exception set Ep we give the
following definition of a n-almost key.

Definition 8. (n-almost key). Let P be a set of prop-
erties (P C P) and n an integer. P is a n-almost §S-
key(resp. F-key, SF-key) if |Es p| (resp. |EFpl, |EsFpl) <
n.

This means that a set of properties is considered as a n-
almost key, if there exist from 1 to n exceptions in the
dataset for this set of properties. For example, in D1, for
the class Person, { LastName, S tudiedIn} is a 3-almost
S-key {il,i2,i7}, a 4-almost F-key {il,i7,i3,i8}, and a
2-almost SF-key {il,i7}.

By definition, if a set of properties P is a n-almost key,
every superset of P is also a n-almost key. We are inter-
ested in discovering only minimal n-almost keys, i.e.,
n-almost keys that do not contain subsets of properties
that are n-almost keys for a fixed n.



Support. The discovered keys can be valid for a number
of class instances that can be few, compared to the total
number of class instances described in the dataset.

For S-keys and SF-keys, the support of a key is
defined as the number of instances that are instantiated
at least once for all the key properties. The coverage
is the ratio of support to the total number of class
instances.

Definition 9. (S-key and SF-key support). Let P be a
set of properties (P C P), the support is defined as:

support(P) = |x : A Tp(x,v) |
peEP

Definition 10. (S-key and SF-key coverage). Let c be
a class (c € C), and P be a set of properties (P C P),
the support is defined as:
coverage(P) = M
lx:c(x) |
If the support/coverage is too low, a key can be dis-
carded.

Since an F-key can be triggered even if the key prop-
erty values are empty, the support can be simply defined
as the number of all class instances and the coverage is
always 100%.

Definition 11. (F-key support). Let ¢ be a class
(c € C), and P be a set of properties (P C P), the
support is defined as:

support(P) =| x : c(x) |

3.5. Inclusion relations for key discovery

Relations between S-key and F-key sets discovered in a
given dataset have been initially presented in [3]. These
relations vary depending on the characteristics of the
dataset used to discover keys. Table 3 summarises these
relations and extends them with the case of SF-keys.
Note that, Table 3 uses S-keys (resp. SF-keys, F-keys) to
refer to the complete set of keys discovered in a dataset
under the S-key (resp. SF-key, F-key) semantic.
Considering a dataset where no multivaluation and no
empty values occur, the sets of keys discovered under
the three semantics are the same. When this is not the
case, different relations of inclusion appear. In the case
where the multivaluation is present and all the proper-
ties are instantiated for all instances in the data, the sets
of SF-keys and F-keys are identical while all the S-keys
are also keys under both F-key and SF-key semantics. In

the case when no multivaluation occurs but not all prop-
erties are instantiated, the set of SF-keys is identical to
the set of S-keys while all F-keys are also keys under
the SF-key and the S-key semantics. Finally, when both
multivaluation and empty values appear in a dataset, all
S-keys and F-keys are also keys under the SF-key seman-
tic.

3.6. Discovery of n-almost keys from n-non keys

In order to check if a set of properties is a n-almost key
for a class ¢ in a dataset D, a naive approach would scan
all the instances of a class c to verify if at most n in-
stances share values for these properties. Even when a
class is described by few properties, the number of can-
didate n-almost keys can be huge. For example, if we
consider a class c that is described by 60 properties and
we aim to discover all the n-almost keys that are com-
posed of at most 5 properties, the number of candidate
n-almost keys that should be checked will be more than
6 million. An efficient way to obtain n-almost keys, as
already proposed in [20, 17], is to discover first all the
sets of properties that are not n-almost keys and use them
to derive the n-almost keys. Indeed, to show that a set
of properties is not a n-almost key, it is sufficient to find
only (n+1) instances that share values for this set. We
call the sets that are not n-almost keys, n-non keys.

Definition 12. (n-non key). Let P be a set of properties
(P € P) and n an integer. P is a n-non key if |Ep| > n.

Note that, every subset of P is also a n-non key since the
dataset also contains n exceptions for this subset. We
are interested in discovering only maximal n-non keys,
i.e., n-non keys that are not subsets of other n-non keys
for a fixed n.

4. The BECKEY Approach

In this section, we introduce BECKEY, a general ap-
proach for the discovery of n-non keys following three
different semantics. To compute the set of minimal #-
almost keys without scanning all the data, the BECKEY
approach, as SAKey [23], computes first the set of max-
imal n-non keys in the data and then uses them to derive
the set of minimal n-almost keys. BECKEY provides a
preprocessing step allowing to adapt to different seman-
tics and new strategies that ensure the scalability of the
key discovery.

We present the BECKEY approach through three
phases: (1) the preprocessing step that aims at repre-
senting the data and converging the three semantics into
one common structure, called property-exception map,



Multivaluation no yes no yes
Empty values no no yes yes
F-keys = SF-keys | S-keys = SF-keys
_ C _
Relations S-keys = F-keys = SF-keys | S-keys C SF-keys | F-keys C SF-keys i_];;y SS E‘;I;_]Zy i
S-keys C F-keys F-keys C S-keys Y5 = 4

Table 3: Relations between discovered sets of keys

(2) the discovery of maximal (n+1)-non keys (see Algo-
rithm 1) and finally, (3) the derivation of n-almost keys
from the set of(n+1)-non keys (see Algorithm 2). The
last two phases are semantic agnostic, i.e., they do not
depend on the semantic of the keys to be discovered.
It is at the level of the construction of the property-
exception map that a given semantic of keys is captured.

4.1. Preprocessing steps

One of the main contributions of BECKEY is to present
a unified approach for the automatic discovery of differ-
ent key semantics. To this aim, for each key semantic,
we present a strategy that encodes keys’ exceptions into
a structure called the property-exception map. More
precisely, a property-exception map is a compact struc-
ture that stores for each property all the sets of instances
that violate the targeted key definition. This structure is
the starting point of the discovery of n-non keys.

We first construct the property-exception map. Then,
to improve the scalability of our approach, we introduce
a new structure called shared exception graph. This
graph helps to guide and circumscribe efficiently the
non key search.

4.1.1. Construction of property-exception map

For each key semantic, a property-exception map rep-
resents a structure mapping each property to a collec-
tion of sets denoted as property-exception sets. Each
property-exception set of a property represents a set of
instances sharing the same valuation w.r.t. a given key
semantic. More formally, we introduce the valuation
function, mapping each instance to a set of values, for a
given property.

Definition 13. (instance valuation: h,). Let p € P be
a property and i € I an instance, the valuation h,(i)
is a function mapping i to a set of values s.t. h,(i) =
vip(i,v) € D}

Intuitively, the valuation function /(i) maps instances
to their set of assigned values under the property p.

When no value is associated to an instance i for a spe-
cific property p, h,(i) returns an empty set. For exam-
ple, the valuation function for the property Studiedin
and the instance i/ iS: hyyaicarn(il) = {UCC, Stanford}.
Thanks to this valuation function we can now define the
property-exception set.

Definition 14. (property-exception set: X,). Given a
semantic of keys sem €{S-key, F-key, SF-key}, and a
property p € P, the set of instances X, = {iy,..,i,} is a
property-exception set w.r.t. sem if:

o (i) N ... N hp(in) # 0 and |Xp| > 1, when sem =

S-key,

o h,(iy) = ... = hy(iy) # 0 and |X,| > 1, when sem =
SF-key,

e h,(i1) = ... = hy(iy) and |X,| > 1, when sem =
F-key.

Intuitively, a property-exception set can be viewed as a
set containing at least 2 instances sharing a common val-
uation, responsible for the violation of a given semantic
of keys.

If {iy, .., i} is a property-exception set w.r.t. the S-
key semantic then iy, ..,i, share at least one common
value under the property p. For example, in Table 1,
{i1,i2,i5,17} is a property-exception set for the property
Studiedln since the individuals i1, i2, iS5 and {7 have all
studied in a common place (i.e., UCC).

If {i1,..,i,} is a property-exception set w.r.t. the
SF-key semantic then iy, ..,7, are described exactly by
the same set of values under the property p. For exam-
ple, in Table 1, {il,i7} is a property-exception set w.r.t.
the SF-key semantic since the individuals i1 and i7 have
studied in the same universities (i.e., { UCC, Stanford}).

If {iy, .., i,} is a property-exception set w.r.t. the F-key
semantic then iy, .., i, are described exactly by the same
set of values under the property p and, unlike the S-key
and SF-key semantics, this set can be empty (i.e., cor-
responding to a missing value). For example, {i3,i8} is
a property-exception set w.r.t. the F-key semantic since



for both individuals i3 and 8 there is no information on
whether they have pursued any studies.

In order to obtain the complete set of n-non keys from
the data, we store all the property-exception sets per
property in a map called property-exception map. Note
that, depending on the selected key semantic, a different
property-exception map is created.

Definition 15. (property-exception map: p). Given a
semantic of keys sem € {S-key, F-key, SF-key}, the struc-
ture y is a property-exception map w.r.t. sem if Vp € P,
u(p) maps the property p to the collection of property-
exception sets {Xl,..,X;}, s.t. VX;‘, € u(p), X; is a maxi-
mal property-exception set W.r.t. sem.

Intuitively, for each property, a property-exception map
groups instances violating the selected key semantic us-
ing property-exception sets. To reduce the size of the
map and speed-up the non key discovery process, only
maximal property-exception sets are kept. A property
for which the union of property-exception sets is equal
or greater than n is a n-non key for the class w.r.t. the in-
put semantic. Similarly, a property for which the union
of property-exception sets is smaller than n, i.e., less
than n instances share valuation for this property, is a
(n-1)-almost key for the class w.r.t. the selected seman-
tic and will not appear in the property-exception map.
Overall, the property-exception map contains properties
corresponding to single n-non keys that can be prolon-
gated to maximal n-non keys.

We illustrate in Tables 4, 5 and 6 the property-
exception maps corresponding to the dataset D/ (see
Table 1). These property-exception maps are going to
be used for discovering respectively S, SF, and F n-non
keys.

FirstName | {{il, 6,17}, {i2, 5]}, {i3, 18]}
LastName | {{il,i2,i7}, {i3,i8}]

SSN ({i3, 18]}

DateOfBirth | {{il,15,i7})

StudiedIn ({il, 12,15, 7}, {il, i6,i7}}
HasSibling | {{il, 12}, {il,i7})

Table 4: property-exception map w.r.t. S-key semantic for dataset D1

Table 4 shows the property-exception map computed
from the dataset DI (see Table 1) for the S-key seman-
tic when n=2. In this map, the individuals pl, p2, p5
and p7 have all studied in UCC. Since they have all
studied in at least one common place, this group of
individuals violates the definition of S-keys and repre-
sents a property-exception set of the property StudiedIn.
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FirstName {{il,i6, 17}, {i2, 5}, {i3,i8}}
LastName {{il, 12,17}, {i3,i8}}

SSN {{i3,i8}}

DateOfBirth | {{il,i5,i7}}

StudiedIn {{il1,i7}}

Table 5: property-exception map w.r.t. SF-key semantic for dataset D1

FirstName | {{il, 6,17}, (12,5}, {i3,18}}
LastName | {{il,i2,17), {i3,i8}]

SSN (113, 18), {i4,15,17}}
DateOfBirth | {{il, 15,17}, (i3, i6,18}}
StudiedIn (i, 17}, {i3,18})
HasSibling | {{i3, 5, i8}]

Table 6: property-exception map w.r.t. F-key semantic of dataset D1

Similarly, pl, p6 and p7 have all studied in Stanford,
thus they represent another property-exception set w.r.t.
the S-key semantic. Note that the people p2 and p5
have both studied in UCD. However, they do not ap-
pear as a property-exception set for the property Stud-
iedIn. This property-exception set is subsumed by the
set {pl, p2, p5, p7} containing people that have studied
in UCC. Indeed, all non keys that can be discovered us-
ing the property-exception set {p2, p5S} will be discov-
ered by the property-exception set {pl, p2, p5, p7}.

Table 5 shows the property-exception map computed
from the dataset D/ that is used for discovering SF-
keys when n=2. In this map, the individuals p1 and p7
have both studied in the exact same universities, i.e.,
UCC and Stanford. These two individuals represent a
property-exception set that prevents StudiedIn to be con-
sidered as an SF-key. Note that the property HasSibling
does not appear in the map since it corresponds to a min-
imal I-almost SF-key.

Table 6 shows the property-exception map computed
from the dataset D/ that is used for discovering F-
keys when n=2. For all properties, each property-
exception set w.r.t. SF-key semantic also appears as a
property-exception set w.r.t. F-key semantic. In ad-
dition, a property-exception map w.r.t. F-key seman-
tic contains property-exception sets for which instances
map to missing values. This is the case for the indi-
viduals p3 and p8 that are grouped within a property-
exception set since there is no information on whether
they have pursued or not studies according to the exam-
ple in Table 1.

Note that for SF-key (Table 5) and F-key (Table 6)
semantics, each person appears in at most one property-
exception set for each property. This is not the case for



for S-key semantic (Table 4). More generally, due to
the different interpretation of the data incompleteness,
in SF-key and F-key semantics, each instance can only
appear in at most one of the property-exception sets as-
sociated to a property. This is not the case for the S-key
semantic. This leads to the following remark:

Remark 1. The collection of property-exception sets
associated to each property p of a property-exception
map w.r.t. SF-key or F-key semantics represents a par-
tition.

The partitioning condition is particularly helpful to dis-
tinguish in which case to apply some filtering methods
without having the knowledge of the key semantic in
our agnostic non key discovery method.

In the next section we introduce the shared exception
graph, another structure that will assist with the efficient
discovery of n-non keys.

4.1.2. Construction of shared exception graph

The goal of n-non key search is to extend property-
exception sets valid for one property to a set of prop-
erties in order to discover maximal n-non keys. In some
datasets the properties are numerous, and the number of
candidate n-non keys, which is exponential in the num-
ber of properties, may be intractable. This is why we
need a n-non key search mechanism that will avoid ex-
ploring irrelevant combinations of properties. For ex-
ample, in the DBpedia dataset, the properties depth and
mountainRange are never used to describe the same in-
stances of the class NaturalPlace. Indeed, depth is used
to describe natural places that are lakes while moun-
tainRange natural places that are mountains. Therefore,
depth and mountainRange cannot participate together in
a n-non key. In general, if two properties have less than
n instances in common, these two properties will never
participate together to a n-non key. Therefore, such cou-
ples of properties should not be explored since they will
never lead to n-non keys. In order to take this informa-
tion into account, we introduce a graph that will be used
to both drive and limit the n-non key search in an effi-
cient way.

Definition 16. (shared exception graph: G(PA,<)).
The graph G(P, A, <) is the shared exception graph in-
ferred from property-exception map u if:

- P: the set of vertices represents the properties in y,

- A: the set of edges is s.t.:

A=lp.pIC, 0 XHN( U Xz n),

XK eu(p')

- <: defines a total order among the properties in P.
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Since in G two properties are linked only when the
unions of their property-exception sets contain at least
n common instances, a maximal n-non key is a subset of
a clique in G. Implicitly, using G, we are able to limit
the search of maximal n-non keys to the sets of proper-
ties belonging to at least one clique in G. In addition,
to efficiently lead the search for n-non keys, the relation
< establishes a total order and prioritises the properties
that will be explored first.

Figure 2: Shared exception graph w.r.t. the SF-key semantic when
n=2

FirstName

Figure 3: Shared exception graph w.r.t. the F-key semantic when n=2

Figure 1 shows the shared exception graph corre-
sponding to the dataset DI w.r.t. S-key semantic when
the number of exceptions is set to 2, i.e., n=2. Within
the graph, the set of properties {FirstName, LastName,
SSN} forms a clique. Therefore, the search space is
pruned since no n-non keys including the set {First-
Name, LastName, SSN'} should be explored. Figures 2
and 3 show the shared exception graph for the SF-key
and F-key semantics when n=2. Note that in this ap-
proach, unlike SAKey [23], it is not necessary to pre-



compute the set of all cliques associated to a property-
exception map since it can be very time consuming on
datasets with numerous properties. Contrariwise, before
exploring a new property, this approach checks within G
on the fly whether the new property is connected to all
properties appearing in the current n-non key (see func-
tion nextProperty in Algorithm 1 below). Thanks to
this checking, we only explore cliques of G.

Given the property-exception map and the shared ex-
ception graph that correspond to the data, the compu-
tation of n-non keys is agnostic from the selected key
semantic. In the next section we introduce the shared
exception graph, another structure that will assist with
the efficient discovery of n-non keys.

4.2. n-non key mining

In order to compute the set of maximal n-non keys, we
introduce the maxNonKeyMining algorithm (see Algo-
rithm 1). This algorithm is a depth-first algorithm trying
to discover the fastest possible the complete set of max-
imal non keys. More precisely, the algorithm incremen-
tally searches for maximal non keys by checking if the
current n-non key and a new property also form a n-non
key. Before introducing maxNonKeyMining algorithm,
we introduce the structures and subroutines used by the
approach.

Definition 17. (intersect operator: (X)) Given two col-
lections of property-exception sets X and X', the in-
tersect operator returns a new collection of property-
exception sets defined as follows:

XQX ={XnXK | X' e X, X" e X', IX*NX¥|> 1}

In maxNonKeyMining algorithm, this operator is used
for intersecting the current property-exception set X,
valid for the current n-non key Q, with all property-
exception sets of the next property to be explored. The
output of this intersection operation is a collection of
property-exception sets.

Since only maximal sets can lead to new n-non keys,
the function maxSets takes as input a collection of
property-exception sets X and returns the maximal sets
of X s.t.

X e maxSets(X)iff X € Xand X’ € X s.t. X C X'.
The function maxSets is used both for filtering property-
exception sets for each property p in u(p), and for prun-
ing non maximal n-non keys from the output.

The non key exception map ¢ is a structure that
stores for each explored non key Q the union of vis-
ited property-exception sets associated to Q, i.e., the set
of instances that share values for the given non key.
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The function nextProperty takes as input a property
p, anon key Q, the shared exception graph G(P, A, <)
and returns the next property p’ s.t. p’ > p and Vp” €
0,(p"”,p’) € A. In other words, p’ corresponds to the
next property following p in the ordered list of proper-
ties and is also connected to all the properties present in
the non key Q. Implicitly {p’} U Q forms a clique in G.

The algorithm maxNonKeyMining takes as input the
number of authorised exceptions 7, the current property
to explore p, the current property-exception set X, the
current n-non key Q, the property-exception map u, the
shared exception graph G, an initially empty non key
exception map ¢ and an initially empty set of maximal
n-non keys M.

The algorithm returns the complete set of max-
imal n-non keys w.r.t. the key semantic en-
coded by the property-exception map p. Initially
maxNonKeyMining is called with the following param-
eters maxNonKeyMining(n, p1,1,0,u,G, &, M) with p,
representing the first property to be explored and [
the complete set of instances appearing in the data.
At line 4, X represents the intersection of the cur-
rent property-exception set X with all the property-
exception sets associated to the property p in the
property-exception map u. At this line, several filter-
ings are performed. First, by definition, the opera-
tor (X) prunes both property-exception sets with size
smaller than 2 and duplicate property-exception sets.
Then, the function maxSets ensures that only maximal
property-exception sets, resulting from the intersection,
are kept. As a result, X, the collection of property-
exception sets to be explored contains no subsumed
property-exception sets. This function is called only
when X does not represent a partition, i.e., it contains
subsumed property-exception sets (Remark 1). Other-
wise, in the case of SF-key and F-key semantics, the
function maxsS ets is not used.

Then, for each property-exception set in X (line 7),
the algorithm computes the new non key Q’ associated
to the property-exception set X’ (line 9). The set of
violating instances appearing in the explored property-
exception set X’ is updated for each corresponding non
key Q' (line 11) by using the non key exception map &.
When the set of violating instances exceeds the num-
ber of authorised exceptions, the corresponding candi-
date n-non key is added to the non keys. The non key
exception map allows only maximal non keys. After-
wards, the algorithm tries to extend recursively Q" with
p’ (line 12). p’ is the next property in the order forming
a clique with the properties appearing in Q" (line 13).

From lines 7-13, the algorithm tries to extend the cur-
rent non key Q with the current property p. To explore



Algorithm 1: maxNonKeyMining

Input: 7, number of authorized exceptions
p, current property to explore
X, current property-exception set set
0, current n-non key
U, property-exception map
G, shared exception graph
&, non key property-exception map
M set of maximal n-non keys
Output: M set of maximal n-non keys
1 if p = nil or AQ; € maxNonKeys s.t.
{p}U Q € Oy then
3 | return

X — (X} @ up)
5 if —isAPartition(X) then
6 L X «— maxS ets(X)

7 for each X’ € X do

s | O —(puo

9 | EQ) X ULQ)

10 if |£(Q)| > n then

1 L M «— maxSets(M U Q")

12 p’ « nextProperty(p, Q,G)
13 maxNonKeyMining(n, p’, X', Q', u, G, &, M)

14 p’ « nextProperty(p, Q,G)
15 maxNonKeyMining( n, p’, X, Q, u, G, ¢, M)

(5]

£

all combinations of properties, in line 15, the algorithm
tries to extend the current non key without p. The al-
gorithm stops when the exploration reaches a maximal
clique in G or when the next non key to be composed
is already included in one of discovered non keys (lines
1-3).

If the algorithm is launched with n=2 (i.e., at least
2 exceptions authorised) in the dataset D/ presented in
the Table 1, then:
2-S non keys = {{FirstName, LastName, DateOfBirth,
StudiedIn, HasSibling}, { FirstName, LastName, SSN '} }
under the S-key semantic,
2-SF non keys ={{FirstName, LastName, StudiedIn},
{FirstName, LastName, SSN}} under the SF-key se-
mantic and
2-F non keys ={{FirstName, LastName, SSN, DateOf-
Birth, StudiedIn, HasSibling}} under the F-key seman-
tic.

4.3. Key Derivation

The computation of minimal n-almost keys is done us-
ing the maximal (n+1)-non keys. A set of properties is a
n-almost key, if it is not equal or included to any maxi-
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mal (n+1)-non key. Indeed, when all the (n+1)-non keys
are discovered, all the sets not found as (n+1)-non keys
will have at most n exceptions (i.e., n-almost keys). To
execute this step, we use KeyDerivation, an efficient al-
gorithm introduced in [23] (see Algorithm 2). This al-
gorithm takes as input the compSets, i.e., a collection of
complement sets for each maximal n-non key discovered
from the data. To compute efficiently the minimal n-non
keys from this collection of complement sets, the prop-
erties are ordered by their frequencies in the compSets.
At each iteration, the most frequent property is selected
and all the n-non keys involving this property are dis-
covered recursively. For each selected property p, p is
combined with the properties of the selected comple-
ment sets that do not contain p. Indeed, only comple-
ment sets that do not contain this property can lead to
the construction of minimal n-almost keys. When all
the n-almost keys containing p are discovered, this prop-
erty is eliminated from every complement set. When at
least one complement set is empty, all the n-non keys
have been discovered. If every property has a different
frequency in the complement sets, all the n-almost keys
found are minimal n-almost keys. In the case where two
properties have the same frequency, additional heuris-
tics should be taken into account to avoid computations
of non minimal n-almost keys.

If the algorithm is launched with the 2-non keys dis-
covered by the maxNonKeyMining algorithm then:
1-almost S-keys = {{SSN, DateOfBirth}, {SSN, Stud-
iedIn} {SSN, HasSibling}} under the S-key semantic,
1-almost SF-keys ={{SSN, DateOfBirth}, {SSN, Stud-
iedIn}, {HasSibling}} under the SF-key semantic and
1-almost F-keys ={} under the F-key semantic.

5. Experiments

We conduct two experiments in order to assess the qual-
ity of links inferred by each semantic through two real-
world scenarios. To this aim, we evaluate the quality of
the different types of keys w.r.t. their inferred links by
computing the Recall, Precision and FMeasure scores

The resulting scores are based on the comparison be-
tween the links obtained by each semantic and the cor-
rect links provided in the goldstandard.

In the first real-world scenario, we evaluate the ca-
pability of the three key semantics to retrieve correct
owl:SameAs links among the instances of two versions

“4For convenience, to compare FMeasure scores (usually expressed
between [0,1]) to Precision and Recall scores (expressed in %), we
express FMeasure scores between [0, 100], (i.e, X100).



Algorithm 2: keyDerivation

Input: compS ets set of complement sets
Output: KeyS et set of n-almost key s
KeySet — 0
orderedProperties =
getOrderedProperties(compSets)
for each p; € orderedProperties do
selectedCompS ets «—
selectSets(p;, compS ets)
if (selectedCompS ets == () then
| KeySet = KeySetU {{p;}}
else
KeySet = KeySet U
L {pixkeyDerivation(selectedCompsS ets)}
compS ets = remove(compS ets, p;)
if ( 3 set € compSet s.t. set == () then
L break

return KeyS et

of the same knowledge base that evolves over time. In
the first set of experiments two different versions of DB-
pedia are compared. This scenario uses BECKEY as a
solution for tackling the temporal evolution of a given
dataset.

In the second real-world scenario, we evaluate the ca-
pability of the three semantics to discover the correct
owl:SameAs links among the instances of two different
knowledge bases built separately, conforming to differ-
ent ontologies. In the second set of experiments, one
version of DBpedia is linked to one version of YAGO °.
This scenario uses BECKEY as a solution for tackling
the heterogeneity of knowledge bases.

For both scenarios the objective of the experiments is
twofold: compare the different key semantics through
the quality of the links inferred and understand in which
case a key semantic may be more suitable for data link-
ing than another. To this aim, for all semantics of keys,
the data linking step is computed as follows. Given
two datasets containing instances of the same class, the
keys discovered by each semantic are applied to pro-
vide owl:sameAs links among the instances of the two
datasets. No similarity measures are applied even if [23]
has shown that similarity measure may positively im-
pact the computed scores. This simple data linking step
allow us to have a fair comparison of the different key
semantics and have a clearer understanding of the cases
where a specific key semantic may be more suitable.

Shttps://www.mpi-inf.mpg.de/departments/databases-and-
information-systems/research/yago-naga/yago
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Setting. In all experiments, the data are stored in a
dictionary-encoded map, where each distinct string ap-
pearing in a triple is represented by an integer. The ex-
periments have been executed on a single machine with
16GB RAM, processor 2.50GHz, 8-core. A time limit
of 2 days has been set for each execution.

5.1. Linking data of evolving Knowledge Bases

In this first set of experiments, we compare the quality
of the three different key semantics for linking two ver-
sions of a same knowledge base that evolved over time
(see Section 5.1.1). In Section 5.1.2, we demonstrate
the impact of exceptions in the data linking process for
all three semantics.

Datasets. The experiment is executed on 2 different ver-
sions of DBpedia, the latest version published in Octo-
ber 2016% (DBpedia 2016) and a previous version pub-
lished in 20137 (DBpedia 2013). The selected datasets
are highly heterogeneous as shown in this section, and
allow a comparison of the three key semantics when
data evolve through time (i.e., instances, properties and
property values are added or suppressed). 266 DBpedia
classes are randomly chosen for the experimental eval-
vation. Since the three key semantics differ on the hy-
pothesis on data completeness, such an evolutive dataset
is used to compare the three approaches. To compare
the results of different semantics of keys on significant
classes, we select the classes for which at least one set
of keys discovered for a given semantic and a given
number of exceptions (among 0, 10, 20, 30) returns an
FMeasure equal or higher than 60. 155 classes corre-
spond to this criteria. Therefore, our experiments focus
on these 155 classes. These classes contain from 100 to
more than 200.000 instances (see Figure 4), from 419 to
1.611.241 triples (see Figure 5) and finally from 7 to 462
properties (see Figure 6). The classes in all three figures
are sorted according to their number of instances, triples
and properties respectively.

Data linking challenge. The objective of this exper-
iment is to compare the linking performance of key
based approaches on the problem of data linking. To
this aim, we compare the links found among instances
of a given class described by two datasets, i.e., db2013
and db2016. Table 7 shows the evolution of the data
with respect to the two versions of DBpedia. More pre-
cisely, as shown in this table, 42,22% of the triples in
the initial version (db2013) are removed from the newer

Shttps://wiki.dbpedia.org/downloads-2016-10
7https://wiki.dbpeclia.org/services—rc:sourccs/datasets/data—sc:t—
39/downloads-39



version (db2016) while more than 50% of the triples of
the version db2016 are new. Similarly, 19,57% of the
initial instances are not appearing in the newer version
while around 40% of the instances in the db2016 are
new. Finally, this evolution is not only in terms of triples
and instances but also in terms of properties. Therefore,
29,13% of the properties used in the older version are
not present in the new version while 24,32% of the prop-
erties in the db2016 are new. Even if the task of linking
two different versions of DBpedia would seem straight-
forward the heterogeneity and the significant changes at
different levels, as shown in Table 7, make this task a
challenging problem.

In order to verify the quality of the discovered keys, a
goldstandard containing the common instances of both
datasets has been created. Note that instances in all ver-
sions of DBpedia are using the same URI prefix, i.e.,
https://dbpedia.org/resource.

db2013 | db2016
# CommonTriples 57,78% | 46,88%
# OldTriplesGone 42.22% -
# NewAddedTriples - 53,12%
# CommonlInstances 80,43% | 60,35%
# OldInstancesGone 19,57% -
# NewInstancesAdded - 39,65%
# CommonProperties 70,87% | 75,68%
# OldPropertiesGone 29,13% -
# NewPropertiesAdded - 24.32%
Table 7: Dataset evolution
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5.1.1. Data linking using 0-almost keys
In this first set of experiments we focus on keys with
0 exceptions. More precisely, we provide the linking
results of all three key semantics in the selected classes
and an analysis on which semantic is more appropriate
to use depending on the nature of the data. For each
class, and each key semantic, the keys discovered in the
most recent version of DBpedia (db2016) are used to
identify the common instances between the two datasets
(db2013 and db2016). We consider the newest dataset
as a knowledge base that is more complete and contains
less errors than the previous versions.

Figure 7 shows the Recall obtained by each semantic,
for each class. In the x-axis, classes are ordered by the
overall Recall, i.e., the sum of Recall scores returned for
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the three semantics of keys. S-keys and SF-keys lead to
relatively similar Recall scores. As it can be easily ob-
served, Recall scores are uniformly distributed among
the classes. S-keys and SF-keys lead to Recall scores
from O up to 99% depending on the tested class. In the
case of low Recall, this is usually due to the data in-
completeness on the properties participating in the keys.
For example, in the case of the class HollywoodCar-
toon we obtain a very low Recall using S-keys or SF-
keys (lower than 1%). The S-key (resp. SF-key) with the
highest support is the IMDB-ID of the Hollywood car-
toon. However, only 139 instances out of 1258 partic-
ipating in the goldstandard are containing information
about their imdb-id in the version db2016 while none of
the instances of the version db2013 contains this prop-
erty. This means that this key leads to zero links. All
the other keys discovered of this class have a very low
support. For example the key { Homepage}, a key that
seems to be relevant for the data linking task, is filled
for only one Hollywood cartoon in the db2016 version.
Nevertheless, Figure 7 shows that both S-keys and SF-
keys bring very good Recall scores for numerous classes
(more than 50 classes obtain a Recall higher than 70%).

The Recall obtained for F-keys is equal to O for 117 of
the 155 classes since no F-keys are discovered for these
classes (see Table 8). Note that, F-keys are discovered
for only 15 classes while for 23 classes the algorithm
reaches the time limit of 2 days. These poor results
are mainly due to the "strict” nature of the definition
of F-keys. For example, the set of properties {Name,
Birthplace} is an SF-key for the class VolleyballPlayer
and states that a volleyball player can be identified us-
ing her/his name and birth place. This SF-key obtains
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51,09% of Recall, 100,00% of Precision and 67,63 of
FMeasure. This set of properties is not discovered as an
F-key due to the fact that the birthplace of some players
is not registered in the data. This means that when no
exception is allowed, the F-key semantic fails to provide
linking solutions for the majority of the classes tested.
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Figure 9: FMeasure

From Precision perspective, i.e., the capacity to re-
trieve correct sameAs links among the obtained links,
Figure 8 shows that S-keys and SF-keys are highly ac-
curate and return a Precision score that starts at 90%
for the poorest classes and rapidly reaches almost 100%
for the remaining classes. The high Precision scores
for both S-keys and SF-keys highlight the relevance and
high accuracy of key based approaches for data linking.



Since no F-keys are discovered for most of the classes,
the Precision in this case cannot be defined (i.e., Preci-
sion = UNDEF).

Figure 9 shows both the accuracy and the coverage
of the discovered links by computing the FMeasure,
when it is possible (i.e., when Precision # UNDEF).
As observed before, Precision scores obtained by S-keys
and SF-keys are between 90% and 100% therefore the
FMeasure for these semantics is following the Recall
pattern while obtaining higher scores. Concerning the
FMeasure of F-keys, the score can be computed only
for 15 out of 155 classes since no F-keys have been dis-
covered for the remaining classes.

In Table 9, we provide a comparison of the different
key semantics w.r.t. the best FMeasure scores obtained
for each class. When 0 exceptions are allowed, the S-key
semantic obtains better FMeasure scores for more than
50% of the classes (88 out of 155 classes). More than
40% of the classes are obtaining the highest FMeasure
using the SF-key semantic while no class is obtaining
the best FMeasure using the F-key semantic.

5.1.2. Data Linking with n-almost Keys

In this section we evaluate the linking quality of dis-
covered keys varying the number of allowed exceptions
from O to 30. More precisely, we analyse the effect of
the number of allowed exceptions on Recall, Precision
and FMeasure. As previously stated when no exception
is allowed, key based data linking approaches are very
accurate and show very high Precision scores. This is
not the case for Recall for which scores vary uniformly
from very low to high depending on the class. Intu-
itively, by allowing exceptions we expect an improve-
ment on the overall linking quality of keys (i.e., FMea-
sure) accepting to trade accuracy (i.e., Precision) for
better coverage (i.e., Recall).

Figure 10 shows the evolution of the average Recall,
Precision and FMeasure obtained by S-keys when ex-
ceptions are authorised. When no exception is allowed,
the average Precision is 99% and the average Recall is
55%. As shown in this figure, allowing exceptions leads
to a relevant increase of the Recall without decreasing
significantly the Precision. For example, in the class
Food, allowing 10 exceptions allows the FMeasure of
S-keys to increase from 7,36 to 53,58. The best FMea-
sure of 81 is obtained when 20 exceptions are allowed.
In this case, the Recall is reaching 80% while the Preci-
sion is at 88%.

Figure 11 shows the evolution of the average Recall,
Precision and FMeasure obtained by SF-keys when ex-
ceptions are authorised. The average Recall, Precision
and FMeasure obtained when using the SF-keys follow
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the same pattern as S-keys (Figure 10) while they tend
to be slightly better. For example, in the class Food, au-
thorising 10 exceptions allows the FMeasure of S-keys
to increase from 4,57 to 79,61. For more than 20 excep-
tions, the overall FMeasure remains steady. The best
overall quality for the SF-keys is obtained when allow-
ing up to 20 exceptions, and reaches an FMeasure of
85.

Figure 12 shows the evolution of average Recall, Pre-
cision and FMeasure obtained by F-keys when excep-
tions are authorised. The scores obtained using F-keys
differ completely from the scores obtained by S-keys
and F-keys. To interpret these results, it is important
to highlight that for most of the classes there are ei-
ther no n-almost F-keys discovered or the computation
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time limit of 2 days has been reached, (see Table 8). As
a consequence, the average Recall computed over the
classes not reaching the time limit remains extremely
poor (less than 5%), even when increasing the number
of allowed exceptions. Precision and FMeasure scores
can only be computed over the classes for which at least
one owl:sameAs link has been discovered. For 0, 10, 20,
and 30 exceptions there are respectively only 15, 3, 3,
and 4 of these classes (see Table 8). As a consequence,
the high average Precision and FMeasure shown in Fig-
ure 12 are not representative of all the tested classes.

Table 8 reports for each key semantic, and an in-
creasing number of allowed exceptions varying from 0
to 30: the number of classes linked (i.e., at least one
owl:sameAs link discovered), the number of classes not-
linked (i.e., no owl:sameAs link discovered), and the
number of classes reaching the time limit of 2 days.
For SF-keys there is only 1 class over 155 reaching the
time limit for 20 and 30 exceptions. Similarly, for S-
keys there are only 2 classes (resp. 1) over 155 reaching
the time limit for O (resp. 20 and 30) exceptions.

Table 9 compares the three semantics w.r.t. the num-
ber of classes for which each semantic returned the
best FMeasure. The comparison is shown for excep-
tions from O up to 30. When no exception is autho-
rised, the S-key semantic is superior to the other seman-
tics and obtains the highest FMeasure for most of the
classes. When increasing the number of allowed excep-
tions from 10 to 30, the SF-key semantic brings better
results than the S-key semantic. Unlike S-key and SF-key
semantics, F-key semantic is never obtaining the best
FMeasure score.

Overall, the experiments show that the S-keys and SF-
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keys have a high linking capability in terms of FMea-
sure when exceptions are allowed. The experiments
also demonstrate that increasing the number of excep-
tions also increases significantly the FMeasure by trad-
ing "a bit of" Precision for a more important improve-
ment in Recall. When no exception is allowed, the aver-
age FMeasure obtained using S-keys and SF-keys is sim-
ilar. SF-keys lead to a better average FMeasure as the
number of allowed exceptions increases up to 20. How-
ever, it is shown that S-keys can obtain the best FMea-
sure score for numerous classes whatever the number of
exceptions is applied. On the other hand, F-keys lead
to poor results even when the number of exceptions in-
creases.

5.1.3. Semantic comparison in evolving Knowledge
Bases

The goal of this section is to provide a more complete
analysis of the experimental evaluation and give more
insights on when a semantic is more appropriate to be
used, depending on the nature of the data. First, we pro-
vide a deeper understanding on why F-keys return poor
results on data linking. Then, we compare the results of
S-keys and SF-keys based on example classes for which
each key semantic provides better linking results.
Understanding why F-keys are less suitable for data
linking
Overall, the F-keys fail to provide good linking results.
As shown in Table 9, F-keys are never obtaining the best
FMeasure among the three semantics, for all numbers of
exceptions used in this experimental evaluation. The F-
key semantic fails to provide any keys for the vast ma-
jority of the classes tested. Even when exceptions are
allowed, the discovery of F-keys does not ensure to find
an F-key.

Unlike S-keys and SF-keys, F-keys assume that when
a property is not istantiated for all instances, this prop-
erty cannot be a key. To explain why such a semantic
leads to poor linking results let us note that in the data
we might encounter instances that are not valued for a
given property. This can be either due to the incom-
pleteness of the data (i.e., a missing value) or to the fact
that a property is not meaningful for all instances. Let
us consider the class Swimmer. For example, the set of
properties { Birthplace, Deathdate} is both an S-key and
an SF-key for a swimmer. It is obvious that this key can
be used to link only swimmers that are no longer in life.
This means that the property Deathdate is applicable to
only a part of the instances and the absence of a death-
date is likely not due to the incompleteness of the data.
The F-key semantic fails to capture keys of this nature.
In the case of the set of properties { Height, Name} that



0 Exp. 10 Exp. 20 Exp. 30 Exp.
#cL | #cN | #cT | #cL | #cN | #cT | #cL | #cN | #cT | #cL | #cN | #cT
S-keys 153 0 2 155 0 0 154 0 1 154 0 1
SF-keys | 155 0 0 155 0 0 154 0 1 154 0 1
F-keys 15 | 117 | 23 3 63 89 3 52 | 100 4 42 | 109
Table 8: Number of classes: linked (#cL), not-linked (#cN), and reaching time limit (#cT)
0 Exp. | 10 Exp. | 20 Exp. | 30 Exp. Another example where SF-keys are leading to bet-
S-keys 88 62 48 49 ter linking results is the class Food describing different
SF-keys | 69 95 107 107 meals. In this class, the SF-keys allowing 10 exceptions
F-keys 0 0 0 0 lead to an FMeasure of 79,61 while the S-keys lead to

Table 9: Number of classes having best FMeasure per number of ex-
ceptions for each semantic

is an S-key and an SF-key, both of the properties can be
instantiated for all swimmers since they all have a name
and a height. As we can observe in the data, there exist
swimmers for which the height information is not pro-
vided in the website of wikipedia. Therefore, this key is
going to be used to compare only swimmers for which
their height exists in the data. F-key semantic will not
be able to discover keys composed of properties where
some values might be missing. Note that these sets of
properties when discovered as S-keys obtain together a
Recall of 26% and have both a Precision of 100%, prov-
ing the keys with a coverage lower than 100% can still
provide a great accuracy.

Understanding the differences between SF-keys and
S-keys

As highlighted in sections 5.1.1 and 5.1.2, SF-keys and
S-keys obtain similar scores and provide very good link-
ing results. The main question is how to choose the most
appropriate semantic according to the nature of the data
to be linked. In this part, we try to answer this ques-
tion by discussing different examples where SF-keys or
S-keys are leading to better linking results.

When are SF-keys more suitable? In the case of the
class Language, when 10 exceptions are allowed, we
observe that the FMeasure obtained using the S-keys is
only 5,65 while the FMeasure for SF-keys is 81,22. This
big difference is due to the SF-key(Spokenin, Name) ex-
pressing that the set of places where a language is spo-
ken along with its name can be used to uniquely identify
a language. This SF-key alone leads to an FMeasure of
78,60 and is responsible for the linking of 4409 out of
6799 languages between the two versions of DBpedia.
The set of properties {Spokenin, Name} is not an S-key
since there exist numerous languages that are spoken by
many countries.

an FMeasure of 53,58. Thus, a difference of 26,03 be-
tween the two FMeasure scores can be observed. This
difference is mainly due to the SF-key(Name, Ingredi-
ent) that manages to link 1168 out of 3554 foods regis-
tered in DBpedia, obtaining an FMeasure of 49,47. It is
quite obvious that identifying and comparing two meals
based on the sets of their ingredients is more relevant
than comparing them based on one of the ingredients
they are made of.

Both examples help us understand that for certain
multivalued properties it is more relevant to consider the
complete set of values.

When are S-keys more suitable? In the class Mu-
sicGenre, we observe a significant difference between
the FMeasure scores obtained using S-keys and SF-keys.
When 0 exceptions are applied, S-keys lead to an FMea-
sure of 83,71 while SF-keys lead to an FMeasure of
24,60. This difference is due to the S-key(Genre-iny,
Name). Note that this set of properties is discovered
both as an S-key and an SF-key. When discovered as an
S-key this key alone is responsible for an FMeasure of
77,09 while when discovered as an SF-key it returns an
FMeasure of 5,07. The property Genre-inv associates a
genre to artists, albums, songs etc. It is easily under-
standable that this property evolves with time since new
artists, albums, songs are continuously added to DBpe-
dia and associated to a genre. Therefore, such a prop-
erty is more relevant to participate in an S-key since it
can bring no links for the genres that evolve in time.

Another similar example comes from the class Soc-
cerManager. In the case where 0 exceptions are autho-
rised, the FMeasure obtained by S-keys is 97,75 while
the one obtained by SF-keys is 75,83. The S-key with the
highest linking capacity is the set of properties {Birth-
date, Team, Name}. This S-key expresses that two soc-
cer managers are considered identical when they have
managed the same team, they have the same birthdate
and the same name. This S-key manages to link the most
of the soccer managers in the goldstandard (5757 out of
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0 Exp. | 10 Exp. | 20 Exp. | 30 Exp.
S-keys 40 69 69 58
SF-keys | 11 30 45 45
F-keys | 463 1617 1810 1970

Table 10: Average execution time in minutes for each semantic

10277 instances). On the other hand, the correspond-
ing minimal SF-key(Team, Name), is a subset of the S-
key. This SF-key alone obtains an FMeasure score of
22,6 and leads to much fewer links. Intuitively, the SF-
key considers two managers from different versions of
DBpedia to be identical if they have managed the exact
same set of teams despite the evolution due to the years.
This interpretation could be suitable only for managers
that have stopped their activity and no longer manage
new teams. Overall, S-keys tend to be more suitable for
properties that evolve within time.

5.1.4. Time Performance

In Table 10, we provide the average execution time of
the 155 classes for each semantic when 0, 10, 20 and
30 exceptions are allowed. In average, BECKEY dis-
covers S-keys in 40 minutes when O exceptions are al-
lowed and around an hour when the number of excep-
tions increases. The discovery of SF-keys outperforms
the discovery of S-keys. This is due to the fact that
unlike S-keys, in SF-keys the data are partitioned (see
Remark 1) and the structure to explore (i.e., property-
exception map) is much more compact. Compared to
the other semantics, the discovery of F-keys is one or-
der of magnitude slower when 0 exceptions are allowed.
The difference increases with the number of allowed ex-
ceptions. This is due to the fact that every instance is as-
sociated to a value (possibly null) for all the properties,
therefore the search space to explore is much larger. Ad-
ditionally, for this semantic the shared exception graph
contains only one clique representing the complete set
of properties, thus the search space cannot be pruned.

5.2. Linking data of heterogeneous Knowledge Bases

In this set of experiments, we compare the linking ca-
pability of each of the three semantics for integrating
two heterogeneous knowledge bases conforming to dif-
ferent ontologies. As before, we also analyse the impact
of allowed exceptions on the data linking performance.
Datasets. (DBpedia 2016 VS. YAGO 2016) Each ex-
periment takes as input the complete et of triples of a
given class found in two real-world knowledge bases,
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DBpedia and YAGO?, both released in 2016. The data
for this experiment have been provided initially in [24]
containing data for ten different classes. These classes
describe different domains such as organisations, actors,
locations etc.

Data linking challenge. While both DBpedia and
YAGO contain information extracted from Wikipedia,
they remain highly heterogeneous. Since the two
knowledge bases conform to different ontologies the vo-
cabulary used to describe identical properties may dif-
fer. Note that DBpedia usually contains more properties
than YAGO to describe one class. Additionally, a sig-
nificant part of YAGO is manually verified before being
released. As a result, the use of different strategies and
methodologies used for the creation of each knowledge
base lead to the construction of highly heterogeneous
datasets. The authors of [24] have executed a step of
property alignment where different properties referring
to the same information have been matched. Then, the
properties of YAGO have been renamed using its DB-
pedia counterparts. In the final datasets released, only
triples containing properties found in both datasets have
been kept. Table 11 shows for each of the provided
classes the number of common properties, the number
of triples for both YAGO and DBpedia and finally the
number of instances for each of them. Note that the
goldstandard for each class containing the complete set
of correct links among the datasets is available.

5.2.1. Data linking using 0-almost keys

In this experiment, we compare the linking results of
the three key semantics when 0 exceptions are autho-
rised. For each class and each semantic, the keys have
been discovered in YAGO and then used to provide links
towards DBpedia. This choice has been made since
YAGO tends to be cleaner and contains less errors. The
first three columns of Table 12 contain the FMeasure
scores that show the linking capability of each key se-
mantic.

As it can be easily noticed, similarly to the previous
experiments, for all classes, F-keys obtain an FMeasure
score of O showing that F-keys fail to provide any links
when 0 exceptions are allowed. This is due to the strict
nature of this semantic. On the contrary, S-keys and SF-
keys provide much better results, reaching an FMeasure
score of 56,33 for the class Book when using SF-keys
and an FMeasure score of 79,51 for the class City when
using S-keys.

8https://www.mpi-inf.mpg.de/departments/databases-and-
information-systems/research/yago-naga/yago/



Class # CommonProp. | # InstancesDB | # InstancesYAGO | # TriplesDB | # TriplesYAGO
Actor 16 5807 108424 47173 514772
Album 5 85072 137178 297072 381119
Book 7 29849 41855 123586 92499
City 17 19229 83561 634437 1100738
Film 9 82126 123916 673518 533542
Mountain 5 16401 32984 67720 116781
Museum 7 1826 21152 7970 81671
Organisation 17 183716 430331 2243603 2205427
Scientist 10 18409 93169 64178 335633
University 9 10353 23352 119615 131657
Table 11: DBpedia and YAGO datasets’ statistics
0 Exp. 10 Exp. 20 Exp. 30 Exp.
S SF F|S SF F|S SF F S SF F
Actor 68,96 | 1437 | 0 | 70,92 | 28,66 | O | 71,74 | 29,02 | O 72,18 | 29,08 | O
Album 58,32 | 56,33 | 0 | 58,32 | 56,33 | 0 | 58,32 | 56,33 | O 58,32 | 56,33 | 0
Book 61,72 | 58,12 | 0 | 62,35 | 58,78 | 0 | 62,32 | 58,76 | O 63,22 | 59,78 | O
City 79,51 | 4141 | 0 | 87,99 | 68,88 | 0 | 85,30 | 78,36 | O 85,31 | 78,36 | O
Film 46,73 | 4594 | 0 | 50,08 | 47,19 | 0 | 50,95 | 47,7 | O 51,39 | 50,09 | O
Mountain 3,1 295 |0 | 3,1 3 0 | 3.1 306 |0 3,19 | 306 |0
Museum 24,55 | 20,49 | 0 | 30,48 | 22,22 | 0 | 30,48 | 22,33 | O 31,28 | 403 | O
Organisation | 15,61 | 8,89 | 0 | 30,46 | 1288 | 0 | 31,32 | 13,25 | O 31,53 | 13,38 | O
Scientist 50,25 | 247 |0 | 59,16 | 3.82 | 0 | 59,48 | 6,67 | O 59,53 | 7,04 | O
University 22,13 | 10,68 | 0 | 38,72 | 28,71 | O | 56,15 | 28,94 | 0,99 | 56,71 | 29,42 | 0,99

Table 12: FMeasure scores (x100) for S-keys, SF-keys and F-keys when 0, 10, 20 and 30 exceptions are authorised

When no exceptions are allowed, we observe that S-
keys lead to significantly better FMeasure scores than
SF-keys. In the case of the class Actor, S-keys provide
an FMeasure score of 68,96 while SF-keys only reach
14,37. We also observe a similar gap in the linking per-
formance the class Scientist (i.e., a difference between
the FMeasure scores higher than 45 when 0 exceptions
are authorised).

5.2.2. Data linking using n-almost keys

In this section, we compare the linking capacity of the
three key semantics, when varying the number of al-
lowed exceptions from O to 30. In Table 12 we provide,
for each authorised threshold of exceptions, the FMea-
sure score.

When exceptions are authorised, the FMeasure scores
increase in most of the cases for both S-keys and SF-
keys. For example, when 30 exceptions are allowed, the
FMeasure of S-keys for the class University is more than
twice greater than the FMeasure score when 0 exception
is allowed (i.e., from 22,13 to 56,71). Similarly, when
30 exceptions are allowed, the FMeasure of SF-keys for
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the class City goes from 41,41 to 78,36. Nevertheless,
this increase of number of exceptions does not seem to
benefit the F-keys. As shown in Table 12, F-keys pro-
vide O links except for the case of the class University
where they obtain an FMeasure score of 0,99.

Overall, comparing S-keys and SF-keys, S-keys tend
to provide significantly better linking results except for
the class Museum when 30 exceptions are allowed.

5.2.3. Semantic comparison in heterogeneous Knowl-
edge Bases

This section provides insights of when each of the three

semantics leads to better linking results in the case of

heterogeneous knowledge bases.

Understanding why F-keys are less suitable for data
linking

As explained extensively in the previous experiment,
(see Section 5.1), F-keys fail to provide good linking
results due to their "strict" definition. More precisely,
no F-keys are discovered for the 9 out of 10 classes even
when exceptions are authorised. Therefore, no links can



be produced. In the case of the class University, only
one F-key is found when 20 and 30 exceptions are au-
thorised. In this case, the F-key(islocatedin, Preflabel,
Wascreatedonyear) is able to produce 44 links out of
the 8885 existing links, leading to an FMeasure score of
0.99.

Understanding the differences between SF-keys and
S-keys

As shown in Table 12, both S-keys and SF-keys tend to
bring good linking results. Nevertheless, in this experi-
ment we observe the superiority of S-keys over SF-keys
independently of the number of exceptions.

When are S-keys more suitable? The superiority of
S-keys over the SF-keys can be explained by the incom-
pleteness of the data which is an expected characteristic
of data coming from the Web. For example, the set of
properties { Hasnumberofpeople, Haspopulationdensity,
Islocatedin-inv} is an S-key for the class City. This key
provides an FMeasure of 23,38. On the contrary, the
SF-key(Haspopulationdensity, Islocatedin-inv) leads to
an FMeasure of only 0,99. This is due to the fact that
in order to consider two cities to be the same, the com-
plete set of institutions, schools, museums, etc., located
in the two cities found in each dataset (described by the
property Islocatedin-inv), have to be the same. As we
can easily observe, this is not the case in this example
since the two knowledge bases do not contain exactly
the same information. Therefore, as suggests the def-
inition of SF-keys, comparing the complete set of val-
ues can be an obstacle when data come from different
sources that do not always contain all the information.
Moreover, the different representation of the data in dif-
ferent datasets is another reason why SF-keys do not
provide good linking results. For example, the property
Preflabel is used in both knowledge bases to provide a
label for each instance in the data. While for YAGO this
property contains always only one label per instance,
this is not the case for DBpedia. For example, the ac-
tor Johan Paulik has two labels in DBpedia, "paulik, jo-
han" and "johan paulik” while only the second one is
found in YAGO. Since the property Preflabel appears
often in both S-keys and SF-keys, it is easy to see that S-
keys containing this property can provide high scores of
FMeasure, unlike SF-keys that are not able to deal with
this heterogeneity. Therefore, depending on the nature
of the data and the structure of each knowledge base, S-
keys or SF-keys are more appropriate.

When are SF-keys more suitable? In this experi-
ment, the only case where SF-keys bring better link-
ing results than S-keys is when 30 exceptions are au-
thorised for the class Museum. In this example, all
keys found by both semantics are the same except for
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the SF-key(Islocatedin, Preflabel) that brings additional
links, leading to an increase of the FMeasure. This SF-
key contains the multivalued property Islocatedin that
describes the location of a museum in different levels
of abstraction, for example, country, city, region etc.
Therefore, it leads to a significant number of links when
discovered as a part of an SF-key.

5.3. Choosing the appropriate semantic depending on
the data

In this section we have presented an extended exper-
imental analysis of the three key semantics and their
linking capacity over numerous classes. Two scenar-
ios of data linking have been explored. In the first sce-
nario, the data linking task concerns two versions of the
same knowledge base that evolves over time while in
the second, the data linking task concerns two hetero-
geneous knowledge bases created independently. This
experimental evaluation shows the poor linking capac-
ity of F-keys. This is mainly due to the fact that the F-
keys expect data to be complete, a characteristic rarely
observed in data published on the Web. Unlike F-keys,
S-keys and SF-keys show their linking capability for dif-
ferent classes in both scenarios presented in this paper.
Depending on the nature of the data, one key seman-
tic tends to be more appropriate than the other for the
data linking task. The main difference between these
two semantics is how they deal with multivalued proper-
ties. This difference has a strong impact in both the dis-
covery of keys and the data linking process. For some
properties, the complete set of values associated to each
instance is more suitable to identify the instance. For
example, a recipe will be more easily determined by us-
ing the complete list of its ingredients than only one or
a subset of its ingredients. Such properties are more ap-
propriate to be used in SF-keys. For other properties,
only one value will help to differentiate one instance
from another. For example, with the years passing, a
movie director will tend to have an increasing number
of directed movies. As a result, the set of movies as-
sociated to the property DirectorOf will tend to grow
with the years. In this context, a movie director will
be more easily identifiable using one movie than the
full list of movies. In this case, where the description
of an instance for a given property may evolve, S-keys
are more appropriate then SF-keys for the data linking
task. Finally, in the case of heterogeneous and incom-
plete knowledge bases S-keys are also more suitable.
Therefore, an analysis of the nature of each property de-
scribing a class is necessary in order to decide which se-
mantic is more appropriate. Overall, in both S-keys and



SF-keys exceptions have been shown to provide better
linking results.

6. Conclusion

In this paper we present BECKEY, a generic approach
for the discovery of keys in large RDF knowledge
bases. BECKEY is able to discover keys under
three different semantics introduced in the context of
the Semantic Web. The different key semantics are
presented and compared theoretically. In order to
discover keys of different semantics, a structure able to
capture these semantics is introduced. We propose a
semantic agnostic algorithm for the efficient discovery
of almost keys in large knowledge bases. The extrinsic
experimental evaluation has allowed a comparison
of the linking capacity of the three semantics. It is
demonstrated that F-keys are not useful for data linking
when data are incomplete, which is often the case
for the data on the Web. Overall, S-keys and SF-keys
tend to bring similar results of a significant linking
quality, proving their relevance for the data linking
task. Both S-keys and SF-keys obtain better linking
results in terms of FMeasure when few exceptions
are allowed, while no improvement is stated in the
case of F-keys. The experimental results show that
S-keys are more appropriate when no exceptions are
allowed. When exceptions are allowed the linking
efficiency of S-keys and SF-keys depends on the level of
multivaluation, completeness and heterogeneity of the
data to be linked. In the case of evolving knowledge
bases, where the descriptions of instances through
multivalued properties remain more or less stable,
SF-keys show a slightly better linking performance than
S-keys. In the other hand, in the case of heterogeneous
or incomplete knowledge bases, S-keys clearly dom-
inate SF-keys. As a result of the experimental study,
depending on the completeness and the nature of the
data, we provide different examples where properties
are more appropriate to participate in S-keys or SF-keys
and exhibit cases where S-keys or SF-keys tend to
bring better results when exceptions are authorised. As
future work we plan to introduce a new approach that
is able to select automatically the appropriate semantic
depending on different criteria including completeness,
multivaluation, evolution and heterogeneity of the data.
BECKEY along with the datasets and evaluations are
available at https://github.com/danaiS/BECKEY.
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