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Abstract

Crop models contain a number of genotype-dependent parameters, which need to be estimated
for each genotype. This is a major difficulty in crop modeling. We propose a hybrid method for
adapting a crop model to new genotypes. The genotype-dependent parameters of the model
could be obtained by phenotyping (or gene-based modeling). Then field data for example from
variety trials could be used to provide a simple empirical correction to the model, of the form a
+b times an environmental variable. This approach combines the advantages of phenotyping,
namely that the genotype-specific parameters have a clear meaning and are comparable
between genotypes, and the advantages of fitting the model to field data, namely that the
corrected model is adapted to a specific target population. It has the advantage of being very
simple to apply, and furthermore gives useful information as to which environmental variables
are not fully accounted for in the initial model. In this study, this empirical correction is
applied to the SUNFLO crop model for sunflower, using field data from a multi-environment
trial network. The empirical correction reduced mean squared error (MSE) on the average by
54% for prediction of yield and by 26% for prediction of oil content, compared to the initial
model. Most of the improvement came from eliminating bias, with some further improvement
from the environmental term in the regression.
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Introduction

Crop model predictions depend on the model equations, the values of the input variables and the values of
the parameters. Of course all three components are critical, but arguably it is the parameter values that
present the greatest difficulty for model users. We focus here on parameter estimation for crop models.

Crop models often have a large number of parameters, perhaps more than 100. The STICS model for
instance includes 132 parameters (Ruget et al., 2002). It is common to divide them into categories of
generality. Some parameters are assumed to apply very generally and so are not meant to be altered for
different applications. For example, in the SUNFLO model (Casadebaig et al., 2011; Lecoeur et al., 2011),
there are parameters representing the effect of temperature and soil moisture on N mineralization rate,
which are treated as fixed for all uses. Another set of parameters is specific to a particular species, which
applies to generic models like DSSAT (Jones et al., 2003), APSIM (Holzworth et al., 2014) or STICS
(Brisson et al., 2003) which can simulate for multiple species. For example, DSSAT has species senescence
parameters related to vegetative stage, freeze damage, nitrogen remobilization, drought and canopy
self-shading which are included in a species file. Finally, crop models have genotype-dependent parameters.
For example, DSSAT uses six genotype-dependent parameters for maize, including photoperiod sensitivity
and potential grain number. The SUNFLO model has 10 genotype-dependent parameters (two for degree
days to key development stages, four for shoot architecture, two for response to water deficit and two for
biomass allocation). For most model users, the general and species-specific parameters can be subsumed
into model structure, since they are not altered from the values provided by the model developers. However,
the problem is rather different for genotype-dependent parameters. There are very many varieties, which
are often region-specific and furthermore new varieties are regularly developed and released. Obtaining
genotype-dependent parameters is a never-ending problem.

There are three quite different approaches to estimation of genotype-dependent parameters that have
been proposed. The most common approach (estimation) is to calibrate the model using field data for the
variety in question, by searching the parameter space for the genotype-dependent parameters that give a
good fit to the field data. An example is the study in Li et al. (2015) in which DSSAT maize and wheat are
calibrated for new varieties (i.e. varieties not previously studied with DSSAT) in China. One disadvantage
of this approach is that parameters are only available after the variety is disseminated, which may lead to
a delay of several years between the development of the variety and the corresponding calibration of a crop
model. In addition, in the absence of a standardized protocol, it may be difficult to compare varieties using
a crop model, because differences in parameter values may also be due to differences in the type of data
used for calibration. At the opposite extreme is gene-based modeling, where parameters are predicted as a
function of the allelic composition of the genotype (prediction). In this case, models can be parameterized
for new genotypes even before the genotype has been cultivated in the field. Developing such models
is a major topic in modeling (Messina et al., 2006 , 2018; Cooper et al., 2016 ; Hammer et al., 2016 ;
Wallach et al., 2018 ), but as yet this approach is not widespread. An intermediate approach in terms of
timing is model calibration based on phenotyping input parameters (measurement). In this approach,
the genotype-dependent parameters of a crop model are measured using a standardized protocol of field
or controlled environment experimentation coupled with detailed phenotype measures (e.g. Debaeke et
al., 2010 ; Casadebaig et al., 2016b). This approach allows the measurement of genotype-dependent
parameters at an early stage of variety testing. The fact that a standard protocol is used reduces the
uncertainty in comparisons between varieties. High-throughput phenotyping could make this approach
more efficient and allows one to include additional genotype-dependent parameters (Furbank and Tester,
2011 ; Cooper et al., 2014; Tardieu et al., 2017 ; Gosseau et al., 2019 ).

There are fundamental differences between the estimation approach and the measurement approach. The
first one considers the model outcome, i.e. it estimates parameters values that can best describe the data,
while the measurement approach considers physiological processes, by measuring parameters values that
may or may not improve the prediction accuracy of model outcomes. The measurement approach also
assumes that the genotype-dependent parameters, or more generally all the model parameters, can be
applied in all environments. There is no mechanism in this approach to adapt the model to a specific
set of environmental conditions, i.e. to a target population of environments. On the other hand, the
calibration done in the estimation approach adjusts the model not only for the new variety, but also
de facto adjusts the parameters to the target population represented by multi-environment trials. The
difference would not be important, if indeed the same parameters were applicable to all environments,
without need of adjustment depending on target population. However, it seems clear that the model is
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needed to be adapted to different target populations. A general argument is made by Jørgensen and
Fath (2011) regarding models in ecology. Wallach et al. (2011) shows explicitly, for crop models, that
calibrated parameters compensate for errors in fixed parameters, and that the compensation depends on
the target population. A first conclusion is that the genotype-dependent parameters found by calibration
to field data are not the “true” parameters, i.e. the values that one would obtain by studying each
individual process of the crop model individually, and in the limit of a very large amount of data. A
second conclusion is that calibration is needed for each new target population. Because of the assumptions
made in the model, in the parameters selected for parameter estimation, error in input data, environment
and management bias in the training sets, and limited ability to directly estimate all model parameters,
local calibration can increase prediction accuracy.

Overall then, crop model calibration based on parameter estimation has the advantage that it adapts
the model to a specific target population, but the disadvantage that the resulting genotype-dependent
parameters are difficult to interpret and to compare between studies. Direct measurement of genotype-
dependent parameters has the advantage that the parameters have physiological meaning, but the
disadvantage that the model is not adapted for a specific target population. In gene-based models,
because allelic composition is indeed constant between environments, the adaptation to a specific target
population is moved to model structure.

In climate science, statistical post-processing techniques have emerged to provide a quantitative re-
interpretation of raw numerical weather prediction models outputs, based on meteorological observations
(Mendoza et al., 2015). Among these approaches, model output statistics (MOS) methods (Glahn and
Lowry, 1972 ; Carter et al., 1989) have been typically used to develop forecast equations using dynamical
model outputs and local observations as predictors.

The purpose of this study is to propose an hybrid approach which combines measurement of genotype-
dependent parameters with calibration using field data. In this approach, similarly to MOS methods for
weather prediction models, the calibration is done not by modifying the model parameters, but by adding
a simple empirical adjustment to the model of the form a + b times an environmental variable. The
goal is to combine the advantages of each parameterization approach; the measurement step produces
genotype-dependent parameters of a crop model that have physiological meaning and the empirical
adjustment produces a model that is adapted to a specific target population. We note that the field data
needed for the systematic application of an empirical adjustment is often available, in the form of variety
trials by breeders and/or post-registration multi environment trials (METs) by extension services.

We apply our proposed approach to the SUNFLO crop model. The model was specifically developed to
use parameters that can be estimated by a standard phenotyping protocol, and has been parameterized
in this way for a large number of sunflower varieties (Debaeke et al., 2010; Casadebaig et al., 2016b).
The empirical correction is based on the large multi-environment trials conducted each year by breeders,
examination offices and agricultural extension services in France to compare genotypes and assess their
value for cultivation and use.

Material and methods

Field data

To train the linear model used in the calibration process, we relied on the variety testing network targeting
released genotypes in France (Mestries and Jouffret, 2002) and conducted by the French technical institute
in charge of references for oilseed crops and grain legumes (namely Terres Inovia). While this testing is
conducted yearly, data is not in a readily usable format, and a major effort is needed to gather climate
and soil data relevant to the tested locations. Here, we reused a dataset fully described in Casadebaig et
al. (2016a), and summarized its main characteristics below. The target population represented by this
dataset is sunflower cropping area in France with current recommended management.

Trials were conducted in 52 locations during one year (2009). Locations concentrating the most trials
represented about 75 % of the cultivated sunflower area in France, i.e. Poitou-Charentes (16 trials), Centre
(9), Midi-Pyrénées (8) and Pays de Loire (7) regions. The network was split in three geographical zones,
matching the operational areas of the technical institute and referred to as South (South and South-West
France), West (Center and West France), and East (North and East France). At each location, one to four
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variety trials were conducted (differing by maturity group or fatty acid composition - oleic vs linoleic), for
a total of 82 trials performed over the network. Only the locations that could be reasonably described
(nearby weather station, sufficient information on soil depth, reliable information on crop management)
were kept in the dataset (82 out of 99 trials in the MET). Furthermore, only genotypes with data from
at least 10 trials were retained (28 genotypes). In each trial, grain yield (t.ha−1, 0% humidity) and oil
concentration (%, 0% humidity) were measured. Overall, the data represent 628 average plots (averaged
over 3-4 replicates per genotypes × location modality)

SUNFLO crop model description

SUNFLO is a process-based simulation model for sunflower that was developed to simulate grain yield and
oil concentration as a function of time, environment (soil and climate), management practices and genetic
diversity (Casadebaig et al., 2011; Lecoeur et al., 2011). Predictions with the model are restricted to
attainable yield (Van Ittersum and Rabbinge, 1997): only the main limiting abiotic factors (temperature,
light, water and nitrogen) are included in the algorithm.

The model simulates the main soil and plant functions: root growth, soil water and nitrogen dynamics,
plant transpiration and nitrogen uptake, leaf expansion and senescence, and biomass accumulation. The
proportion of biomass allocated to seeds (harvest index) and seed oil concentration are predicted with
linear models based on variables simulated by the process-based model. Globally, the SUNFLO crop
model has about 50 equations and 64 parameters split in 33 species parameters, 10 genotype-dependent,
and 21 environment-related. A report that summarizes the equations and parameters used in the model
is available as supplementary information in Picheny et al. (2017).

The values of the genotype-dependent parameters were obtained by measuring the value of the corre-
sponding 10 phenotypic traits in dedicated field platforms and controlled conditions (table 1). Our aim
was to measure potential trait values, so different environmental conditions were targeted depending
on the set of traits: field non-limiting conditions (deep soil) for phenological and architectural traits,
field pre-anthesis limiting conditions (shallow soil) for allocation traits, and a range of controlled water
deficits (greenhouse) for response traits. For field experiments, sunflower hybrids were phenotyped in
ten trials (two locations, five years: 2008-2012), using randomized complete block designs with three
repetitions of 30 m2 plots (6-7 plant m-2), see Debaeke et al. (2010) and Casadebaig et al. (2016a)
for trait measurement protocols. For controlled conditions, hybrids were phenotyped in 10 liters pots,
during six greenhouse experiments to determine the response of leaf expansion and transpiration at the
plant scale after stopping watering and letting the soil progressively dry (dry-down design). We used
randomized complete block designs with two water treatments (control, stress) and six repetitions (7 pots
m-2), see Casadebaig et al. (2008) for measurement protocol.

Table 1: Description and variation range for genotype-dependent parameters of
the SUNFLO model. The maximum and minimum values reported represent the genotypic
variability observed among phenotyped sunflower cultivars. Phenological traits were measured
on the whole microplot (50% of the population required to reach the stage). Architectural
traits were measured of 5 plants per microplot. Potential harvest index was estimated on 10
plants per plot, as the ratio of seed to shoot biomass, including senescent organs. Potential
seed oil content was determined as the 9th decile of the distribution of oil concentration values
measured in national networks for cultivar evaluation. Protocols for trait measurement are
detailed in Casadebaig et al. (2016a).

Function Name Description Unit Min Max

Phenology TDF1Temperature sum from emergence to the beginning of
flowering

Cd 744.25 906.60

Phenology TDM3Temperature sum from emergence to seed physiological
maturity

Cd 1460.80 2054.90

Architecture TLN Potential number of leaves at flowering leaf 22.20 36.67
Architecture LLH Potential rank of the plant largest leaf at flowering leaf 12.30 23.20
Architecture LLS Potential area of the plant largest leaf at flowering cm−2 139.49 670.00
Architecture K Light extinction coefficient during vegetative growth - 0.78 1.00
Response LE Threshold for leaf expansion response to water stress - -15.57 -2.15
Response TR Threshold for stomatal conductance response to water

stress
- -14.21 -5.51
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Function Name Description Unit Min Max

Allocation HI Potential harvest index - 0.25 0.51
Allocation OC Potential seed oil content % 47.77 62.30

Calibration process

Calibration was applied to the two output variables of the simulation model of major importance, namely
crop grain yield and grain oil concentration.

First, the original model was run, and the model residuals were calculated. The model residuals are defined
as yi − f(Xi; θ) where yi is the measured value for environment i, f(Xi; θ) is the corresponding simulated
result which depends on the input variables Xi and on the parameters θ obtained by phenotyping. The
second step is to fit an empirical correction to the residuals, separately for each genotype.

In a first correction method (the delta method), the average of the residuals was calculated, i.e. the bias
correction across environments, noted â. The corrected model is f(Xi; θ) + â. In the second method (the
linear method), the models a+ bZi were fit to the residuals, where Zi is one from a set of candidate input
variables. The input variable which gave the smallest mean squared error (MSE), Zs was selected by
comparing regression models. The model with linear correction is then f(Xi; θ) + â+ b̂Zsi where â and b̂
are the estimated regression coefficients.

A large number of input variables could be used for this empirical correction if we consider combinations
of measured climatic variables by key crop phenological stages. Our proposal was to restrict this choice to
a smaller number of candidates to limit selection bias. We therefore focused on variables readily available
in climate datasets and representing the major abiotic factors known to affect sunflower growth and
development. The four candidate input variables considered for the empirical correction are shown in
table 2. They represent variables related to water (total precipitation or average water stress), radiation
and temperature. In each case, a sum over the growing season, from sowing to maturity as simulated
by SUNFLO, was used. For water deficit, the main abiotic stress in sunflower, we considered using a
variable simulated by the model which was previously showed strong relation to observed yield (Mangin
et al., 2017).

Table 2. Candidate variables for fitting SUNFLO residuals. Sums are over the
growing season, from sowing to maturity as simulated by SUNFLO.

label factor description

Precipitation water Sum of precipitations
Radiation light Sum of photosynthetically active radiation
Temperature temperature Sum of days with mean temperature less than 20 °C
Water deficit water Sum of days with simulated water deficit

Evaluation of the calibration process

We used classical goodness-of-fit metrics between simulations (x) and observations (y). The first is mean-
squared-error (MSE = 1

n

∑n
i=1(yi − xi)2), or root-mean-squared-error (RMSE) and the decomposition of

MSE into a sum of three components (Kobayashi and Salam, 2000): squared bias (SB = ( 1
n

∑n
i=1(yi −

xi))2), a term which measures the difference in spread between the observed and simulated values
(Squared Difference between Standard Deviations, SDSD = SDx − SDy), and a term which depends
on the correlation of measured and simulated values and so measures how well the simulated values
track the variability in the observations (Lack of Correlation weighted by the Standard deviations,
LCS = 2 · SDx · SDy · (1 − r)).

Five-fold cross validation was used to evaluate the predictive accuracy of the corrected model. For each
genotype, the data points were separated into five approximately equal parts (folds). Each fold in turn
was designated the evaluation data, the remaining folds serving as training data. The linear correction,
including the choice of the input variable for the empirical correction, was calculated using the training
data and model prediction error was evaluated on the evaluation data. The procedure was repeated five

5

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 2, 2019. ; https://doi.org/10.1101/605220doi: bioRxiv preprint 

https://doi.org/10.1101/605220
http://creativecommons.org/licenses/by/4.0/


times, so that each fold served once as evaluation data. In this way, each data point appeared exactly
once in the evaluation data. The reported measures of predictive accuracy are averages over the five
evaluation data sets.

Software and data processing

Experimental and simulated data were processed with the R software version 3.5.1 (R Core Team, 2018)
with R packages dplyr (data processing, Wickham et al., 2018), rsample (resampling, Kuhn et al., 2019),
ggplot2 (visualization, Wickham, 2016), and knitr (reporting, Xie, 2015). The source code for the SUNFLO
simulation model is available on INRA software repository [https://forgemia.inra.fr/record/sunflo.git].
The INRA VLE-RECORD software environment (Quesnel et al., 2009; Bergez et al., 2013) was used as
simulation platform.

Results

Environment-related input variables and relation to residuals

Figure 1 displays the variability in environment variables, over the 52 locations of the MET in 2009.
Distributions of these variables tend to be bimodal, which can be explained by the spatial structure of
the network, designed for testing late maturing cultivars in drought-prone locations (e.g. South-West of
France), while early maturing cultivars were tested in colder and more humid environments. Because of
this spatial variability most variables displayed a strong coefficient of variation (∼ 35% for temperature
and precipitation, ∼ 60% for water deficit). Radiation showed lesser variability (∼ 7%).
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Figure 1. Distribution of selected environment-related variables in the network
of trials. Each panel displays the histogram of selected environment-related variables : tem-
perature (days with air temperature less than 20°C), water deficit (days with photosynthesis-
limiting water deficit), radiation (sum of photosynthetically active radiation), and water (sum
of precipitation). All sums are done over the growing season, from sowing to maturity as
simulated by SUNFLO.

The regressions between the candidate variables and model residuals are presented in figure 2. Each
panel only shows those genotypes for which the indicated candidate variable was chosen. Supplementary
figure S1 illustrates these regressions in more detail for a subset of the dataset. Precipitation was the
most-often chosen input to predict yield residuals (70 % of the population of genotypes) and temperature
was most-often chosen for oil concentration residuals (55 % of the genotypes). For yield residuals related
to precipitation, mean Pearson’s coefficient of correlation was 0.44 (ranging from -0.22 to -0.63). For oil
concentration related to temperature, mean Pearson’s coefficient of correlation was –0.33 (ranging from
-0.12 to -0.58). In two cases, a candidate input variable was not chosen for any genotype. Water deficit
was not useful to explain grain yield residuals nor was radiation for oil concentration residuals.
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Figure 2. Linear relations between simulation model residuals and chosen
environment-related variables. The panels display linear models fit to SUNFLO residuals
(blue lines). Each line corresponds to one genotype. In each panel, data are only shown for
those genotypes for which the indicated input variable gave the best fit. Output variables
(Grain yield, oil concentration) are displayed in rows and environment-related variables are
displayed in columns.

Effect of empirical correction

The SUNFLO model with parameter values based on phenotyping, before any correction, has an average
relative RMSE of 18% (0.63 t/ha) for yield and 5% (2.7%) for oil content (figure 3). The initial model
accuracy on this dataset was slightly lesser than previously reported studies in Argentina or Spain (8-15%,
Villalobos et al., 1996 ; Pereyra-Irujo and Aguirrezabal, 2007) or France (15%, Casadebaig et al., 2011).
Even if the model correctly simulated phenotypic plasticity on this dataset and enabled applications
for cultivar recommendation (Casadebaig et al., 2016a), it is clearly of interest to try to improve model
predictions.

We analyzed how the two empirical correction methods that we tested impacted the predicted values for
grain yield and oil concentration (figure 3). Prediction quality was improved by the empirical correction
process for all variables and methods, with the best improvement for the linear method. For grain yield
correction, bias was essentially removed by the calibration methods and the linear regression further
improved the predictions, particularly for the drought-prone cropping conditions (i.e. South zone in
figure 3). This improvement was less important for oil concentration correction, with little additional
improvement from the linear correction compared to the delta method. The model capacity to rank
cultivars was also improved by empirical corrections: the Kendall’s τ improved from 0.36 to 0.46 for grain
yield and from 0.25 to 0.34 for oil concentration.
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Figure 3. Observed vs predicted values after empirical correction. All genotypes
are shown. Output variables are displayed in rows. The columns are the uncorrected model,
the model corrected using just the average bias (delta method) and the model corrected using
a linear function of the best input environmental variable (the linear method). The results
are for cross validation.

We decomposed the mean-squared-error (MSE) into three error metrics (Kobayashi and Salam, 2000) to
further analyse how each component was impacted by the calibration method (figure 4 and table 2).

About two thirds of MSE for yield for the initial model is due to the LCS term, which measures how well
the simulated values track changes in the observations. About one third is from squared bias. A constant
term in the linear correction will always eliminate bias exactly for the training data (delta). Most of that
reduction still holds for prediction (as evidenced by the cross validation results). Adding an explanatory
variable to the linear regression leads in addition to reduction in the LCS term, reducing it by about 34%
for prediction (49 % in adjustment). The SDSD term, which measures the difference in the spread of the
simulated values compared to the spread of the observations, is already very small for the initial model
and remains small after correction.

The linear regression correction also eliminates the bias for oil concentration, both for the training data
and for prediction. However, the squared bias is only 12% of MSE for the initial model, and so eliminating
bias is relatively less effective for oil concentration than for yield. LCS is reduced by 17% by the linear
regression correction, according to cross validation. Similar to yield, the SDSD term for oil concentration
is very small initially and remains small.
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Figure 4. Components of mean-squared-error of prediction according to calibra-
tion methods. Results (bottom up) for the initial SUNFLO crop model (initial), after
correction for just bias based on all the data (delta_all) and as estimated by cross validation
(delta_cv), and after correction with the linear model based on all the data (linear_all) or
estimated using cross validation (linear_cv).

Table 3. Components and relative mean-squared-error reduction after calibra-
tion. MSE and its components for grain yield (GY) or oil concentration (OC). The total
number of observations (genotype × year combinations) is indicated in the n column, while
the range of observations per genotype is indicated in the column n_g. The column criteria
is MSE or one of the three components that add up to MSE. Results are for the initial
SUNFLO model, after correction with the linear model based on all the data or estimated
using cross validation. Relative differences (computed as (corrected−initial)/initial) between
the corrected and initial models are shown in the relative_all and relative_cv columns.

variable n n_g criteria initial linear_all linear_cv relative_all relative_cv
GY 614 [16; 61] MSE 0.397 0.150 0.184 -0.623 -0.536
GY 614 [16; 61] SB 0.140 0.000 0.000 -1.000 -1.000
GY 614 [16; 61] LCS 0.235 0.120 0.156 -0.487 -0.337
GY 614 [16; 61] SDSD 0.022 0.029 0.028 0.339 0.303
OC 570 [16; 49] MSE 7.160 4.412 5.285 -0.384 -0.262
OC 570 [16; 49] SB 0.840 0.000 0.000 -1.000 -1.000
OC 570 [16; 49] LCS 6.272 4.269 5.189 -0.319 -0.173
OC 570 [16; 49] SDSD 0.047 0.143 0.096 2.025 1.029

To investigate the sensitivity of our method to the number of data points, we analyzed how the correction
efficiency (computed as the relative MSE reduction for each genotype) was impacted by the number of
observations (i.e. environments) available for each genotype. The number of observations per genotype
had a weak effect on the correction efficiency, with p-values for the hypothesis that there is no effect of
0.724 and 0.254 respectively for grain yield and oil concentration (supplementary figure S2).

Discussion

The basic underlying hypothesis here is that there are no universally best parameter values for crop
models. The best parameter values are somewhat different, depending on the target population. This
is because models are not perfect; the parameter values compensate to some extent for inadequacies or
errors in the model, and the required compensation depends on the target population. That is the reason
that models need to be re-calibrated for different target populations. A statistical basis for this argument
is given in Wallach et al. (2011).

The calibration strategy that is proposed here for the SUNFLO model is adapted to this situation. This
is a strategy to improve the model for a particular target population. First, a standard protocol of
phenotyping is used to estimate the genotype-dependent model parameters. It is expected, and found
experimentally, that these parameters give fairly good model predictions for a range of environments.
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However, it is also expected that one can do better for a particular target environment by adapting
the model to that specific environment. Thus the second stage of our strategy is to use a simple linear
regression correction to adapt the model to a specific target population for which we have data. We note
that both the phenotyping approach here and the second stage regression correction are for a specific
genotype. Unlike gene-based models, this is not a methodology for extrapolating to new genotypes.

The strategy that is proposed is general; it can be used with the SUNFLO model whenever there is
field data available, and it is specifically designed to be very easy to implement. However, the specific
correction that is obtained here is not meant to be of universal validity. It is specifically meant to improve
model predictions for the target population that provided the data here. A different correction would be
required for a new set of data, from a different target environment. Since the correction is very simple,
based on linear regression, it is quite easy to use cross validation to verify that the correction does improve
predictions for the target population.

Usefulness of an empirical correction

Our results show that the empirical correction we propose does provide a moderate improvement to
model prediction, reducing MSE on the average over genotypes by 54% for prediction of yield and by
26% for prediction of oil content. This is done by making use of available variety testing data. To date,
these data have been used simply to evaluate the SUNFLO model. The approach here shows how these
data can be used for improving predictions, without fundamentally changing the initial model. The linear
regression correction approach here is analogous to post processing for climate models, where simple
statistical corrections are applied to GCMs, rather than tampering with the model parameters, to improve
agreement with local weather data (Mendoza et al., 2015).

The effectiveness of the linear regression correction depends on the nature of the errors for the initial
model. To the extent that bias is a major contribution to MSE of the initial model, the linear correction
should be very effective since the constant term removes bias exactly for the training data. The results
here show that adding a correction based on an explanatory variable makes the correction more effective
by reducing the contribution of the LCS term, which is related to the correlation of the observed and
simulated values, though it doesn’t completely eliminate the LCS contribution to MSE here. The results
give no indication of whether the SDSD contribution to MSE, which measures the difference in variability
among observed values compared to simulated values, will be effectively reduced, since this term plays
only a negligible role here. While the prediction of absolute values and bias correction are important for
applications in agronomy, the empirical corrections also improved the ranking of cultivars, which might
be a more worthwhile model capacity for plant breeding.

In the absence of data to modify the model to account for causal effects on yield, the post processing
method could be effective to expand the applicability of the model at reasonable cost. For example,
on tomato in Florida, Messina et al. (2006) used a regression between model residuals and prices to
calibrate their simulation model. The estimated parameters could thus be useful for a limited period and
geographies.

The linear regression correction is clearly empirical. It is not meant as a method of improving the
original model and original parameters. However, because the linear regression correction is based on
relationships between simulation residuals and environment-variables it gives useful information that
could help improve the initial model. The comparison of the original model and parameters with data, as
always with model evaluation, gives information as to the level of model error. The procedure here goes a
step further, and provides a systematic way of examining model residuals. Specifically, it is suggested to
examine the residuals as a function of environmental variables likely to have an important impact on the
system. These will not in general be the same variables as in the model, but rather more global variables.
Here for example total rainfall is one of the variables considered for the regression correction, whereas the
model depends on daily rainfall and daily evapotranspiration. The correction does not directly indicate
how the model could be improved, but it does give indications as to possible problems.

In the present study, in most cases a correction related to precipitation improved the prediction of grain
yield. Simulation error was better explained by a simple climate variable (rainfall) than a model state
variable (water deficit). When focusing on the relation between observed yield (rather than residuals)
and water deficit, we previously showed that model state variables were better predictors than climate
variables (Mangin et al., 2017). For example, as seen in figure 1 the model tends to under predict
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grain yield (positive residuals) for low rainfall situations while the predictions are closer to observations
(slightly negative residuals) for high rainfall environments. In this case, these observations suggest that
while water deficit is accounted for (not correlated to simulation residuals but correlated to grain yield),
some processes associated to rainfall are lacking in the SUNFLO model. Overestimation in high rainfall
conditions could be related to disease development (e.g sclerotinia, phomopsis stem canker), usually
occurring in wetter environments. Another possible explanation is that there are problems in estimation
of soil water holding capacity, which has a greater impact in low rainfall environments than when more
frequent rain will compensate for a poor soil water capacity estimation (indicated by lower residuals in
high rainfall environments).

Comparison with calibration of genotype-dependent parameters

A more common way of adjusting a crop model to data than the linear regression correction here is to
start from some default parameter values and then to modify them to better fit the data. There is a
large literature on crop model calibration done by modifying the parameters, and a large diversity of
approaches (Seidel et al., 2018). Compared to linear regression, crop model calibration poses practical
difficulties. Numerical problems arise because models are generally non continuous as functions of the
parameters (Liu et al., 2018). Software difficulties arise in coupling a crop model to algorithms that
search the parameter space. On the other hand, fitting a linear regression equation to model residuals is
very simple, and execution time is not a problem.

More fundamentally, it has been argued that the calibrated parameter values of crop models are, at least
to some extent, correcting for errors throughout the model, and that for different target populations,
different values would be needed (Wallach et al., 2011). Therefore, at least to some extent, adjusting the
parameters of the initial model to field data is not giving additional information about true phenotypic
response, but also simply providing an empirical correction. Furthermore, there is some evidence that
the major gain from crop model calibration is reduction in bias (Guillaume et al., 2011). The approach
here on the other hand keeps the original, meaningful values of the parameters and is guaranteed to
eliminate bias completely for the training data and robustly reducing it in test data. In addition, our
linear regression correction is giving information on the causes of model error, whereas it is very difficult
to interpret the results of modifying the initial parameter values.

Possible improvements

The approach here uses a single environmental variable in the linear correction, chosen from among a
small set of variables that are known to have a strong effect on yield and oil concentration. It is important
to use knowledge of the crop to limit the number of possible input variables. With very many possible
variables there is a high risk of selection bias, where random error rather than true correlation determines
the choice of explanatory variable (Winship and Mare, 1992). When we tested this hypothesis on our
dataset, goodness-of-fit was improved by allowing multiple explanatory variables, but prediction accuracy
as evaluated by cross validation was decreased (figure S3). We assume that the tested linear models
contained more parameters than can be justified by the data (overfitting). However, with more data,
more explanatory variables could be envisioned.

A very promising improvement of the approach here would be to use a random parameter model. In this
study, each genotype was treated separately. This has the disadvantage of limiting the available data
for each correction to only the data for that genotype. In fact, it seems reasonable to suppose that the
corrections for different genotypes are somewhat similar. That could be taken into account by using a
model that treats the parameters of the linear regression as random variables, with some distribution,
and the parameters for individual genotypes as being drawn from that distribution. This is known as
“borrowing strength” (Steenbergen and Jones, 2002) and the effectiveness will depend on the number
of data points available for each individual and how similar the regressions are between individuals. A
limiting case of borrowing strength would be the case where no data are available for some genotypes. In
that case, one could apply an empirical correction that uses the mean values of the parameters obtained
for the available genotypes.

More generally, we argue that both process-based and data-based models are relevant tools to predict
phenotypic plasticity. For exemple the function of the process-based model could be to simulate variables
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that reduce the dimension of climate data (multiple time-series) while accounting for dynamic plant-
environment interactions (e.g. Messina et al., 2018, in the context of genomic prediction). In a second
step, because field data at a large scale are available, data-based models might be relevant to predict
complex traits (yield, quality, allocation) without having to explicitly model the related physiological
processes, and by accounting for new limiting factors (e.g. the empirical relation between precipitation
and yield probably accounts for biotic pressure).

Conclusions

We propose a hybrid method for adapting a crop model to new genotypes. We suggest that the genotype-
dependent parameters of the model could be obtained by phenotyping (or gene-based modeling). Then
field data, especially variety trials, could be used to provide a simple empirical correction to the model.
This approach combines the advantages of phenotyping, namely that the genotype-specific parameters
have a clear meaning and are comparable between genotypes, and the advantages of fitting the model to
field data, namely that the corrected model is adapted to a specific target population. It has the advantage
of being very simple to apply, and furthermore gives useful information as to which environmental variables
are not fully accounted for in the initial model. In this study, the empirical correction reduced MSE on
the average by 54% for prediction of yield and by 26% for prediction of oil content. While the causal
links are not fully understood and therefore included in the simulation model, this path could help to
make crop models a part of broader and improved prediction models.
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Figure S1. Linear regression of simulation model residuals versus selected
environment-related variables. The panels display simulation model residuals as a linear
function of accumulated precipitation, for each genotype with more than 10 observations in
the trial network (blue lines). This figure shows the individual genotypes that are shown
together in the upper left panel in figure 2.
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Figure S2. Efficiency of the calibration process as a function of the number of data
points per genotype The efficiency of the calibration process is calculated as the relative
reduction in prediction error for each genotype ((MSEcalibrated −MSEinitial)/MSEinitial).
Regression line is indicated in blue and uncertainty interval in grey.
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Figure S3. Components of mean-squared-error of prediction for calibration meth-
ods based on single or multiple variables. The decomposition of the prediction error is
represented for three calibration options: the uncalibrated simulation model (initial), the cali-
bration method with one explicative variable (linear), and with multiple explicative variables
(ensemble). Three sampling strategies are also represented: using all the data to train the
model (all), k-fold cross-validation (cv_kf ), and monte-carlo cross-validation (cv-mc).
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