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METHODOLOGY

Molecular structures enumeration 
and virtual screening in the chemical space 
with RetroPath2.0
Mathilde Koch1, Thomas Duigou1, Pablo Carbonell2 and Jean‑Loup Faulon1,2,3*

Abstract 

Background: Network generation tools coupled with chemical reaction rules have been mainly developed for 
synthesis planning and more recently for metabolic engineering. Using the same core algorithm, these tools apply a 
set of rules to a source set of compounds, stopping when a sink set of compounds has been produced. When using 
the appropriate sink, source and rules, this core algorithm can be used for a variety of applications beyond those it has 
been developed for.

Results: Here, we showcase the use of the open source workflow RetroPath2.0. First, we mathematically prove that 
we can generate all structural isomers of a molecule using a reduced set of reaction rules. We then use this enumera‑
tion strategy to screen the chemical space around a set of monomers and predict their glass transition temperatures, 
as well as around aminoglycosides to search structures maximizing antibacterial activity. We also perform a screen‑
ing around aminoglycosides with enzymatic reaction rules to ensure biosynthetic accessibility. We finally use our 
workflow on an E. coli model to complete E. coli metabolome, with novel molecules generated using promiscuous 
enzymatic reaction rules. These novel molecules are searched on the MS spectra of an E. coli cell lysate interfacing our 
workflow with OpenMS through the KNIME Analytics Platform.

Conclusion: We provide an easy to use and modify, modular, and open‑source workflow. We demonstrate its versatil‑
ity through a variety of use cases including molecular structure enumeration, virtual screening in the chemical space, 
and metabolome completion. Because it is open source and freely available on MyExperiment.org, workflow commu‑
nity contributions should likely expand further the features of the tool, even beyond the use cases presented in the 
paper.

Keywords: Scientific workflows, Chemical space, Reaction networks generation, Retrosynthesis, Reaction rules, 
Isomer enumeration
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Background
The number of known chemical reactions is huge, at the 
time this manuscript was written there were ~84 million 
single- and multi-step reactions in the Chemical Abstract 
Service database (CAS) [1]. Yet, many reactions in CAS 
are redundant because the same reactions are applied to 
different reactants. Identifying identical reactions can be 
performed by computing reaction rules. Reaction rules 

represent reactions at the reaction center only. In other 
words, a reaction rule comprises only the substructures 
of the reactants and the products for which the atoms are 
either directly involved in bond rearrangements or are 
deemed to be essential for the reactivity of the reaction 
center. While a set of reaction rules is of course not avail-
able for all known chemical reactions, rules have been 
compiled for focused applications, such as retrosynthesis 
planning [2, 3], the discovery of novel chemical entities in 
medicinal chemistry [4], xenobiotic (including drug) deg-
radation [5], metabolomics [6], and metabolic engineer-
ing [7–10]. Depending on the application, the number 
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of rules varies from less than one hundred to few thou-
sands, but in all cases the number of known reactions per 
application far exceeds the number of rules (there are for 
instance more than 14,000 reactions in metabolic data-
bases such as MetaNetX [11]). There are several ways of 
coding reaction rules (for instance, BE-matrices [12] and 
fingerprints [13]) but most of the time the rules can be 
represented by reaction SMARTS [14], as it is done in the 
current paper.

The purpose of reactions rules is to generate reaction 
networks. The rules can be used in a forward manner to 
find for instance the metabolic degradation products of 
a drug, or in a reverse manner to find the reactions pro-
ducing a desired product from a set of available reac-
tants. In this later usage one produces retrosynthesis 
reaction networks. Several tools have been developed in 
the past to generate (retrosynthesis) reaction networks 
and reviews are available for synthesis planning [2, 3] and 
for metabolic engineering [15]. Disregarding if the rules 
are applied in a forward or reverse manner, network gen-
eration tools are making use of the same core algorithm. 
Starting from a source set of compounds the core algo-
rithm applies the rules in an iterative fashion either a pre-
defined number of times or until a sink set of compounds 
has been produced. At each iteration, the algorithm fires 
the rules on the source set producing new molecular 
structures and determines the new source set of mol-
ecules the rules will be fired upon at the next iteration. 
That set must comprise molecules that have not been 
processed before. Further details on the core algorithm 
and the differences between the various implementa-
tions are provided in Faulon et al. [16] and Delépine et al. 
[17]. In the current paper we make use of an open source 
workflow (RetroPath2.0 [17]), which follows the above 
core algorithm. This workflow is not based on original 
codes but instead was constructed entirely by assembling 
KNIME nodes [18] developed by the cheminformatics 
community (primarily RDKit nodes [19]). RetroPath2.0 is 
the first open source release of a retrosynthesis reaction 
network generation, and its usage in the current paper 
beyond network generation demonstrates its versatility. 

As already mentioned, reaction network generation 
tools coupled with reactions rules have been devel-
oped and used primarily for synthesis planning and 
metabolic engineering, but can they be used to enu-
merate molecules (isomers for instance) and more 
generally to search chemical structures in the chemi-
cal space? 

In principle yes if one can devise reaction rules enabling 
the production of any molecule in the chemical space. 
Such a set of rules necessarily exists for all known mole-
cules (such as those in the CAS database) since they have 

been produced through either natural or synthetic chem-
ical reactions. In practice and as already stated, reac-
tion rules so far developed are application limited. Yet, 
within their respective application fields, specific rules 
have been used to discover novel molecules and reaction 
pathways. Taking experimentally validated examples, the 
rules associated with the ligand-based de novo design 
software DOGS (inSili.com LLC) [4] have enabled the 
production of new chemical entities inhibitors of DAPK3 
(death-associated protein kinase 3) [20], metabolic rules 
for promiscuous enzymes have allowed the discovery of 
novel metabolites in E. coli [21] and have also been used 
to engineer metabolic pathways producing 1,4-butan-
ediol [9] and flavonoids [22].

Going beyond application limited reaction rules, the 
main contribution of the present paper is to propose a 
set of transformation rules that enables the generation of 
any isomer of any given molecule of the chemical space. 
Precisely, we prove the claim that any isomer of any given 
molecule of N atoms, can be reached applying at most 
O(N2) rules.

As illustrations, our transformation rules are used to 
screen the chemical space for structures that are similar 
to a given set of well-known monomers and to search 
aminoglycosides structures maximizing antibacterial 
activities. The compounds produced by our rules are not 
necessarily chemically accessible, since our transforma-
tion rules are not constructed based on chemical synthe-
sis schema. To probe the (bio)synthetic accessibility of 
our solutions, we also perform search in the (bio)chemi-
cal space using enzymatic reaction rules. The enzymatic 
rules are also used to propose novel molecules complet-
ing E. coli metabolic network and for which masses are 
found in cell lysate mass spectra.

All results presented in this paper have been produced 
making use of the open source workflow RetroPath2.0. 
RetroPath2.0 and the associated data are provided as 
Additional file  1 and can be downloaded at MyExperi-
ment.org. The only differences between the various 
usages we have made of the RetroPath2.0 are within (1) 
the set of reaction rules and (2) the way molecules are 
selected at each iteration during the network generation 
process.

Results and discussions
The purpose of this section is to showcase the versatil-
ity of RetroPath2.0 by taking use cases of interest to the 
community. We first propose reaction rules to enumer-
ate isomers (“Isomer enumeration” section), we then use 
the rules to screen in the chemical space structures that 
are similar to some known monomers (“Virtual screen-
ing in the chemical space” section) and compute prop-
erty distribution (Glass transition temperature) in both 
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the Chemical Space and PubChem, we next use a QSAR 
to search aminoglycosides types molecules for which 
antibacterial activity is maximized using both isomer 
transformation rules and enzymatic rules (“Search for 
molecules maximizing biological activities”), and we 
finally use enzymatic rules to find novel metabolites in E. 
coli and annotate the MS spectra of an E. coli cell lysate 
interfacing RetroPath2.0 with OpenMS [23] (“Metabo-
lome completion and metabolomics” section).

Isomer enumeration
Isomer enumeration is a long-standing problem that 
is still under scrutiny [24, 25]. Our intent here is not to 
provide the fastest enumeration algorithm but to dem-
onstrate how RetroPath2.0 can perform that job once 
appropriate reaction rules are provided. However, we 
provide in Additional file  2: Figure S1 a comparison of 
Retropath2.0’s execution time with the OMG and PMG 
software tools [25, 26] specifically dedicated to isomers 
enumeration. Retropath2.0 is found faster than OMG but 
slower than PMG. Thereafter, we outline two approaches 
making use of RetroPath2.0. The first is based on the clas-
sical canonical augmentation algorithm [27] and the sec-
ond consists of iteratively transforming a given molecule 
such that all its isomers are produced. We name this lat-
ter approach isomer transformation. In both cases we 
limit ourselves to structural (constitutional) isomers, as 
there already exist workflows to enumerate stereoisomers 
[28] (Additional file 2: Figure S2).

Canonical augmentation
The principle of canonical augmentation, which is an 
orderly enumeration algorithm, is to grow a molecular 
graph by adding one atom at a time and retaining only 
canonical graphs for the next iteration [27]. The algo-
rithm first proposed by Brendan McKay has been used 
to generate the GDB-17 database of small molecules [29]. 
The original algorithm has also been modified such that 
at each step a bond (not an atom) is added to the growing 
molecules [25]. In the present implementation we use the 
original McKay algorithm [27], consequently, the number 
of iterations is the number of atoms one wishes the mol-
ecule to have. The algorithm can easily be implemented 
into RetroPath2.0 by choosing as a source set a single 
unbonded atom, and a rule set depicting all possible ways 
an atom can be added to a molecular graph (see “Meth-
ods” section for more information). Considering that an 
atom can be added to a growing molecule through one, 
two, or more bonds (depending on its valence), the set 
of reaction rules is straightforward however cumber-
some if one starts to consider all possible atoms types. 
For this reason we limit ourselves to carbon skeleton as 
it is usually done in the first step of isomer enumeration 

algorithm. Figure  1 below depicts the set of rules that 
generate all triangle free carbon skeletons.

We note that rules  R2–R4 will generate cycles since the 
added atom is attached to the growing molecule by 2–4 
four bonds, thus only rule R1 is necessary to grow acyclic 
molecules (alkanes for instance). The Table below pro-
vides the numbers of structural isomers of alkanes found 
up to 18 carbon atoms running RetroPath2.0 with rule 
number 1 in Fig. 1.

Isomer transformation
The isomer canonical augmentation algorithm becomes 
more complex when one starts to consider different atom 
and bond types. To overcome these difficulties the idea of 
the transformation enumeration approach is to start with 
one fully-grown molecule to which one applies all possi-
ble transformations such that all the structural isomers of 
the initial molecule are generated. This approach can be 
implemented in RetroPath2.0 using a hydrogen saturated 
molecule as a source and a reaction rule set enabling to 
transform the molecule while keeping the correct valence 
for each atom. Because atom valences are maintained 
the total number of bonds must remain the same after 
the transformations have taken place. In order to main-
tain the number of bonds constant, for any reaction rule 
the number of bonds created must equal the number of 
bonds deleted.

RetroPath2.0 applies a reaction rule to a given mol-
ecule by first searching all occurrences in the molecule 
of the subgraph representing the reactant (left side of the 

Fig. 1 Reaction rules for canonical augmentation of carbon skel‑
etons. The corresponding reaction SMARTS string is provided for each 
rule
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rule). To this end the labels on the subgraph are removed. 
Then for each occurrence of the unlabeled subgraph in 
the molecule, the labels are restored and the bonding 
patterns on the molecule are changed accordingly. The 
process is illustrated in the Fig. 2 below where it can be 
seen that rules Ra and Rb are identical (i.e. they produce 
the same solutions). In general, two rules Ra = (La, A) and 
Rb = (Lb, B) will produce the same solutions if a one-to-
one mapping π can be found between the labels  La and  Lb 
of the rules such that the set of edges (A) in Ra is trans-
formed by π into the edges (B) of Rb, i.e. π(A) = B.

Claim The 19 rules described in Fig. 3 allow us to gener-
ate all isomers of a given molecule at most 3/4 * (N2 − N) 
iterations, where N is the number of atoms, respecting the 
following constraints: the maximal valence is 4 and there 
cannot be two double bonds on the same atom in a 3 or 4 
membered ring.

Lemma 1 The minimal number of bonds one can change 
is 4 and the 19 rules described in Fig. 3 generate all mini-
mal transformations respecting the following constraints: 

the maximal valence is 4 and there cannot be two double 
bonds on the same atom in a 3 or 4 membered ring.

Proof The minimal transformation one can perform 
consists of deleting one bond and creating another one. 
Since the bond created must be different from the one 
deleted at least three atoms  (A1,  A2,  A3) must be involved. 
Let  a12,  a13, and  a23 be the bond orders between the three 
atoms and let  b12,  b13 and  b23 the bond orders after the 
reaction has taken place. Because the atom valence is 
maintained the following system of equations holds:

(L1) + (L2) – (L3) − > a12 = b12, which implies  a23 = b23 
and  a13 = b13.

It is therefore impossible to proceed to a minimal 
transformation with only 3 bonds involved.

Let us consider 4 atoms. There are 6 possible bonds 
between those atoms. Let us consider that we are 

(1)

(L1)a12 + a13 = b12 + b13

(L2)a12 + a23 = b12 + b23

(L3)a13 + a23 = b13 + b23

Fig. 2 Identical rules. There are two different ways (two different possible matchings for the reactants of the rules) of applying rules Ra and Rb, each 
rule produces molecules  M1 and  M2. The molecules produced by Ra are identical to those produced by Rb because the rules are identical. Ra is iden‑
tical to Rb because when applying the one‑to‑one label mapping π(1, 2 , 3, 4) = 2, 1, 4, 3 on the edges of the Ra one obtains the edges of Rb
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changing 4 bonds, since we aim to find minimal transfor-
mations. Let us call  a13 and  a24 the two fixed bonds, with-
out loss of generality.

Valence conservation (with  b13  =  a13 and  b24  =  a24) 
gives us the following system:

We can notice that  (L1) + (L3) = (L2) + (L4): we there-
fore have a system of 3 equations with 4 unknowns, so we 
can set an unknown and calculate the other solutions.

As we are looking for minimal transformations, we can 
assume that we are changing a bond order by 1 on this 
unknown that we can set. Since valence is conserved, if a 
bond order is increased, then a bond order from the same 
atom has to be decreased. As the problem is perfectly 
symmetrical in all variables at this point, we can thus 
assume without loss of generality (at least one bond has 
to be deleted) that  b12 =  a12 −  1. Then solving the sys-
tem immediately gives us  b14 = a14 + 1,  b23 = a23 + 1 and 
 b34 = a34 − 1. This system can only be solved in our case 
(positive bond orders, no quadruple bonds) if  a14 and  a23 
are either 0, 1 or 2 and  a12 and  a34 are either 1, 2 or 3. This 

(2)

(L1)a12 + a14 = b12 + b14

(L2)a12 + a23 = b12 + b23

(L3)a23 + a34 = b23 + b34

(L4)a14 + a34 = b14 + b34

means that we have at most 81  (34) cases for initial bond 
orders where our isomer problem has a solution. How-
ever, this solution space can be further reduced by prob-
lem symmetry arguments. We can see that the roles of  a12 
and  a34 are symmetrical, as well as the roles of  a23 and  a14.

Let us call  A1 the atom with the highest considered 
sum of bound orders (neglecting the fixed orders  a13 and 
 a24). Therefore, it is such that

(Condition 1): 

(Condition 2): 

a12 +  a14 ≥  a23 +  a34 (higher considered sum of bound 
orders than  A3), is automatically verified when the other 
two are verified.

Condition 1 is not respected when  a23 = 2 and  a14 = 0 
or 1 or when  a23 =  1 and  a14 =  0, without constraints 
on  a12 and  a34: (2 + 1)  * 9 = 27 solutions. For the same 
reason, 27 solutions do not respect condition  2. The 
solutions that do not respect both Conditions  1 and 

a12 + a14 ≥ a12 + a23
(

higher considered sum of

bound orders than A2), or a14 ≥ a23

a12 + a14 ≥ a14 + a34
(

higher considered sum of

bound orders than A4), or a12 ≥ a34

Fig. 3 Isomer transformation rule set. All reactions rules are solutions of system of Eq. (2) and are not identical (see text and Fig. 2 for definition of 
identical rules). Reactions in green move bonds around without creating or deleting cycles. Reactions in blue change bond order by creating or 
deleting at least one cycle. To each reaction corresponds a reverse reaction. The reverse reaction of R1 is R1, for R2 it is R4, for R3: R7, for R5: R5, for R6: 
R8 and the reverse reaction of R9 is R9. The reverse reaction for R10 is R15, for R11, R18, for R12, R19, for R13, R16 and for R14, R17. The bond order  a13 and  a24 
can take any value from 0 to 3. The full list of rules excluding triple bonds can be found in Additional file 2: Figure S2
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2 are (2 +  1)  *  (2 +  1) =  9. By symmetry arguments, 
we therefore reduced the solution space from 81 to 
81 − 27 − 27 + 9 = 36. These 36 reaction rules are pre-
sented in Fig. 4.

We can further reduce the solution space by consid-
ering that the maximum atom valence is 4. The solu-
tions that do not respect this constraint are such that 
 a12 + a14 = 5, so  a12 = 3 and  a14 = 2 (and this automati-
cally verifies Conditions  1 and 2). Since there are no 
constraints on  a23 and  a34, we have 9 such solutions: the 
solution space has been reduced to 36 − 9 = 27 reactions.

One more constraint, imposed by 3D conformation of 
the molecule, is that there cannot be two double bonds 
on the same atom in a 3 or 4 membered ring.

This must be true for our initial molecule as well as for 
the produced molecule. For the initial molecule (as can 
be seen in the 4 black rules under rule 13 in Fig. 4), when 
 a12 =  a14 =  2, since  a34  >  1 (bond whose order will be 
reduced), there is a cycle if  a23 ≠  0. There are therefore 
4 solutions where the initial molecule is invalid: when 
 a12 = a14 = 2, and  a34 is 1 or 2 (smaller than  a12) and  a23 
is 1 or 2.

This must also be true for the produced molecule. 
Two double bonds will be produced around atom 1 with 
 a12 = 3 and  a14 = 1 (this can be seen in the 4 black rules 
under rule 18 in Fig. 4). There will be a cycle if  a34 ≠ 1. 
There are therefore 4 solutions where the produced mol-
ecule is invalid: when  a12 = 3,  a14 = 1, and  a34 is 2 or 3 
and  a23 is 0 or 1 (smaller than  a14).

Since these solutions respect valence constraints and 
problem symmetry, they are not included in the previ-
ous solution space reductions and therefore the solution 
space is reduced to 27 −  8 =  19 solutions. A summary 
table of solution space reduction is given in Additional 
file 3: Table S1. Since we have found 19 different working 
solutions for all the cases we have left, we have proved 
that the minimal number of bonds one can change is 4 
and the 19 rules described in Fig.  3 generate all these 
minimal transformations.

Lemma 2 Let us consider Mb an isomer of Ma. We can 
apply a rule from this set of 19 rules that will reduce the 
sum of absolute order differences between those two mol-
ecules by at least 2 and at most 4.

Proof Let  (aij) be the order of bonds in  Ma,  (bij), j Є [2, 
N], i Є  [1, j −  1], the order of bonds in  Mb, where N is 
the number of atoms in  Ma and  Mb. Since  Mb is differ-
ent from  Ma, we can find i,j such that  aij > bij. By valence 
conservation in atom  Aj, we can find k such that  ajk < bjk, 
and by valence conservation of atom  Ak, we can also 
find l such that  akl > bkl. Therefore, we are considering 4 
atoms and 4 bonds between those atoms, with at least 
3 of their orders changing by 1. According to Lemma 1 
the minimal number of bonds one can change is 4, so 
we will also have to change the bond order between  Ai 
and  Al. We are therefore considering a minimal trans-
formation, so we know thanks to Lemma 1 that we can 

Fig. 4 Rules before solution space reduction due to valence and structure considerations. Reactions in green move bonds around without creat‑
ing or deleting cycles. Reactions in blue change bond order by creating or deleting at least one cycle. Reactions in purple were deleted because 
valence is limited to 4, and reactions in black were deleted because there cannot be two double bonds on the same atom in a 3 or 4 membered 
ring
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apply a rule from our set of rules to generate that trans-
formation. Let us call Ma′ the molecule produced that 
way, and aij′ its bond orders. Let us now calculate the 
sum of orders of Ma′. Then, by applying the rule, we have 
aij′ =  aij −  1 and therefore 

∣

∣

∣
bij − aij′

∣

∣

∣
=

∣

∣bij−aij
∣

∣− 1. For 

the same reason, 
∣

∣bkl − akl′
∣

∣ =
∣

∣bkl − akl
∣

∣− 1. Moreover, 

ajk′ = ajk+1, and since  ajk is smaller than  bjk, we also have 
∣

∣

∣
bjk − ajk′

∣

∣

∣
=
∣

∣bjk − ajk
∣

∣− 1. The only bond we did not 
choose to change is  ali. The order aij′ of the transformed 
bond is either closer to  bli than was  ali, then the differ-
ence of the sum of absolute order differences is reduced 
by 4, or is further from  bli, and this sum is reduced by 2. 
Therefore, if  Ma and  Mb are different, we can apply a rule 
from this set of rules that will decrease the sum of abso-
lute order differences by at least 2 and at most 4.

Lemma 3 Considering Ma and Mb an isomer of Ma, the 
19 rules described in Fig. 3 allow us to transform Ma into Mb 
using at most 3/4*(N2 − N) single transformations, where N 
is the number of atoms, respecting the following constraints: 
the maximal valence is 4 and there cannot be two double 
bonds on the same atom in a 3 or 4 membered ring.

Proof Let us consider  Mb an isomer of  Ma. If the sum 
of absolute order differences is not null, then  Mb is dif-
ferent from  Ma and using Lemma 2, we know we can 
apply a rule that will strictly decrease the sum of abso-
lute order differences. This sum is obviously positive, is 
an integer, and is strictly decreasing each time we apply a 
transformation rule so it will converge to 0 in S/2 trans-
formations at most, where S is the sum of absolute order 
differences between  Ma and  Mb. When this sum is null, 
all bond orders are the same, which means the molecules 
are the same. An upper estimation of the maximum bond 
order difference is obtained when  Ma only has triple 
bonds, which all have to be deleted. In that case, the sum 
of absolute order differences is: S = 3*(N2 − N)/2, where 
N is the number of atoms and (N2 − N)/2 the number of 
defined orders (since  aij =  aji). Therefore, since the sum 
decreases by at least 2, the maximum number of trans-
formations we need to apply is 3*(N2 − N)/4.

Proof of the main claim Given the workings of the algo-
rithm (breadth-first, as explained in “RetroPath2.0 core 
algorithm” section), the number of iterations for generat-
ing all isomers is the number of iterations for generating 
the furthest one in term of bond order difference from 
our starting molecule. Therefore, applying Lemma 3, we 
know the maximum number of iterations of the algo-
rithm is 3 * (N2 − N)/4.

Notice that although the number of iterations of the 
algorithm scales O(N2), the number of transformation 
rules applied (i.e.: single reactions) is proportional to the 
number of isomers.

Corollary 1 The maximum number of iterations to gen-
erate all alkanes is N − 1, where N is the number of car-
bon atoms (hydrogens are not considered here).

Proof Adapting the demonstration of Lemma 3, we 
have to consider the sum of absolute order differences of 
the farthest isomers that can be reached. Since alkanes 
are acyclic, the number of bonds is N − 1 (proven by a 
simple recurrence, the new atom being joined at a single 
point to the chain since the molecule is acyclic). There-
fore, considering all bonds are different in the new mol-
ecule, the sum of absolute order differences is at most 
2(N − 1). Therefore, the maximum number of iterations 
of the algorithm is N − 1.

The isomer transformation algorithm was applied to 
generate all alkanes up to 18 carbon atoms using rule R1 
of Fig. 3, since it is the only rule with only single bonds. 
Results are presented in Table 1, where it can be seen that 
Corollary 1 is verified in practice.

Virtual screening in the chemical space
In this section we used RetroPath2.0 to search all mol-
ecules that are at predefined distances of a given set of 
molecules. Such queries are routinely carried out in large 
chemical databases for drug discovery purposes [31], but 
in the present case we search similar structures in the 
entire chemical space. To perform search in the chemical 
space, we used a source set composed of 158 well-known 
monomers having a molecular weight up to 200 Da. Our 
rule set included the transformations colored green in 
Fig. 3 (i.e. transformation rules where double bonds are 
not transformed into cycles and conversely). For each 
monomer, RetroPath2.0 was iterated until no new iso-
mers were generated. Each generated structures at a Tan-
imoto similarity greater than 0.5 from its corresponding 
monomer were retained (Tanimoto was computed using 
MACCS keys fingerprints [32]).

Next, we wanted to probe if the generated structures 
exhibited interesting properties as far as polymer prop-
erties are concerned. To that end we first developed a 
QSPR model taking properties from [33]. We focused 
on polymer glass transition temperature Tg data [34]. 
The QSPR model was based on a random forest trained 
using RDKit fingerprints descriptors [19]. The obtained 
model had a leave-one-out cross-validation performance 
of  Q2 = 0.75. The model was then applied to predict the 
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Tg for the set of enumerated isomers. Figure 5 compares 
the distribution of predicted Tg values for the enumerated 
isomers with those obtained from isomer structures avail-
able from PubChem. Tg values for enumerated isomers 
appeared evenly distributed around 301.86  ±  25.69  K 
compared with the isomers that were available in 
PubChem (331.66 ± 46.19 K). This shift in the Tg values 
could be explained by the difference in distribution that 
necessarily exists between the isomers that are present in 
PubChem and the total number of enumerated isomers. 
As we lower the Tanimoto threshold, some monomers 
might become underrepresented in terms of isomer avail-
ability in PubChem. Additional file 2: Figure S3 shows the 
distributions of both sets of isomers in function of the 
threshold. The increased ability of selecting polymers with 
Tg above or below room temperature for the enumerated 
set compared with the PubChem isomers is a desirable 
feature, as this parameter will determine the mechanical 
properties of the polymer [35]. In that way, performing a 
virtual screening of the chemical space of isomers of the 
reference monomers opens the possibility to engineering 
applications with improved polymer design.

Moreover, we were interested in determining how 
many of the starting 158 monomers were accessible 
through biosynthesis. Namely, how many of the com-
pounds can be synthesized by engineering a metabolic 

pathway in a chassis organism. This computation can be 
accomplished by RetroPath2.0 by defining all naturally 
produced chemicals as sinks in the workflow and using a 
collection of known enzymatic reaction rules in reversed 
mode. The process has been described in detailed else-
where [17]. Through the application of the rules in a ret-
rosynthetic fashion, it is possible to determine the routes 
that connect the target compounds to the natural precur-
sors. Of the 158 available monomers, using the Retro-
Path2.0 workflow downloaded from MyExperiment.org 
[36], we were able to identify 17 compounds that can be 
naturally synthetized (Fig. 6a). We provide in an archive 
containing the list of pathways for those 17 compounds. 

The QPSR model for Tg was applied to the set of enu-
merated isomers. As shown in Fig.  6b, the resulting set 
provided a good covering of the chemical space sur-
rounding the starting monomer set. Moreover, a sig-
nificant number of enumerated isomers show a high 
predicted Tg value, which may indicate a good candidate 
as a building block replacement for known monomers. 
Interestingly, those isomers that were close to biosyn-
thetic accessible monomers (Tanimoto based on MACCS 
keys fingerprint  >  0.8) have a distribution of predicted 
Tg values that significantly differ from the full set (p 
value < 1e − 12 Welch t-test), with a mean Tg = 352.1 K 
(Tg  =  301.9  K in the full distribution). These close 

Table 1 Number of generated alkane isomers by canonical augmentation algorithm and isomer transformation algo-
rithm

The numbers agree with earlier calculations [30]. For a given number of carbon atoms (N), the canonical augmentation generates all alkanes from 1 to N carbon atoms, 
while the isomer transformation enumeration generates alkanes having only N carbon atoms, one can thus verify that at any given number of carbon atoms N, the 
numbers of structures generated by the canonical augmentation algorithm equals the sum of numbers of isomers generated by the transformation algorithm up to N

No. of carbon atoms No. of structures output by canonical aug-
mentation algorithm

No. of structures output by isomer trans-
formation algorithm

No. of iterations for isomer 
transformation algorithm

1 1 1 1

2 2 1 1

3 3 1 1

4 5 2 2

5 8 3 3

6 13 5 3

7 22 9 4

8 40 18 5

9 75 35 5

10 150 75 6

11 309 159 7

12 664 355 7

13 1466 802 8

14 3324 1858 9

15 7671 4347 9

16 18,030 10,359 10

17 42,924 24,894 10

18 103,447 60,523 10
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isomers to biosynthetically accessible monomers might 
be considered as good candidates for alternative bio-
synthesis since reaching them through biosynthesis may 
require only few modifications of the original catalytic 
route.

Search for molecules maximizing biological activities
In this section we are interested in searching chemical 
structures in the chemical space optimizing biological 
activities. This type of search can be solved using inverse 
QSAR procedures [37]. Inverse QSAR requires to first 
building a QSAR equation predicting activities from 
structure and then either (1) inverting the equation and 
enumerating structures matching a given activity [37] or 
(2) searching in the chemical space structures similar to 
those used to build the QSAR equation [33] but having 
optimized activities. The second approach makes use of 
either deterministic methods such as lattice enumeration 
[38] or stochastic searches.

We propose here to use RetroPath2.0 to solve the 
inverse QSAR problem using a stochastic approach with 
isomer transformation rules and enzymatic rules for bio-
synthetic accessibility. To this end, we selected a dataset 
of 47 aminoglycosides structures for which antibacterial 
activities have been measured using a MIC assay [39]. 
The dataset is composed of natural aminoglycosides 
(gentamicin, tobramycin, neomycin, kanamycin A and 
B, paromomycin, ribostamycin and neamine) to which 
are added synthetic structures built on a neamine scaf-
fold. This dataset has already been used to build a QSAR 
model based on CoMFA analysis leading to a Q2 of 0.6 
for a Leave-One-Out (LOO) procedure [39]. We provide 
in Additional file 1 a QSAR workflow that makes use of 
RDKit fingerprints [19] and random forest as a learner 
leading to a higher Q2 (0.7) for LOO. With that QSAR 
in hand we run RetroPath2.0 with a source set composed 
of the 47 aminoglycosides used in the training set, and 
two different reaction rules sets. The first set is extracted 

Fig. 5 Distributions of predicted  Tg values for enumerated isomers and for isomers found in PubChem. Distribution of predicted polymer glass 
transition temperature Tg for enumerated isomers and for isomers found in Pubchem of a reference set of 158 monomers with a Tanimoto similarity 
greater than 0.5
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from the transforming enumeration rules depicted in 
Fig. 3, the second set is composed of enzymatic reaction 
rules leading to neamine (an aminoglycoside) biosynthe-
sis from glucose. Reaction rules for the second set were 
computed as explained in the method section resulting in 
94 rules specific to the biosynthesis of aminoglycosides.

In both cases, reactions rules were fired on the initial 
source set composed of 47 structures. All rule products 
were ranked according to their predicted activities as cal-
culated by the QSAR and were selected for the next itera-
tion according to a tournament procedure described in 
the methods section which derives from [40]. The Fig. 7a, 
b below gives the top activity and the average population 
activity vs. iteration. The most active structures found by 
each rule set are also drawn in Fig. 7c, d.

We observe in Fig. 7 that the average curve in B is lower 
to the one in A. This is due to the fact that enzymatic 
rules generated a lot of compounds that are structurally 

far from aminoglycoside (i.e.H2O,  NH4+,  O2…). Moreo-
ver, the rules used for A, allow more transformation/
modification, thus enabling to better explore the chemi-
cal space, and ultimately finding more active compounds. 
We note that the structure in Fig. 7c have a slightly better 
predicted activity (pACT = 9.015) than the initial com-
pounds used in the training set, while the structure in 
Fig. 7d have the same predicted activity than gentamicin 
(pACT = 8.867).

Metabolome completion and metabolomics
In this last example we use enzymatic reaction rules in an 
attempt to complete the metabolome of species used in 
biotechnology. We are motivated here by current efforts 
invested to complete the knowledge on the metabolism 
of various organisms [6, 7, 15]. The benefits are numer-
ous and include the identification of relevant biomarkers 
for many diseases; for personalized nutrition advice; and 
also for searching for relevant indicators and metabolites 
of plant and animal stress in agricultural practices and 
breeding programs. Additionally, knowing the metabolic 
space of microbes is an essential step for optimizing met-
abolic engineering and creating synthesis pathways for 
new compounds for industrial applications.

Experimental evidences from metabolomics analyses 
are often informing us that with currently known metab-
olites one cannot cover the ranges of masses found in 
actual samples, and consequently there is a need of com-
pleting the metabolomes of interest. This need is clearly 
seen in the Human Metabolome Database (HMDB) 
where the number of reported masses has recently grown 
from 20,931 in 2013 [41] to 74,461 (at the time this manu-
script was written), while annotated metabolites in meta-
bolic databases are still in the range of 1847 (HumanCyc). 
Despite such a growth in databases, a significant amount 
of spectral peaks remains unassigned. This high frac-
tion of unassigned peaks might be due to several factors 
including isotope, adduct formation, ion fragmentation, 
and multimers. Besides such sources of uncertainty in 
samples, many unassigned peaks should also be due to 
promiscuous activities of enzymes not yet characterized 
because of the lack of an appropriate description of the 
mechanisms of enzyme promiscuity.

To gain insights into those mechanisms enabling prom-
iscuity, reaction rules have been shown to be appropriate 
[21] in particular the rules allowing to focus on the center of 
the reactions. To this end, several enzymatic reaction rules 
have been proposed such as those derived from bond-elec-
tron matrices [42], on the smallest molecular substructure 
changing during transformations [9], or on reaction rules 
that code for variable environments at reaction centers (see 
[7] and “Methods” section). That latter reaction rule system 
codes for changes in atom bonding environments where the 

Fig. 6 a Initial 158 monomers (green big circles) represented in the 
chemical space of chemical descriptors using the two main principal 
components computed from the MACCS fingerprints as axes. Mono‑
mers that can be produced through biosynthesis are represented as 
big circles in red. b Covering of the chemical space generated by the 
574,186 isomers (blue) enumerated for the 158 monomers (green) 
with a Tanimoto similarity greater than 0.5 and associated predicted 
Tg property of the resulting polymer. Virtual monomers are depicted 
as small circles to facilitate visualisation of their distribution around 
the starting monomers
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reaction is taking place and the environment can range from 
including only the atoms participating to the reaction center 
to the entire set of atoms and molecules participating to the 
reaction. The advantage of that latter approach is that the 
size of the environment (named diameter) can be tuned to 
control the combinatorial explosion of possible products.

The degree of plasticity in metabolic networks that is 
uncovered by variable reaction center diameter is actually 
revealing an intrinsic feature of organisms linked to their 
adaptability, i.e. enzyme promiscuity. Promiscuity stands 
for the ability of enzymes to catalyze more than one reac-
tion or to accept more than one substrate, a mechanism 
which can be traced to the evolutionary origins of enzy-
matic functions. Mimicking nature, such enzyme versatil-
ity can provide novel ways for biosynthesizing metabolite 
and even bioproducing non-natural molecule. To that 
end, the variable diameter method has shown itself to be 
especially well-suited for modeling the mechanisms of 

enzyme promiscuity as it has already enabled the experi-
mentally validated discovery of a novel metabolite in E. 
coli and of the promiscuous enzymes producing it [21].

In this study, we make use of RetroPath2.0 to exem-
plify how variable reaction rule diameters can be used 
to complete the metabolome of E. coli. More precisely, 
we used as a source set all the metabolites present in 
E. coli iJO1366 model [43]. We first tested the two rule 
sets aforementioned, a set of about 100 reaction rules 
part of the BNICE framework [42] and a set of 50 reac-
tion rules developed with the Sympheny software [9]. 
The reaction rules coded in the form of SMARTS string 
are provided in Supplementary at MyExperiment.org, 
along with the EC numbers corresponding to the rules. 
While the two rule sets were not developed to code only 
for E. coli reactions, for each EC number there is a cor-
responding enzyme annotated in E. coli so we kept all 
rules in the two sets. We then tested reaction rules with 

Fig. 7 a, b Evolution versus iteration number of the best predicted activity (red) and average population predicted activity (blue) from amongst the 
newly generated structures using a transformation enumeration rules or b enzymatic rules. c, d Selected best structure generated after 500 itera‑
tions using either c transformation enumeration rules or d enzymatic rules
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variable diameters using the procedure described in the 
method section to code for all E. coli metabolic reac-
tions extracted from iJO1366 model. Rules were calcu-
lated for each reaction with diameters ranging from 2 
to 16. Table 2 below provides the number of compound 
generated running RetroPath2.0 for one iteration on 
the metabolites of the iJO1366 model and the rules sets 
mentioned above (see “Methods” section for additional 
details).

Table  2 shows that the number of compounds gener-
ated increases as the diameter decreases. This is consist-
ent with the fact that shorter diameters will accept more 
substrates than higher ones and will thus produce more 
products. Although they were not constructed with 
diameters, the BNICE and Sympheny rule sets gener-
ally correspond to small environments comprising only 
few atoms and bonds around reaction centers, which 
explain why these two systems generate more products 
than high diameter rule sets. Nonetheless, even with high 
diameters, all variable diameter rule sets produce more 
molecules found in E. coli model than the BNICE and 
Sympheny rule sets. This might indicate that the variable 
rule sets correspond to a more accurate coding of meta-
bolic reactions than the other systems.

To further probe the coverage of the various rules sets 
listed in Table 2 we searched if the compounds produced 
could be found in MS spectra. To this end, we down-
loaded MS spectra from Metabolight [44] where masses 
have been measured on E. coli cell extracts. The spectra 
downloaded corresponded to a study aimed at probing 
the dynamics of isotopically labeled molecules (i.e. 13C 
labeled glucose) [45]. Since we are concerned here with 
wild type E. coli metabolome, we considered only the 
spectra where E. coli cells had not yet been exposed to 

labeled glucose (spectra acquired at time t = 0). All com-
pounds generated by our various rules sets were pre-
pared to be read by OpenMS nodes [23] and a workflow 
was written with these nodes to annotate the MS spectra 
peaks (cf. “Methods” section for details).

The results presented in Table 2 show that as the diam-
eter decreases the number of peak assignment increases, 
which is not surprising considering that the number of 
compounds generated increases as well. We observe that 
the Sympheny and BNICE rules sets give results similar 
to those obtained by the D6 rule set, albeit with a higher 
number of annotations per peak.

In all cases the rule sets produced compounds not pre-
sent in the E. coli model but with corresponding masses 
in the MS spectra. Additional file  4: Table S2 give a list 
of 40 such compounds having an identifier in MetaNetX 
[11] and produced by three identical reactions (i.e. reac-
tions having the same substrates and products) generated 
using the Sympheny, BNICE and D6 rule sets. The com-
pounds were produced by 53 reactions, some compounds 
being produced by more than one reaction. We note that 
the 40 compounds have been generated by rule sets for 
which at least one gene in E. coli has been annotated with 
the same corresponding EC number. The 40 compounds 
are thus potential new E. coli metabolites and their pres-
ence should be further verified using for instance MS/MS 
analysis (Additional file 4: Table S2).

Conclusions
In this paper we have presented a general method 
allowing one to explore the chemical space around a 
given molecule, or around a given set of molecules. The 
originality of the method is that the exploration is per-
formed through chemical reactions rules. We have given 

Table 2 Compounds generated by RetroPath2.0 using various reaction rules applied on E. coli iJO1366 model metabo-
lites [43]

All numbers correspond to compounds having different InChIs at the connectivity level

(1) The E. coli model contains 751 compounds (with different connectivity InChIs). The column reports the % of these 751 compounds generated by the different rule 
sets. (2) The MS spectra were downloaded from Metabolight [44] and the OpenMS workflow described in the “Methods” section retrieved a total of 800 distinct peaks. 
The column reports the % of peak assigned to at least one compound generated by the rule sets. (3) The number indicates the diameter

Reaction rule set No. of compounds 
generated

E. coli model 
coverage (1)

MS peaks 
coverage (2)

Median no. of compounds 
per peak

Averaged no. of com-
pounds per peak

E. coli model [43] 751 100.0 12.3 1 1.5

Sympheny [9] 9448 48.2 40.4 3 6.3

BNICE [42] 8421 68.8 45.3 3 5.8

D16 (3) 1230 82.0 23.1 1 2.0

D10 2992 83.6 25.6 1 2.3

D8 5055 84.2 28.1 1 2.7

D6 11,981 84.7 46.6 2 3.1

D4 37,450 86.8 60.6 2 5.7

D2 162,480 91.7 79.9 8 16.9
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a set of rules allowing us to generate any isomer of any 
given molecule of the chemical space. We also provide 
examples making use of reaction rules computed from 
enzymatic reactions. Using rules computed on known 
reactions has a definite advantage regarding the (bio)
synthetic accessibility of the molecule produced, which is 
not necessarily the case for other techniques producing 
molecules de novo [33, 37, 40, 49–53].

Our method has been implemented into RetroPath2.0, 
a workflow running on the KNIME Analytics Platform 
[18]. RetroPath2.0 can easily be used with source mol-
ecules and reaction rules different than those presented 
in the paper. For instance the workflows provided in 
Additional file 1 can be used with the reaction SMARTS 
rules and fragment libraries (as source compounds) of 
the DOGS software (inSili.com LLC [4]) developed for 
de novo drug design, other technique evolving molecules 
toward specific activities or properties [40, 50–52] could 
also be implemented in RetroPath2.0 provided that one 
first codes reaction rules in SMARTS format.

Aside from searching molecules having interesting 
properties and activities RetroPath2.0 can also be used 
to complete metabolic maps by proposing new metabo-
lites biosynthesized through promiscuous enzymes, 
these new metabolites can in turn be used to annotate 
MS spectra and to that end we provide an interface with 
OpenMS [23]. Finally, RetroPath2.0 was originally devel-
oped to enumerate pathways producing a given target 
product from a source set of reactants. While we have 
benchmarked the workflow in the context of metabolic 
engineering, [17] it can also be used for synthesis plan-
ning as long as synthesis reaction rules are available.

Methods
Generating reaction rules
All our reaction rules are represented in the form of reac-
tion SMARTS [14]. Reaction rules used for canonical 
augmentation are provided in Fig. 1 and for isomer trans-
formation in Figs.  3, 4, Additional file  2: Figure S2 and 
Additional file 5: Table S3. Enzymatic reaction rules were 
computed taking enzymatic reactions from MetaNetX 
version 2.0 [11]. To compute rules, we first performed an 
Atom–Atom Mapping (AAM) using the tool developed 
by [46] (Fig. 8a). Next, multiple substrates reactions were 
decomposed into components (panel C and D in Fig. 8). 
There are as many components as there are substrates 
and each component gives the transformation between 
one substrate and the products. Each product must con-
tain at least one atom from the substrate according to the 
AAM. This strategy enforces that only one substrate can 
differ at a time from the substrates of the reference reac-
tion when applying the rule.

The following step consisted in computing reactions 
rules as reaction SMARTS for each component. We did 
it for diameters 2–16 around the reaction center (panels 
C and D in Fig. 8) by removing from the reaction compo-
nents all atoms that were not in the spheres around the 
reaction center atoms.

We extracted more than 24,000 reaction components 
from MetaNetX reactions, each one of those leading to a 
rule at each diameter (from 2 to 16).

We provide in Supplementary at MyExperiment.org a 
subset of 14,300 rules for E. coli metabolism. The rules 
were selected based on the MetaNetX binding to external 
databases and the iJO1366 whole-cell E. coli metabolic 
model [43]. We also provide enzymatic rules enabling the 
biosynthesis of aminoglycosides from Glucose. The reac-
tions were extracted from the map00524 KEGG map [47], 
and rules were computed as above on reactions for which 
a MetaNetX identifier could be retrieved. The resulting 
set comprised 94 rules calculated for each diameter rang-
ing from 2 to 16.

RetroPath2.0 core algorithm
The RetroPath2.0 workflow essentially follows an algo-
rithm proposed by some of us [16, 17] and its workflow 
implementation, which has already been described in 
details [17], is summarized in Fig.  9. We here focus on 
the different usages of RetroPath2.0 for the use cases pro-
vided in “Results and discussions” section.

In all cases the workflow performs the generation of 
structures in a breadth-first way by applying iteratively 
the same procedure. An iteration starts by applying reac-
tion rules to each of the compounds of a source set. For 
each compound, the products are computed using the 
RDKit KNIME nodes one-component or two-component 
reactions [19]. Products are sanitized (removal of struc-
tures having incorrect valence), standardised and dupli-
cates are merged. The set of products will become the 
new source set for the next iteration. The workflow iter-
ates until a predefined number of iterations is reached or 
until the source set is empty.

In the case of isomer augmentation (workflow 
RetroPath2.0-Mods-isomer-augmentation, “Isomer enu-
meration” sections) the initial source set is composed 
of a single carbon atom and the rule used is R1 in Fig. 1, 
since it is the only rule that will produce acyclic mole-
cules. The rule is fired on the source set, and the prod-
ucts become the new source set in the next iteration. The 
workflow is iterated a number of times equal to N − 1, 
where N is the number of atoms one wishes the final 
molecule to have.

In the case of isomer transformation (workflow 
RetroPath2.0-Mods-isomer-transformation, “Isomer 
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enumeration” and “Virtual screening in the chemi-
cal space” section) the initial source set is composed of 
a molecule that is filled with the appropriate number of 
hydrogens using the RDKit KNIME node Add Hs. At 
each iteration rules are fired on the source set and the 
products obtained become the new source set for the 
next iteration. As an additional last step of each iteration, 
products that have already been processed in a previous 
iteration are filtered out before building the next source 
set. This necessitates maintaining a set (named sink) 
comprising all molecules so far generated. All products 
that have already been obtained are removed from the 
product set and the remaining molecules are (1) added 
to the sink set and (2) used as the new source set for the 
next iteration. This avoids applying reactions on the same 
products during subsequent iterations. Disconnected 
structures are removed from the results by filtering out 
any product having several disconnected components 

(according to the SMILES representation). When enu-
merating alkane, disconnected structures represents 
between 50 and 66% (depending of the alkane size) of the 
generated structures before filtering and merging dupli-
cates. To generate the results of Table  1, since we are 
enumerating alkanes (no multiple bonds or cycles), the 
rule to be used is R1 in Fig. 3. To enumerate the isomers 
of the monomers in “Virtual screening in the chemical 
space” section, if we prohibit the transformation of mul-
tiple bonds into cycles and thus keep the number of sin-
gle, double and triple bonds constant, the rules to be used 
are R1, R5 and R9 in Fig. 3 (also found in Additional file 2: 
Figure S2 since the monomers used do not contain triple 
bonds). Since this algorithm can become computationally 
intensive, we also provide an additional workflow (called 
RetroPath2.0-Mods-isomer-transformation-queue) to 
deal with memory management. This workflow illustrates 
how to introduce a FIFO data structure for the source set 

Fig. 8 RetroPath2.0 rules and corresponding SMARTS for reaction 2.6.1.93 at various diameters. a Full reaction 2.6.1.93 with atom mapping. b The 
list of broken bonds (− 1) and bonds formed (+ 1) is given by their atom numbers. c The corresponding SMARTS for the component modelling 
promiscuity on 6′‑Oxo‑paromamine: Substrate + l‑Glutamate = Product + 2‑Oxoglutarate. d The corresponding SMARTS for the component 
modelling promiscuity on l‑Glutamate: Substrate + 6′‑Oxo‑paramamine = Neamine + Product. c, d Rules are encoded as reaction SMARTS and 
characterized by their diameter (∞ purple, 6 blue or 2 green), that is the number of bonds around the reaction center (atoms 19, 20 and 23, 24) 
defining the atoms kept in the rule
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(i.e. queue containing structures upon which rules will 
be fired) and use it for iteratively firing rules on small 
chunks of structures (e.g. chunk of 20 structures), new 
products obtained are then added to the source queue. 
Interestingly, the breadth-first approach for generating 
the structures can be replaced by a depth-first approach 
by replacing the queue (first in, first out structure) by a 
stack (last in, first out structure).”

In the case of inverse-QSAR (workflow RetroPath2.0-
Mods-iQSAR, “Search for molecules maximizing biologi-
cal activities” section), the source set initially comprises 
the molecules used in the training set when building the 
QSAR. At each iteration, one or two molecules are cho-
sen at random from the source set depending on the 
rule set that is being used (one molecule with enzymatic 
reaction rules, two molecules with isomer transforma-
tion rules). Rules are then fired on the selected mole-
cules and an activity is predicted for each product using 
the QSAR equation. The source set is updated retaining 
molecules according to a selection tournament proce-
dure borrowed from [40]. Briefly, the initial source set 
(i.e. the set of structures used at the start of the current 
iteration) is merged with the product set (i.e. the set of 
structures obtained after firing the rules). This merged 
set is then randomly split into 10 subsets and the 10 top 
best structures from each subset are retained according 
to their predicted activity. Finally, all the retained struc-
tures are pooled together to form the updated source set 

to be used at the next iteration. The workflow is iterated a 
(user) predefined number of times.

In the case of E. coli metabolic network completion 
(workflow RetroPath2.0-Mods-metabolomics, “Metab-
olome completion and metabolomics” section), we 
provide three workflows. The first workflow is Retro-
Path2.0, which is fully described in [17] and is similar 
to the isomer transformation one. Here, RetroPath2.0 
produces a list of molecules obtained using E. coli enzy-
matic reaction rules (see “Generating reaction rules” 
section). The second workflow takes as input the prod-
ucts generated by RetroPath2.0, computes the exact 
mass for each product and prepare files to be read by 
OpenMS nodes for MS data peak assignment [23]. The 
last workflow is built with OpenMS nodes, it reads sev-
eral MS data files in mzML format, two lists of adducts 
in positive and negative modes, and the files generated 
by the second workflow (containing RetroPath2.0 gen-
erated products with masses). The workflow searches 
for each compound the corresponding peak in the MS 
spectra. The workflow was parameterized for metabo-
lomics analysis as described in OpenMS manual [48], 
the AccurateMassSearch node was set to negative ion 
mode as the experiment were carried out with an LTQ-
Orbitrap instrument operating in negative FT mode (cf. 
protocols in [44]).

Further details on how to run all the above workflows 
are provided in the Supplementary at MyExperiment.org.

Fig. 9 RetroPath2.0 KNIME workflow. Inner view of the “Core” node where the computation takes place. The “Source, Sink…” and “Rules” nodes 
parse the source, sink and rules input files provided by the user and standardize data so that it can be processed by downstream nodes. Definitions 
for source, sink, and rule sets are provided in the text. The outer loop (“Source” loop) iterates over each source compounds, while the inner loop 
(“Length” loop) allows to iterate the process up to a maximum number of steps predefined by the user. The nodes (1) “FIRE”, (2) “PARSE”, (3) “UPDATE 
SOURCE…” and (4) “BUILD” are sequentially executed at each inner iteration. Respectively, they (1) apply all the rules on source compounds, (2) parse 
and standardize new products, (3) update the lists of source and sink compounds for the next iteration and (4) merge results that will be written by 
the node “Write global results”. Once the maximum number of steps is reached (or no new product is found), the “Compute scope” node identify 
the scope linking each source to the sink compounds, then these results are written by the node “Write per source results”. Only the main nodes 
involved in the process are shown
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