A. A. Abreu, F. Tavares, M. M. Alves, and M. A. Pereira, Boosting dark fermentation with co-cultures of extreme thermophiles for biohythane production from garden waste, Bioresour Technol, vol.219, pp.132-138, 2016.

S. M. Acharya, K. Kundu, and T. R. Sreekrishnan, Improved stability of anaerobic digestion through the use of selective acidogenic culture, J Environ Eng, 2015.

N. Ács, Z. Bagi, G. Rákhely, J. Minárovics, K. Nagy et al., Bioaugmentation of biogas production by a hydrogen-producing bacterium, Bioresour Technol, vol.186, pp.286-293, 2015.

H. Akinosho, K. Yee, D. Close, and A. Ragauskas, The emergence of Clostridium thermocellum as a high utility candidate for consolidated bioprocessing applications. Front Chem 2:66, 2014.

, Appl Microbiol Biotechnol

I. Angelidaki and B. K. Ahring, Anaerobic thermophilic digestion of manure at different ammonia loads: Effect of temperature, Water Res, 1994.

D. H. Ashton, Thermophilic organisms involved in food spoilage: thermophilic anaerobes not producing hydrogen sulfide, J Food Prot, 1981.

G. L. Cao, N. Q. Ren, A. J. Wang, W. Q. Guo, J. F. Xu et al., Effect of lignocellulose-derived inhibitors on growth and hydrogen production by Thermoanaerobacterium thermosaccharolyticum W16, Int J Hydrog Energy, 2010.

Q. Chen, J. Ni, T. Ma, T. Liu, and M. Zheng, Bioaugmentation treatment of municipal wastewater with heterotrophic-aerobic nitrogen removal bacteria in a pilot-scale SBR, Bioresour Technol, 2015.

M. L. Chong, V. Sabaratnam, Y. Shirai, and M. A. Hassan, Biohydrogen production from biomass and industrial wastes by dark fermentation, Int J Hydrogen Energy, vol.34, pp.3277-3287, 2009.

E. Daverio, H. Spanjers, C. Bassani, J. Ligthart, and H. Nieman, Calorimetric investigation of anaerobic digestion: Biomass adaptation and temperature effect, Biotechnol Bioeng, 2003.

P. Dessì, E. Porca, A. M. Lakaniemi, G. Collins, and P. Lens, Temperature control as key factor for optimal biohydrogen production from thermomechanical pulping wastewater, Biochem Eng J, 2018.

P. Dessì, E. Porca, N. R. Waters, A. M. Lakaniemi, G. Collins et al., Thermophilic versus mesophilic dark fermentation in xylose-fed fluidised bed reactors: Biohydrogen production and active microbial community, Int J Hydrog Energy, vol.43, pp.5473-5485, 2018.

I. Dincer, Green methods for hydrogen production, Int J Hydrogen Energy, 2012.

S. I. Gadow, H. Jiang, R. Watanabe, and Y. Y. Li, Effect of temperature and temperature shock on the stability of continuous cellulosic-hydrogen fermentation, Bioresour Technol, vol.142, pp.304-311, 2013.

R. R. Gonzales and S. Kim, Dark fermentative hydrogen production following the sequential dilute acid pretreatment and enzymatic saccharification of rice husk, Int J Hydrog Energy, 2017.

R. K. Goud, O. Sarkar, P. Chiranjeevi, V. Mohan, and S. , Bioaugmentation of potent acidogenic isolates: a strategy for enhancing biohydrogen production at elevated organic load, 2014.

, Bioresour Technol

J. Guo, J. Wang, D. Cui, L. Wang, F. Ma et al., Application of bioaugmentation in the rapid start-up and stable operation of biological processes for municipal wastewater treatment at low temperatures, Bioresour Technol, 2010.

P. C. Hallenbeck and J. R. Benemann, Biological hydrogen production; fundamentals and limiting processes, Int J Hydrogen Energy, pp.1185-1193, 2002.

H. W. Jannasch, R. Huber, S. Belkin, and K. O. Stetter, Thermotoga neapolitana sp. nov. of the extremely thermophilic, eubacterial genus Thermotoga, Arch Microbiol, vol.150, pp.103-104, 1988.

L. Jiang and P. J. Morin, Temperature fluctuation facilitates coexistence of competing species in experimental microbial communities, J Anim Ecol, vol.76, pp.660-668, 2007.

F. Kargi, N. S. Eren, and S. Ozmihci, Bio-hydrogen production from cheese whey powder (CWP) solution: Comparison of thermophilic and mesophilic dark fermentations, Int J Hydrog Energy, 2012.

Y. E. Lee, M. K. Jain, C. Lee, and J. G. Zeikus, Taxonomic distinction of saccharolytic thermophilic anaerobes, Int J Syst Bacteriol, 1993.

H. Lindorfer, R. Braun, and R. Kirchmayr, Self-heating of anaerobic digesters using energy crops, Water Sci Technol, 2006.

B. E. Logan, S. E. Oh, I. S. Kim, and S. Van-ginkel, Biological hydrogen production measured in batch anaerobic respirometers, Environ Sci Technol, vol.36, pp.2530-2535, 2002.

F. Monlau, E. Trably, A. Barakat, J. Hamelin, J. P. Steyer et al., Two-stage alkaline-enzymatic pretreatments to enhance biohydrogen production from sunflower stalks, Environ Sci Technol, 2013.

N. Mtimet, S. Guégan, L. Durand, A. G. Mathot, L. Venaille et al., 0 1 6 ) E f f e c t o f p H o n Thermoanaerobacterium thermosaccharolyticum DSM 571 growth, spore heat resistance and recovery, Food Microbiol, issue.2

T. K. Ng, J. G. Zeikus, R. Escudie, N. Bernet, R. Mangayil et al., Impacts of short-term temperature fluctuations on biohydrogen production and resilience of thermophilic microbial communities, Differential metabolism of cellobiose and glucose by Clostridium thermocellum and Clostridium thermohydrosulfuricum, vol.33, pp.1204-1214, 1982.

S. Pandit, S. Khilari, S. Roy, M. M. Ghangrekar, D. Pradhan et al., Reduction of start-up time through bioaugmentation process in microbial fuel cells using an isolate from dark fermentative spent media fed anode, Water Sci Technol, 2015.

S. S. Pawar and E. Van-niel, Thermophilic biohydrogen production: how far are we?, Appl Microbiol Biotechnol, vol.97, pp.7999-8009, 2013.

Y. Rafrafi, E. Trably, J. Hamelin, E. Latrille, I. Meynial-salles et al., Sub-dominant bacteria as keystone species in microbial communities producing bio-hydrogen, Int J Hydrog Energy, vol.38, pp.4975-4985, 2013.

N. Q. Ren, D. Y. Wang, C. P. Yang, L. Wang, J. L. Xu et al., Selection and isolation of hydrogen-producing fermentative bacteria with high yield and rate and its bioaugmentation process, Int J Hydrog Energy, vol.35, pp.2877-2882, 2010.

L. Sahlström, A review of survival of pathogenic bacteria in organic waste used in biogas plants, Bioresour Technol, vol.87, pp.161-166, 2003.

P. Sharma and U. Melkania, Effect of bioaugmentation on hydrogen production from organic fraction of municipal solid waste, Int J Hydrog Energy, 2018.

H. S. Shin, J. H. Youn, and S. H. Kim, Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis, Int J Hydrog Energy, vol.29, pp.1355-1363, 2004.

P. Sivagurunathan and C. Y. Lin, Enhanced biohydrogen production from beverage wastewater: Process performance during various hydraulic retention times and their microbial insights, 2016.

D. M. Stevenson and P. J. Weimer, Expression of 17 genes in Clostridium thermocellum ATCC 27405 during fermentation of cellulose or cellobiose in continuous culture, Appl Environ Microbiol, 2005.

S. A. Van-ooteghem, A. Jones, D. Van-der-lelie, B. Dong, and D. Mahajan, H 2 production and carbon utilization by Thermotoga neapolitana under anaerobic and microaerobic growth conditions, Biotechnol Lett, vol.26, pp.1223-1232, 2004.

A. L. Vanfossen, M. Verhaart, M. W. Kengen, and R. M. Kelly, Carbohydrate utilization patterns for the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus reveal broad growth substrate preferences, Appl Environ Microbiol, vol.75, pp.7718-7724, 2009.

S. Venkata-mohan, C. Falkentoft, V. Nancharaiah, Y. Sturm, B. Wattiau et al., Bioaugmentation of microbial communities in laboratory and pilot scale sequencing batch biofilm reactors using the TOL plasmid, Bioresour Technol, vol.100, pp.1746-1753, 2009.

K. Venkiteshwaran, K. Milferstedt, J. Hamelin, and D. H. Zitomer, Anaerobic digester bioaugmentation influences quasi steady state performance and microbial community, Water Res, vol.104, pp.128-136, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01608636

P. Vos, G. Garrity, D. Jones, N. R. Krieg, W. Ludwig et al., Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies, The Firmicutes, vol.3, 2009.

A. Wang, N. Ren, Y. Shi, and D. J. Lee, Bioaugmented hydrogen production from microcrystalline cellulose using co-culture-Clostridium acetobutylicum X9 and Ethanoigenens harbinense B49, Int J Hydrog Energy, 2008.

M. Westerholm, S. Isaksson, K. Lindsjö, O. Schnürer, and A. , Microbial community adaptability to altered temperature conditions determines the potential for process optimisation in biogas production, Appl Energy, 2018.

C. M. Wilson, M. Rodriguez, C. M. Johnson, S. L. Martin, T. M. Chu et al., Global transcriptome analysis of Clostridium thermocellum ATCC 27405 during growth on dilute acid pretreated Populus and switchgrass, Biotechnol Biofuels, 2013.

Z. Yang, R. Guo, X. Shi, S. He, L. Wang et al., Bioaugmentation of Hydrogenispora ethanolica LX-B affects hydrogen production through altering indigenous bacterial community structure, Bioresour Technol, vol.211, pp.319-326, 2016.

Z. Yang, R. Guo, X. Xu, L. Wang, and M. Dai, Enhanced methane production via repeated batch bioaugmentation pattern of enriched microbial consortia, Bioresour Technol, 2016.

X. Yu and C. M. Drapcho, Hydrogen production by the hyperthermophilic bacterium Thermotoga neapolitana using agricultural-based carbon and nitrogen sources, Biol Eng Transe Zhang YHP, Lynd LR, 2005.

F. Zhang, Y. Chen, K. Dai, and R. J. Zeng, The chemostat study of metabolic distribution in extreme-thermophilic (70°C) mixed culture fermentation, Appl Microbiol Biotechnol, vol.98, pp.10267-10273, 2014.

H. Zheng, R. J. Zeng, M. C. Duke, C. A. O'sullivan, and W. P. Clarke, Changes in glucose fermentation pathways by an enriched bacterial culture in response to regulated dissolved H 2 concentrations, Biotechnol Bioeng, 2015.

, Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations