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Sustainability of an economy relying on two reproducible
assets

Abstract

The highest utility level that can be sustained in an economy is given by themaximin

value. To be able to use this value for sustainability accounting, the corresponding

maximin problem must be solved. This paper studies the sustainability of an economy

composed of two reproducible assets, each producing one of two consumption goods

which are substitutes in utility. We characterize the maximin path of the economy, and

associated maximin shadow values. We discuss how these shadow values could be used

as accounting prices for development paths that di�er from the maximin trajectory.

The corresponding genuine savings indicator informs on the improvement or decline of

the sustainable level of utility and the prospects of future generations.

Key words: sustainable development; maximin; sustainability accounting; substitutabil-

ity.

JEL Code: O44; Q56.
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1 Introduction

The growing impacts of human activity on the environment have increased concern for

sustainability and call for the de�nition of tools to assess it. To Solow (1993), sustainability

means the ability to support a standard of living for the very long-run, and requires conserv-

ing a �generalized capacity to produce economic well-being,� accounting for all components

of human well-being, including the consumption of manufactured goods, the �ow of services

from the environment, etc. A growing body of work proposes metrics for sustainability

accounting (Neumayer, 2010), among which genuine savings indicators are prominent. Gen-

uine savings measures the evolution of the productive capacities of the economy through net

investment in a comprehensive set of capital stocks.

If the concerns for sustainability come from the hypothesis that society's current deci-

sions are not sustainable, it can hardly be held that observed, market prices can be used

for sustainability accounting. Most of the genuine savings literature is based on the maxi-

mization of a welfare function, which de�nes a value V (X) for any economic state X (vector

of capital stocks). Shadow values ∂V (X)/∂Xi are then used to compute genuine savings

as
∑

i
∂V (X)
∂Xi

dXi

dt
(Asheim, 2007; Dasgupta, 2009).1 Genuine savings then measures the net

investment in the capacity to produce the chosen measure of welfare.

The literature on genuine savings mostly adopts discounted utility as a measure of wel-

fare. While it is the customary measure of intertemporal value in economics, discounted

utility is criticized in the sustainability literature as being inequitable (Heal, 1998; Martinet,

2012). An alternative measure is the maximin value, which is related to �intergenerational

equity� (Solow, 1974) and de�nes the highest egalitarian path that could be implemented

from the current state. This criterion motivated Hartwick's work on nil net investment

(Hartwick, 1977), which is the backbone of genuine savings measures. As an egalitarian

maximin path may be ine�cient (Asheim and Zuber, 2013), an important stream of the lit-

1There are some notable exceptions. Aronsson and Löfgren (1998) study green accounting for imperfect
economies with pollution, focusing on welfare measurement more than on sustainability. Dasgupta, Mäler,
and colleagues (Dasgupta and Mäler, 2000; Arrow et al., 2003) use a general, possibly non-optimal resource
allocation mechanism (ram) instead of maximizing welfare to de�ne genuine savings. As in the optimization
models, the accounting price of each capital stock corresponds to the marginal contribution of that stock to
the value (discounted utility in their case) associated to the trajectory determined by the ram. Integrating
the dynamic path and computing the associated value as a function of all capital stocks can be done only
for simple models with strong assumptions on the ram.

3



V
er

si
on

 p
re

pr
in

t

Comment citer ce document :
Cairns, R. D., Del Campo, S., Martinet, V. (2019). Sustainability of an economy relying on two

reproducible assets. Journal of Economic Dynamics and Control, 101, 145-160. , DOI :
10.1016/j.jedc.2019.02.002

erature, mainly axiomatic, has focused on the de�nition of alternative social welfare functions

(SWF) that encompass both economic e�ciency and intergenerational equity (Chichilnisky,

1996; Alvarez-Cuadrado and Long, 2009; Asheim et al., 2012; Asheim and Zuber, 2013). This

literature tries to overcome impossibility theorems stating that there is no SWF satisfying

both the axiom of strong anonymity and the axiom of strong Pareto e�ciency. A criterion

relaxes either the axiom for e�ciency (e.g., the maximin criterion is fully anonymous but

does not satisfy strong Pareto e�ciency) or the axiom for equity (such as Chichilnisky's

criterion, which replaces anonymity by the axioms of non-dictatorship of the present and

non-dictatorship of the future), or it has to be incomplete (such as overtaking criteria) or

non-constructible.2 This literature raises interesting normative issues. Even if some of the

SWFs it has produced have interesting properties for sustainability accounting, the associ-

ated genuine savings indicators have not been studied yet, to the best of our knowledge.3

We here focus on the maximin.

The maximin value has a clear, positive interpretation in terms of sustainability, as soon

as one de�nes sustainability as the �ability to sustain utility.� This value is the highest level

of utility that can be sustained forever given the current state of the economy (Cairns and

Long, 2006; Cairns, 2011, 2013; Fleurbaey, 2015). It is our measure of sustainability herein.

A genuine savings indicator can be de�ned for maximin, the shadow value of a stock being its

marginal contribution to the maximin value. Net investment accounted using these shadow

values, for any given dynamic path �e�cient or not, and whether or not maximin is the

pursued social objective�, represents the evolution over time of the highest sustainable level

of utility and is interpreted as a measure of sustainability improvement or decline (Cairns and

Martinet, 2014). Computing net maximin investment is thus meaningful for sustainability

accounting as it informs on the e�ect of current decisions on the ability to sustain utility

that is bequeathed to future generations.

The possibility of developing a sustainability accounting system based on maximin values

requires de�ning the various capital stocks' shadow values. As with any other measure of

2See Basu and Mitra (2003); Zame (2007); Asheim (2010); Lauwers (2012), among others.
3A genuine savings indicator can be de�ned for any dynamic, forward-looking welfare function satisfying

the property of independent future (Asheim, 2007). The sustainable recursive social welfare functions char-
acterized by Asheim et al. (2012), and the particular case of sustainable discounted utilitarianism (Asheim
and Mitra, 2010), satisfy this axiom and has been implemented in the DICE integrated assessment model
for the evaluation of climate policies, emphasizing its tractability (Dietz and Asheim, 2012).
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welfare, the shadow values are determined through di�erentiating the corresponding value

function. The computation of maximin shadow values for any actual economy, with all its

various assets, consumption goods, production techniques, etc., is presently out of reach. A

sensible way to proceed is to build up from the few solved maximin problems, and to try

to gain a greater understanding of the economic issues involved, as was done for discounted

utility (Arrow et al., 2003). For the general idea of genuine savings to make sense, it is nec-

essary that there be at least two capital stocks (Hartwick, 1977). We postulate an economy

with two productive sectors which interact only through utility. By solving the maximin

problem for this economy, we provide some insights for the future development of a system

of accounting based on maximin shadow values.

A key constituent of our examination is the question of substitutability. Neumayer (2010)

stresses that substitutability in production as well as in utility plays a central role in the study

of sustainability. The in�uence of substitutability in production on the maximin solution

has been emphasized since the work of Solow (1974) and Dasgupta and Heal (1979), who

study interactions between sectors in the form of a sector extracting a nonrenewable resource

used as an input to a manufacturing sector. Some authors (e.g. Asako, 1980; Stollery, 1998;

d'Autume and Schubert, 2008; d'Autume et al., 2010) study maximin problems with two

substitutes in utility, one of which is a decision variable (consumption) and the other a state

variable (the ambient temperature or the stock of a non-renewable resource). Substitutability

of consumption goods in utility has received less scrutiny but is as important a question for

sustainability as substitutability in production.4

Keeping the economy at a steady state by maintaining current capital stocks has been

proposed as a way to achieve sustainability (Daly, 1974). By solving the maximin problem

for our economy, we show in Section 2 that, whenever the two goods are substitutes and one

of the sectors is more productive at the margin, it is possible to sustain utility at a higher

level than at that steady state, through a higher consumption of the less productive stock

and a lower consumption of the more productive one. The depletion of the less productive

stock is compensated for by investment in the more productive one, in line with Hartwick's

nil net investment rule (Hartwick, 1977; Cairns and Long, 2006). This investment pattern

4Substitutability of consumption goods in utility has been studied in the discounted utilitarian framework
(Quaas et al., 2013; Baumgärtner et al., 2017) and shown to strongly in�uence optimal development paths
and their ability to sustain utility.
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is driven by the shadow values of the stocks, i.e., the sustainability accounting prices. What

is maintained is a general capacity to sustain utility, not levels of particular stocks.

In single-sector models such as the Solow (1956) growth model with capital depreciation

or the simple �shery, stocks that are beyond the golden-rule level or the maximum sustain-

able yield have negative marginal products and are redundant for maximin value (Solow,

1974; Asako, 1980). The maximin shadow values are then nil and of little information for

sustainability accounting (Cairns and Martinet, 2014). It is thus important to identify the

conditions under which such a case occurs. In our framework, stock redundancy arises only

if all technologies have a single productivity peak. Whenever abundant stocks can be used

in the investment pattern to build up a scarce resource, all capital stocks have a positive sus-

tainability accounting value. Stock redundancy is thus less likely to occur in a multi-sector

model with substitutability.

The consequences of our results for sustainability accounting with maximin shadow values

are discussed in Section 3. In particular, we determine two conditions for current decisions

to improve the level of utility that can be sustained. First, current utility has to be lower

than the maximin value. Second, the resource thus freed-up must be invested in order

to get a positive maximin net investment. Llavador et al. (2011) stress that the year 2000

consumption in the USA was lower than the sustainable, maximin value. Such a lower utility

can be consistent with long-run growth as long as investment decisions result in an increase of

the maximin value. Conversely, our results illustrate the possibility that, in multiple capital

good models, ill-considered consumption and investment decisions can result in a decrease

of the sustainable level of utility even though current utility is lower than the sustainable,

maximin level. Our conclusions and prospects for future research are given in Section 4.

2 An economy with two reproducible assets

Consider an economy with two reproducible assets X1 and X2, produced by separate

sectors according to technologies Fi(Xi), i = 1, 2, which depend only on the stock Xi. The

production functions are assumed to be continuous, twice di�erentiable and strictly concave

(F ′′i < 0), and to satisfy Fi(0) = 0 and F ′i (0) < ∞. This last condition ensures that the

marginal productivity of both capital stocks is bounded from above.
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Because many possible technologies attain a maximum for a �nite level of the state

variable, we consider the possibility of production peaks. In the Solow (1956) growth model

with capital decay at a constant rate, output reaches a maximum, called the golden-rule

level, so that marginal net product turns negative for a large capital stock. In the study

of resource economics, to which sustainability is intimately related, the simple �shery has

a maximum natural production level, called the maximum sustainable yield (MSY), and

for larger resource stocks productivity turns downward.5 Such technologies have interesting

features for the study of sustainability, and have been studied in one-sector models (Asheim

and Ekeland, 2016). We characterize these technologies with the following de�nition.

De�nition 1 (Single-peaked technology). A technology Fi(Xi) is single-peaked if there exists

X̄i such that F ′i (Xi) > 0 for Xi < X̄i and F ′i (Xi) < 0 for Xi > X̄i.

The stock X̄i is implicitly de�ned by the condition F ′i
(
X̄i

)
= 0. Capital stock X̄i is

the stock which yields the highest production level (golden-rule level or maximum sustain-

able yield). The usual neoclassical assumption of a strictly increasing production function

(F ′i (Xi) > 0 for all Xi) corresponds to the limiting case X̄i → ∞, that we discuss below.6

Our model can thus represent an economy with two manufactured stocks or two natural

resources without interactions, or one of each.

Production is either consumed (ci) or invested (Ẋi), and capital dynamics are

Ẋi(t) ≡
dXi(t)

dt
= Fi(Xi(t))− ci(t) , i = 1, 2 . (1)

The economy is composed of in�nitely many generations of identical consumers, each

living for an instant in continuous time. They have ordinal preferences over the two goods,

represented by a twice-di�erentiable, strictly quasi-concave utility function U(c1, c2), such

that both goods have a positive marginal utility and are essential in consumption.7 For

convenience, we assume that U(0, 0) = 0 and that U(c1, c2) ≥ 0.

5As we do not include stock dependent harvesting costs, and consider concave production functions, the
model may not be realistic for some resources. Our purpose is to study a stylized economy.

6We consider bounded production, in the sense that limXi→∞ Fi(Xi) = F̄i <∞.
7 Formally, this means that Uci > 0 for i = 1, 2 and limci→0 Uci |U=u =∞. Strict quasi-concavity implies

that marginal rates of substitution are strictly decreasing, a property that is used below in the proofs of
Propositions 4 and 5.
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Maximin value: some preliminary results The maximin value m of a state (X1, X2),

provided that it exists, is the highest level of utility that can be sustained forever from that

state (from any time t ≥ 0):

m(X1, X2) = max
u,c1(·),c2(·)

u , (2)

s.t. (X1(t), X2(t)) = (X1, X2) ;

Ẋi(s) = Fi(Xi(s))− ci(s), i = 1, 2 and

U(c1(s), c2(s)) ≥ u for all s ≥ t. (3)

Herein, the term value refers to maximin value. Below, we omit the time argument in the

expressions where no confusion is possible.

Di�erentiation of the maximin value with respect to time yields current net maximin

investment (Cairns and Martinet, 2014, Lemma 1):

M(X1(t), X2(t), c1(t), c2(t)) =
dm(X1, X2)

dt
=
∂m(X1, X2)

∂X1

Ẋ1 +
∂m(X1, X2)

∂X2

Ẋ2 . (4)

The links between the maximin problem and net investment have been studied since the work

of Hartwick (1977), with recent contributions by Doyen and Martinet (2012) and Fleurbaey

(2015). We shall discuss the links between net maximin investment and sustainability ac-

counting in Section 3.

Before solving the maximin problem for this economy, we establish the following results.

First, we show that the maximin value is bounded from above. With a single-peaked

technology, production is bounded from above by level Fi(X̄i), and so is the sustainable

utility in the single-sector case (Cairns and Martinet, 2014). This is also the case in our

two-sector economy.

Proposition 1 (Bounded maximin value). If each technology has a single peak,8 the maximin

value is bounded from above by m̄ = U
(
F1

(
X̄1

)
, F2

(
X̄2

))
.

8This result holds also for the neoclassical case with bounded productions F̄i = limXi→∞ Fi(Xi) < ∞,
de�ning the limiting upper value m̄ = U(F̄1, F̄2), as well as for the case in which only one technology has a
single peak, with, for example, m̄ = U(F̄1, F2

(
X̄2

)
).
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Proof of Proposition 1. Consider two single-peaked technologies with F ′i (X̄i) = 0, i = 1, 2

and the value m̄ = U
(
F1

(
X̄1

)
, F2

(
X̄2

))
. Assume that the utility level m̄+ ε for some ε > 0

is sustainable. A maximin path sustaining m̄ + ε would have no steady state, as none can

sustain this level. Such a dynamic path cannot have consumption from one stock decreasing

to zero and from the other increasing to in�nity either, as production is bounded from above.

The maximin path would either correspond to a limit cycle or to a back-and-forth along a

curve. Along a limit cycle, there would be a part of the cycle where the two stocks increase

at the same time. This requires c1 < F1(X1) ≤ F1(X̄1) and c2 < F2(X2) ≤ F2(X̄2), which

would imply U(c1, c2) ≤ U(F1(X̄1), F2(X̄2)) ≤ m̄+ ε, a contradiction. For a back-and-forth,

at switching times, both stocks are at a steady state. Here again, m̄+ε cannot be sustained.

The highest sustainable level of utility is m̄.

The maximin value is also �bounded from below� in the following sense.

Lemma 1 (Stationary fallback). For any state (X1, X2), the maximin value is at least equal

to the utility derived from consumption at the corresponding steady state:

m(X1, X2) ≥ U(F1(X1), F2(X2)) .

Proof of Lemma 1. The dynamic path Ẋi = 0 driven by decisions ci = Fi(Xi) is feasible and

yields the constant utility U(F1(X1), F2(X2)). This provides a lower bound for the maximin

value.

Lemma 1 relies on the fact that consuming the whole production, keeping the economy

in a steady state, makes it possible to sustain U(F1(X1), F2(X2)). A dynamic path may,

however, yield a higher sustainable utility.

Lemma 2 (Dynamic maximin path). If the maximin value of a state (X1, X2) is greater

than the utility derived at the steady state, i.e., if m(X1, X2) > U(F1(X1), F2(X2)), then,

along a maximin path starting from that state (i) the consumption of at least one good is

greater than the production of the corresponding stock and (ii) that stock decreases.

Proof of Lemma 2. This is a direct result from Lemma 1 and the dynamics.

9
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The existence of such a dynamic path means that keeping the economy at a steady state

(Daly, 1974) is not the only sustainable option. Solving the maximin problem (2) may

provide a superior path. To do so, we rely on optimal control.

Optimal control Cairns and Long (2006) propose a direct optimal control approach to the

maximin problem.9 We follow the same approach, but detail the way the di�erent optimality

conditions provided in Cairns and Long (2006) are derived from standard optimal control

problems. In their approach, the sustained utility level u is a control parameter to be

optimized.10 The standard trick in control theory is to consider an additional state variable

u(t), with u̇ = 0 and a free initial state u(0).11 An initial value (simply u(0) in our case) is

associated to the optimization problem, which is formulated as follows:

9Another approach would be to study egalitarian and e�cient paths in a competitive economy framework
(see Dixit et al., 1980; Withagen and Asheim, 1998; Mitra, 2002, for example). The two approaches rely
on di�erent formalisms but provide the same insights regarding maximin paths in most cases: whenever
an egalitarian and e�cient path exists, it is the (unique) maximin path. And in most cases, an optimal
control problem can characterize such a path, with the usual correspondence with a decentralized com-
petitive equilibrium. This correspondence was already central in Burmeister and Hammond (1977), who
de�ned necessary conditions for a maximin path using a �Lagrangian� integral, and proved correspondence
with an e�cient path. The two approaches lead, however, to di�erent perspectives on sustainability ac-
counting. The e�ciency pricing approach is used to discuss the signi�cance of Hartwick's investment rule
for sustainability. The maximin approach we use here provides another perspective, focusing on the future
maximin value (Cairns and Martinet, 2014; Fleurbaey, 2015). At each step of the analysis, we will emphasize
correspondences and di�erences between the two approaches.

10Di�erent optimal control approaches have been used to solve maximin problems. For example, Léonard
and Long (1992) propose to maximize the discounted sum of the sustained utility u, i.e., max

∫∞
0
ρe−ρtudt = u

for an arbitrary discount rate ρ. Using a di�erent approach, d'Autume and Schubert (2008) solve an usual

discounted utilitarian program of the form max
∫∞
0
e−ρt U(t)1−1/σ

1−1/σ dt, where σ is an arbitrary intertemporal
elasticity of substitution, and take the limit σ → 0 to get the maximin path.

11See Seierstad and Sydsæter (1987, p.192) and Léonard and Long (1992, p.255).

10
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max {u(0)} (5)

s.t. fi(X, u, c) = Ẋi(t) = Fi(Xi(t))− ci(t), i = 1, 2

f3(X, u, c) = u̇(t) = 0

X1(0)−X0
1 = 0

X2(0)−X0
2 = 0

u(0) ≥ 0

(c1(t), c2(t)) ∈ U = [0;∞)× [0;∞)

(X1(t), X2(t), u(t)) ∈ [0,∞)× [0,∞)× [0, m̄]

g(X, u, c) = U(c1(t), c2(t))− u(t) ≥ 0.

In an interesting problem, both initial stocks are strictly positive (Xi(0) > 0, i = 1, 2);

otherwise, one is back to the single sector problem. Under the condition that both goods are

essential to consumption, and given Lemma 1, we can say that consumption of both goods

is positive (ci > 0, i = 1, 2) at any time along a maximin path. As such, none of the stocks

is exhausted, and we can avoid imposing positivity constraints on the stocks.12 We start by

proving the existence of an optimal solution.

Proposition 2 (Existence). There exists an optimal solution (X∗1 (t), X∗2 (t), u∗(t), c∗1(t), c∗2(t))

to the optimal control problem (5).

Proof of Proposition 2. This problem is a particular case of the very general optimal control

problem presented in Seierstad and Sydsæter (1987, p.390), extended to the in�nite horizon

as in Seierstad and Sydsæter (1987, p.406), with no integral objective (f0 = 0),13 time-

autonomous functional forms, given initial states for (X1, X2), a free initial state for u, free

�nal state for all states variables, no pure-state constraints, and a single mixed constraint.

To prove existence, we refer to Theorem 21 of Chapter 6 in Seierstad and Sydsæter (1987,

12Pure state constraints are di�cult to deal with in optimal control problems. See Seierstad and Sydsæter
(1987, Chapter 5).

13Such a particular case occurs not only for maximin problems, but also for target problems (see, e.g., the
way Takayama, 1974, introduces optimal control) or optimal terminal time problems (see, e.g., Example 2
in Seierstad and Sydsæter, 1987, p. 184).
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p. 406).

The functions f1, f2, f3 and g are continuous. The set of controls U is closed. As (i) U is

convex, (ii) g is quasi-concave in (c1, c2) since U is quasi-concave, and (iii) dynamics f1, f2

and f3 are concave in the controls for all X = (X1, X2, u) ∈ [0,∞)× [0,∞)× [0, m̄], the set

N(X,U) = {(F1(X1)− c1, F2(X2)− c2, 0)|U(c1, c2) ≥ u, (c1, c2) ∈ U)}

is convex for all (X1, X2, u) (See Note 23 in Seierstad and Sydsæter, 1987, p. 403). There-

fore, condition (159) in the Theorem is satis�ed. Moreover, N(X,U) has a closed graph

as a function of the state since the dynamics f1, f2 and f3 are continuous (see Note 24 in

Seierstad and Sydsæter, 1987, p. 403). Therefore, condition (166) in the Theorem is sat-

is�ed. Also, there is an admissible trajectory (X1(t), X2(t), u(t), c1(t), c2(t)), for example

the �stationary state� trajectory de�ned by c1(t) = F1(X0
1 ), c2(t) = F2(X0

2 ) and u(t) =

U(F1(X0
1 ), F2(X0

2 )). Finally, the condition (164) in the Theorem is satis�ed as, for any p 6= 0

and any (X1, X2, u, c1, c2) such that U(c1, c2)−u ≥ 0, we have p.[F1(X1)−c1, F2(X2)−c2, 0]′ ≤
p.[F1(X̄1), F2(X̄2), 0]′+ψ.||(X1, X2, u)||, where φp(t) = p.[F1(X̄1), F2(X̄2), 0]′, a constant, and

ψp(t) = 1 are locally integrable (i.e., integrable on each �nite time interval).14 The Theorem

applies.15

The optimal control problem (5) thus de�nes optimal paths and the associated �nite sus-

tained utility for any initial state (X0
1 , X

0
2 ). Therefore, the following optimal value function

is well-de�ned over the set of possible initial states:

m(X0
1 , X

0
2 ) = sup{u(0)|(X1(t), X2(t), u(t), c1(t), c2(t)) admissible} ≥ 0 (6)

In what follows, we omit superscripts �0� when referring to the value function itself. We

shall assume that the value function m(X1, X2) is di�erentiable.16

14For neoclassical production functions with bounded production but no single-peak, replace Fi(X̄i) by F̄i
in this step of the proof.

15As there is no terminal condition in our problem, the other conditions in the Theorem are not required.
Note that if we had imposed positivity of the capital stocks as a terminal constraint, condition (177a) in the
Theorem would have been satis�ed, as for i = 1, 2, the fi are bounded from above by Fi(X̄i) (or F̄i in the
neoclassical case), a constant. Not having expressed non-negativity constraints for the stocks in the problem
formulation is not an issue.

16See Theorem 9 in Seierstad and Sydsæter (1987, p.213) as well as Seierstad (1982) for a discussion on

12
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Optimal paths characterization The maximum principle can be used to characterize

the necessary conditions that an optimal solution to problem (5) must satisfy. We �rst give

these conditions before discussing when they are useful.17

These necessary conditions are given by Seierstad and Sydsæter (1987, Theorem 9,

p. 381), completed by necessary transversality conditions for free terminal conditions prob-

lems formulated in Seierstad and Sydsæter (1987, Theorem 16, p. 244-245).18 They lead to

the necessary conditions given in Cairns and Long (2006).

Let (X∗1 (t), X∗2 (t), u∗(t), c∗1(t), c∗2(t)) be an optimal solution, and assume that it is piece-

wise continuous. According to the above mentioned Theorems, there exist (i) a number p0

(with p0 = 0 or p0 = 1), (ii) functions µ1(t), µ2(t) and µ3(t) that are the costate variables

associated respectively to stocks X1 and X2, and to the control parameter u, as well as (iii) a

Lagrange multiplier ω(t) associated with the constraint (3) such that, given the Hamiltonian

H(X, u, c, µ) = µ1Ẋ1 + µ2Ẋ2 + µ3u̇ = µ1 (F1(X1)− c1) + µ2 (F2(X2)− c2) , (7)

and the Lagrangian

L(X, u, c, µ, ω) = H(X, c, µ, u) + ω (U(c1, c2)− u) , (8)

the di�erentiability of the optimal value function in control theory. We emphasize that the Hamiltonian (7)
used below is concave and that for non-trivial cases, the shadow values are unique.

17In some cases, the necessary conditions provide no information at all. This is the case when all shadow
values are equal to zero, so that the Hamiltonian vanishes. Usually, (su�cient) constraint quali�cation

conditions are used to rule out this case. For example, a constraint quali�cation of the full rank type (see
Seierstad and Sydsæter, 1987, p. 380) can be used to show that the control variables enter the constraint
functions in an essential way. Unfortunately, for maximin-type problems, as explained in Cairns and Long
(2006, pp. 279 and 291-295), no constraint quali�cation has been formalized yet to rule out triviality. In
such a case, the strategy is to solve the problem and check afterward that the solution is non-trivial, and
in particular that the shadow values are non-nil (see the discussions on non-triviality in Seierstad and
Sydsæter, 1987, e.g., p. 278-279 and their Note 4 p. 334). We discuss this point further later on.

18These transversality conditions are proved to be necessary only for optimal trajectories satisfying (i)∫∞
0
|fi|dt <∞ (with i = 1, 2, 3), which will be satis�ed for trajectories converging fast enough to a stationary

state, and (ii) some �growth conditions� that reduce for our problem to F ′i (Xi) being bounded from above.
We shall thus assume that the optimal trajectory converges fast enough, a point we discuss later on.
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the following conditions19 hold for all time t:

∂L
∂ci

= 0 for i = 1, 2 (9)

∂L
∂Xi

= −µ̇i for i = 1, 2 (10)

∂L
∂u

= −µ̇3 (11)

along with the usual complementary slackness conditions

U(c1, c2)− u ≥ 0 , ω ≥ 0 , ω (U(c1, c2)− u) = 0 , (12)

and the transversality conditions for free terminal states20

lim
t→∞

µi = 0 for i = 1, 2, 3. (13)

Regarding the optimality condition on the choice of the free initial state u(0), we rely on

Seierstad and Sydsæter (1987, Theorem 15, p. 396). In our case, the initial value is simply

u(0) and there is no restriction on the choice of u(0), so that the following condition has to

hold:

µ3(0) = −p0 . (14)

We can derive the following results from these necessary conditions.

Nil net investment From conditions (13), we get the usual condition that21

lim
t→∞
H(X, c, µ) = 0 . (15)

19Alternatively, one could apply directly the necessary conditions provided in Cairns and Long (2006),
which rely on Hestenes' Theorem (see Takayama, 1974, Theorem 8.C.4, p. 658-660). We retrieve all these
conditions.

20These conditions rely on the fact that there is no condition on limt→∞Xi(t). See eq. (215c) in Seierstad
and Sydsæter (1987, Theorem 16, p. 244-245).

21Eq. (15) is introduced as a necessary condition in Cairns and Long (2006, eq. 15). They prove it is
necessary using the Theorem by Michel (1990).

14



V
er

si
on

 p
re

pr
in

t

Comment citer ce document :
Cairns, R. D., Del Campo, S., Martinet, V. (2019). Sustainability of an economy relying on two

reproducible assets. Journal of Economic Dynamics and Control, 101, 145-160. , DOI :
10.1016/j.jedc.2019.02.002

Moreover, as the problem is time autonomous, we have dL
dt

= ∂L
∂t

= 0, and by complementary

slackness

H(X, u, c, µ) = 0 = µ1Ẋ1 + µ2Ẋ2 . (16)

This result corresponds to Proposition 1 in Cairns and Long (2006) and is related to

Hartwick's rule and its converse. Cairns and Long (2006) show that along a maximin path,

µ1 and µ2 are the shadow values of stocks at current state, i.e., µi = ∂m(X1,X2)
∂Xi

, and that

the Hamiltonian, which thus represents net investment at maximin shadow values (eq. 4) is

(possibly trivially) nil over time. The maximin value is constant over time.

Regularity and non-regularity: the shadow value of equity Let us now study the

shadow value µ3 associated to the minimal utility parameter u. As ∂L
∂u

= −ω, integrating
eq. (11) gives

∫∞
0
ω(t)dt = µ3(∞)− µ3(0). Given the transversality condition (13), we have

µ3(∞) = 0, while the optimality condition (14) imposes µ3(0) = −p0. We thus get22∫ ∞
0

ω(t)dt = p0 . (17)

The multiplier ω provides information on the di�culty of satisfying the minimal utility

constraint at time t, i.e., how much would be gained in value if the constraint was locally

relaxed. This opportunity cost of meeting the equity constraint at the current state is

interpreted as the shadow value of equity by Cairns and Long (2006). The shadow value

µ3(0) thus captures the aggregate of the marginal costs of the equity constraint over the

program.

This shadow value of equity is linked to the shadow value of the stocks. From eq. (9),

we get that the shadow value of stock Xi is equal to the marginal utility of consumption ci

weighted by the shadow value of equity

µi = ωUci , i = 1, 2 . (18)

Note that, as Uci > 0, as soon as one of the shadow value is nil, the two others are nil

22Eq. (17) is introduced as a necessary condition in Cairns and Long (2006, eq. 14), with the value p0 = 1.
It corresponds to the transversality condition in Hestenes' Theorem (see Theorem 8.C.4 in Takayama, 1974,
p. 658-660, and more precisely eq. 65).
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too, through eq. (18), i.e., (µ1, µ2, ω) = (0, 0, 0).23 The Hamiltonian is trivially zero because

of nil maximin shadow values and not because of conditions governing the changes in the

stocks. The necessary conditions then provide no restrictions on the path (i.e., the maximum

principle is not informative to characterize the optimal solution). This will be the case

in particular (but not only) whenever the constraint (3) is not binding, according to the

complementary slackness condition (12). It happens in what are called non-regular cases.

Maximizing the minimal utility over time can be perceived as successively raising the level

of the least well-o� to the extent possible (Solow, 1974). The end result of this sequence

of redistributions can be an equalization of utility, if this leads to a (strongly) Paretian

allocation of utility among generations. Intergenerational equality may be the outcome of

the maximin problem but is not its objective. Equity does not necessarily mean equality.

Even if a maximin solution exists, a redistribution to achieve equality is not always possible

or e�cient. When it is not e�cient to distribute well being equally over time, the solution is

non-regular and constraint (3) may not be binding at some times. As such, a necessary (but

not su�cient) condition for the shadow values to be non-nil is that the equity constraint is

binding at all times, i.e., that the maximin path is egalitarian. The condition that ω(t) > 0

at all times is central in the de�nition of regularity for a maximin path, which is basically

de�ned as ω(t) > 0 and
∫∞

0
ω(t)dt = 1 in Cairns and Long (2006, Assumption R).24

In Cairns and Martinet (2014, Proposition 3), it is shown that the form of non-regularity

that can emerge in our model25 occurs when decisions do not in�uence net maximin in-

23Cairns and Long (2006) show in their Appendix that, in a �shery model related to ours, when ω = 0
at some time in the program, ω(t) is nil at all times, so that p0 = 0 too. This case of triviality is termed
non-regularity in the maximin literature. Non-regularities in maximin problems have been found in the
models by Solow (1974) and Asako (1980), and are discussed in Doyen and Martinet (2012). Cairns and
Martinet (2014) stress its consequences for maximin shadow values, and thus for sustainability accounting.

24In the literature studying e�cient egalitarian paths, regularity is de�ned following Burmeister and Ham-
mond (1977) as a requirement that the path is egalitarian and there exist (i) a path ω(·) of positive present
value price of utility satisfying

∫∞
0
ω(t)dt = 1 (by normalization) and (ii) competitive prices µi for all capital

goods, such that consumption maximizes utility (in the sense of ωU(c1, c2) − µ1c1 − µ2c2) and production
maximizes pro�t (in the sense µ1F1(X1)+µ2F2(X2)− q1X1− q2X2, where the qi = −µ̇i are the rental prices
of the various capital goods). These conditions lead exactly to our eqs. (18) and (20). The two approaches
rely on the same conditions.

25 Another type of non-regularity may occur when the consumption vector maximizes utility over all
feasible consumption decisions given current state (or if Uci = 0 for all consumption goods). This possibility
was noted in Burmeister and Hammond (1977, p. 854) and corresponds to the case in which current capital
goods limit the production of consumption goods (see, e.g., Cairns and Tian, 2010, in which current labor
force limits harvesting and thus consumption). This is not the case in our model where consumption is not
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vestment (eq. 4), i.e., ∂M
∂ci

= 0 for all decisions. As M(X1, X2, c1, c2) = ∂m(X1,X2)
∂X1

(F1(X1) −
c1) + ∂m(X1,X2)

∂X2
(F2(X2) − c2), we have ∂M

∂ci
= −∂m(X1,X2)

∂Xi
. In our framework, non-regularity

occurs when the capital stocks have no marginal value, i.e., when µ1 = µ2 = 0. This in-

duces ω = 0 (from eq. 18) and thus there is no opportunity cost of satisfying the minimal

consumption constraint (and in some cases, utility can be larger than the maximin value

without jeopardizing sustainability).

This type of non-regularity is a central property in a one-sector model with a production

peak, where a stock is redundant if it is beyond the golden-rule level (Asako, 1980). As

non-regularity emerges even for simple problems and is a concern for accounting purposes,

it is important to determine if, and under what conditions, non-regularity occurs in our

two-sector models.

Single-peakedness and stock redundancy: a source of non-regularity Proposition

1 generalizes to two dimensions (and obviously can be extended to more than two dimensions)

the idea of maximum sustainable yield. It also generalizes to two dimensions the non-

regularity associated with the golden rule in an economy with a single asset. Redundancy

occurs in our two-sector economy when capital stocks are su�cient to sustain the highest

possible maximin value m̄. For such capital stocks, the shadow values of stocks are nil, as well

as the shadow cost of equity ω. The maximum principle is trivially satis�ed, and there may

be an in�nity of candidates for optimality. In fact, any path satisfying U(c1(t), c2(t)) ≥ m̄

and converging to the steady state (X̄1, X̄2) is optimal. This steady state is characterized

by F ′1(X̄1) = F ′2(X̄2) = 0.

The set of states from which it is possible to sustain utility m̄ is a viability kernel and can

be determined through a viability problem (Martinet and Doyen, 2007; Doyen and Martinet,

2012). Characterizing explicitly this set is beyond the objective of this paper.26 We thus

provide the following remark to stress that non-regular cases occur in a delimited area of the

state domain.

bounded from above and marginal utility is positive.
26The method to do so would follow the steps described in Martinet (2012, Section 8.5.2). The Hamilton-

Jacobi-Bellman equation that the boundary of the viability kernel must satisfy is easy to determine, but
has no closed-form solution. It is, however, possible to show from this boundary condition that this set is
convex.

17



V
er

si
on

 p
re

pr
in

t

Comment citer ce document :
Cairns, R. D., Del Campo, S., Martinet, V. (2019). Sustainability of an economy relying on two

reproducible assets. Journal of Economic Dynamics and Control, 101, 145-160. , DOI :
10.1016/j.jedc.2019.02.002

Remark 1 (Stock redundancy). If both technologies are single-peaked, states for which

m(X1, X2) = m̄ belong to a convex set of redundant stocks, with maximin value m̄ and

shadow values of zero.

Conversely, when one technology has no single peak (and thus, a strictly positive marginal

productivity), stock redundancy cannot occur because, even if the other stock is above its

production peak (with a negative marginal productivity), it is always possible to use it to

build up the �rst stock. As soon as one of the technologies has no production peak, m̄ is

de�ned only as a limit (see footnote 8) and no capital stock allow to actually sustain utility

at level m̄. The previously mentioned set of redundant stocks is empty.

We know from Lemma 1 thatm(X1, X2) ≥ U(F1(X1), F2(X2)) > 0, and from Proposition

1 that m(X1, X2) ≤ U(F1(X̄1), F2(X̄2)). For any stock that does not allow the sustaining of

the golden rule utility m̄, the maximin path is actually regular.

Proposition 3 (Regularity). If the value function is di�erentiable and non-decreasing, for

any (X1, X2) such that m(X1, X2) < m̄, the maximin path is egalitarian and e�cient, with

U(c∗1(t), c∗2(t)) = m(X∗1 (t), X∗2 (t)) and dm(X1,X2)
dt

= 0 for all t.

Proof of Proposition 3. For any (X1, X2) such that m(X1, X2) < m̄, we have ∂m(X1,X2)
∂Xi

> 0

and Uci > 0. Therefore ∂M
∂ci

= −∂m(X1,X2)
∂Xi

6= 0. According to Cairns and Martinet (2014,

Proposition 4), non-regularities due to locally bounded investment cannot emerge.27 The

maximin decisions are such that U(c∗1(t), c∗2(t)) = m(X∗1 (t), X∗2 (t)) and dm(X1,X2)
dt

= 0. The

path is regular.

For any state such that m(X1, X2) < m̄, one has (µ1, µ2, ω) >> (0, 0, 0), and the maxi-

mum principle provides information on the optimal path and has economic interpretations.

Regular path characterization As long as ω > 0, given that Uci > 0, all shadow values

are positive. From conditions (18), we derive the relative shadow value of the stocks, which

27For our model, utility is sensitive to the controls and marginal utility is always strictly positive, so that
it is always possible to increase utility. Non-regularities due to locally bounded utility cannot emerge (see
footnote 25).

18



V
er

si
on

 p
re

pr
in

t

Comment citer ce document :
Cairns, R. D., Del Campo, S., Martinet, V. (2019). Sustainability of an economy relying on two

reproducible assets. Journal of Economic Dynamics and Control, 101, 145-160. , DOI :
10.1016/j.jedc.2019.02.002

is equal to the marginal rate of substitution in consumption:

µ1

µ2

=
Uc1
Uc2

. (19)

From eq. (10), we get µ̇i = −µiF ′i (Xi), so that each shadow value decreases at a rate

equal to the current marginal product of the corresponding stock:

− µ̇i
µi

= F ′i (Xi) , i = 1, 2 . (20)

This depreciation rate is the cost of postponing an investment over a short period of time

(see Dorfman, 1969, p. 821). The lower a stock, the higher its marginal product and the

more costly in terms of maximin value it is to postpone investment in the stock.

The relative shadow value µ1
µ2

decreases at a rate equal to the current di�erence between

the stocks' marginal products:

1

µ1/µ2

d (µ1/µ2)

dt
=
µ̇1

µ1

− µ̇2

µ2

= − (F ′1(X1)− F ′2(X2)) . (21)

Taking the logarithmic derivative of eq. (18) gives µ̇i
µi

= ω̇
ω

+
U̇ci

Uci
. Substituting µ̇i

µi
by

−F ′i (Xi), we obtain, for i = 1, 2

− ω̇
ω

= F ′i (Xi) +
U̇ci
Uci

. (22)

The shadow value of equity decreases at a rate equal to the sum of a stock's marginal

product and the rate of change of the marginal utility of consumption for the associated

good. Eq. (22) is analogous to the Keynes-Ramsey rule. The rate δ ≡ − ω̇
ω
has features of a

utility discount rate and ω can be interpreted as a virtual discount factor along the maximin

path (Cairns and Long, 2006). A maximin path thus has analogies to a discounted-utility

path with this discount factor.28 The shadow value ω, however, is endogenous, and so is the

virtual discount rate δ, which is unlikely to be constant (except at a steady state), unlike in

28If the marginal utility Uci is the shadow current price of consumption for good i, by eq. (18), the shadow
values µi are analogous to present-value prices.
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a discounted-utilitarian problem.29

The following Proposition characterizes optimal steady states. Since conditions (18)-

(22) remain valid for n stocks, this condition is general to an economy with any number of

separate sectors.30

Proposition 4 (Steady state). A state (X∗1 , X
∗
2 ) is an optimal steady state if and only if

the marginal products of all stocks are equal and positive

F ′1(X∗1 ) = F ′2(X∗2 ) = δ∗ > 0 . (23)

Proof of Proposition 4. (Necessity) At a steady state (X∗1 , X
∗
2 ), Ẋi = 0, i.e., ci = Fi(Xi).

Therefore, ċi = 0 and thus U̇ci = 0, i = 1, 2. It follows from eq. (22) that δ∗ = − ω̇
ω

=

F ′1(X∗1 ) = F ′2(X∗2 ) is a necessary condition for an optimal steady state.

(Su�ciency) Assume that F ′1(X∗1 ) = F ′2(X∗2 ) > 0. Then, according to eq. (22), one gets

U̇c1
Uc1

=
U̇c2
Uc2

⇔ ċ1Uc1c1 + ċ2Uc1c2
Uc1

=
ċ1Uc1c2 + ċ2Uc2c2

Uc2

⇔ ċ1

(
Uc1c1
Uc1

− Uc1c2
Uc2

)
= ċ2

(
Uc2c2
Uc2

− Uc1c2
Uc1

)
(24)

Under strict quasi-concavity, marginal rates of substitution are decreasing, so that

∂MRScj/ci
∂ci

< 0 ⇔
∂
(
Uci/Ucj

)
∂ci

< 0

⇔ UciciUcj − UciUcjci < 0

⇔ Ucici
Uci
−
Ucjci
Ucj

< 0 (25)

The two factors in brackets in eq. (24) are negative, which means that ċ1 and ċ2 have the

same sign. As utility is constant along the maximin path, consumption levels cannot both

increase or decrease. Therefore, ċ1 = ċ2 = 0.

If the economy starts from any state satisfying F ′1(X∗1 ) = F ′2(X∗2 ) > 0, the stationary

29E.g., the discount rate in Withagen and Asheim (1998) varies over time.
30Weitzman (1976) originally used such a model with separate sectors to establish the formal links between

national accounting and welfare in the discounted utility framework.
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path ci = Fi(Xi) for i = 1, 2, which yields utility U(F1(X∗1 ), F2(X∗2 )), is egalitarian and

e�cient and corresponds to the maximin solution from that state.31 At such steady states,

the virtual discount rate δ∗ is endogenously set equal to the marginal productivity of all

capital stocks so that there is no possibility of arbitrage by investing in or depleting the

stocks.

Any state satisfying the condition F ′1(X∗1 ) = F ′2(X∗2 ) > 0 is an optimal steady state. This

is di�erent from the optimality condition for an optimal steady state in a discounted utility

problem with constant discount rate ρ, which is fully determined by the exogenous discount

rate through the condition F ′1(X∗1 ) = F ′2(X∗2 ) = ρ. In the discounted utility framework,

the optimal trajectory converges to that steady state for any initial state of the economy.

We shall see that, in the maximin framework, a trajectory converges to a steady state that

depends on the maximin value of its initial state.

When the economy is not at an optimal steady state, it follows a dynamic path charac-

terized by nil net investment (eq. 16) and the following conditions.

Proposition 5 (Transition path). Along an optimal maximin path, when F ′i (Xi) > F ′j(Xj),

consumption and investment levels are such that:

• There is a positive investment in the stock with the higher marginal product (with

ci < Fi(Xi) and Ẋi > 0). Its marginal product decreases and its consumption increases.

• The stock with the lower marginal product is depleted (with cj > Fj(Xj) and Ẋj < 0).

Its marginal product increases and its consumption decreases.

• The maximin path leads to an optimal steady state, either in �nite time or asymptoti-

cally, with the marginal products converging to equality.

Proof of Proposition 5. Since both stocks have to satisfy condition (22), we have the equality

F ′i (Xi) +
U̇ci

Uci
= F ′j(Xj) +

U̇cj

Ucj
, which gives us, for F ′i (Xi) > F ′j(Xj)

F ′i − F ′j = ċi

(
Ucjci
Ucj
− Ucici

Uci

)
− ċj

(
Ucicj
Uci
−
Ucjcj
Ucj

)
> 0 . (26)

31Note that the golden rule state satisfying F ′1(X∗1 ) = F ′2(X∗2 ) = 0 is also an optimal steady state, but
corresponds to a non-regular case not covered by Proposition 4.
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Under strict quasi-concavity, marginal rates of substitution are decreasing, and we have
Ucjci

Ucj
− Ucici

Uci
> 0 and

Ucicj

Uci
− Ucjcj

Ucj
> 0 (see eq. 25) The expressions in both parenthesis in

eq. (26) are positive, which allows us to rearrange the inequality as follows:

ċi > ċj

(
Ucicj
Uci
−
Ucjcj
Ucj

)
/

(
Ucjci
Ucj
− Ucici

Uci

)
. (27)

Levels of consumption cannot both increase or decrease at the same time along the maximin

path, where utility is constant over time. As such, ċj and ċi must be of opposite sign. As

ċj > 0 would imply ċi > 0, one must have ċj < 0 and ċi > 0.

From eq. (21), we know that when F ′i (Xi) > F ′j(Xj), one has µ̇i
µi
− µ̇j

µj
= −F ′i (Xi) +

F ′j(Xj) < 0. The relative price µi
µj

decreases. From eq. (16), we have − dXi

dXj
= µi

µj
; the

tangents to the paths in the state map (Xi, Xj) have to decrease (in absolute value) as well,

implying Ẋi = Fi(Xi) − ci > 0 and Ẋj = Fj(Xj) − cj < 0. Therefore, F ′j(Xj) rises while

F ′i (Xi) decreases.

Formally, we can study the stability of the steady states. To do so, sum up the necessary

conditions into the following dynamic equations (with π ≡ µ1
µ2
):{

Ẋi = Fi(Xi)− ci , i = 1, 2 ;

π̇ = π (F ′2(X2)− F ′1(X1)) .

Steady states are characterized by ci = Fi(X
∗
i ), i = 1, 2, and F ′1(X∗1 ) = F ′2(X∗2 ). It is shown

in the Supplementary Materials that the Jacobian matrix of the linearized system, evaluated

at the steady states, has eigenvalues with opposite sign. Therefore, a saddle-point steady

state exists on the locus F ′1(X∗1 ) = F ′2(X∗2 ) > 0.

The transition path to a steady state is such that utility is sustained at the maximin level

(i.e., U(c1(t), c2(t)) = m(X1(t), X2(t))) through substitution of the less productive stock for

the more productive one. There is a disinvestment in the stock with the lower marginal

product, compensated for by a positive investment in the stock with the higher marginal

product, so that maximin net investment is nil and the maximin value is constant over

time. The two stocks evolve in opposite directions so long as the marginal products are

unequal, toward an optimal steady state. The steady state reached depends on the initial
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state, in the sense that a trajectory starting for an arbitrary state (X0
1 , X

0
2 ) with maximin

value m(X0
1 , X

0
2 ) converges to the steady state (X∗1 , X

∗
2 ) satisfying U(F1(X∗1 ), F2(X∗2 )) =

m(X0
1 , X

0
2 ) as well as the optimality condition F ′1(X∗1 ) = F ′2(X∗2 ) of Proposition 4.

The maximin trajectories are characterized by the shape of the associated iso-value curves

as follows.

Proposition 6 (Iso-value curves). Along a maximin path with constant utility u, the current

state (X1, X2) and optimal controls (c1, c2) satisfy

Ẋ2

Ẋ1

=
ċ2

ċ1

= −µ1

µ2

⇔ dX2

dX1

∣∣∣∣
m(X1,X2)=u

=
dc2

dc1

∣∣∣∣
U(c1,c2)=u

. (28)

Proof of Proposition 6. Along the optimal path, for any state (X1(t), X2(t)), the partial

derivatives of the maximin value equal the shadow prices of the stocks, i.e., ∂m
∂Xi

= µi(t)

(Cairns and Long, 2006). From condition (18), one gets ∂m
∂X1

/ ∂m
∂X2

= µ1
µ2

=
Uc1

Uc2
. At the

optimum, the marginal rate of transformation equals the marginal rate of substitution. Along

the optimal path, µ1Ẋ1 + µ2Ẋ2 = 0 (eq. 16). By eq. (18), apart from a steady state

Ẋ2

Ẋ1

= −µ1

µ2

= −Uc1
Uc2

< 0 . (29)

When utility is constant, dU(c1,c2)
dt

= ċ1Uc1 + ċ2Uc2 = 0 and, apart from a steady state

ċ2

ċ1

= −Uc1
Uc2

< 0 . (30)

Combining conditions (29) and (30), one gets

Ẋ2

Ẋ1

=
ċ2

ċ1

⇔ dX2

dX1

=
dc2

dc1

. (31)

At the steady state, i.e., when Ẋi = 0, for i = 1, 2, dci
dXi

= F ′i (X
∗
i ). As F ′1(X∗i ) = F ′2(X∗i ), we

also have dc2
dc1

= dX2

dX1
at the steady state.

A maximin trajectory thus follows an iso-value curve toward a steady state at which the

marginal products of the two stocks are equal. A graphical representation in Fig. 1 below
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illustrates the paths of consumption and stock levels starting at an arbitrary point A in the

state space (X1, X2) and obeying eq. (28).32

The conditions derived in Propositions 4-6 are general, for any strictly quasi-concave,

strictly increasing utility, and strictly concave production functions. Deriving further general

results is di�cult. In particular, determining explicitly the steady state reached from an

arbitrary initial state would require integrating the trajectory implicitly characterized by

Proposition 6. This requires specifying all functional forms and solving completely the

particular maximin problem. The results would then be case-speci�c. A closed-form solution

can be obtained for some problems, but for other problems, numerical approaches may be

needed.

The implicit results of Proposition 6 allow us to provide general interpretations, however.

By equation (28), the slope of each indi�erence curve in the decision map is equal to the

slope of the corresponding path for the state variables. Therefore, the maximin paths are

convex to the origin. The relative shadow value of the stocks governs the slopes dc2
dc1

and dX2

dX1
.

In particular, it de�nes the relative value of the two stocks in terms of maximin investment.

We examine in Section 3 how this result can be used to set up a sustainable accounting

system based on maximin values.

Graphical representation We start by illustrating regular maximin paths. Fig. 1 is a

plot of the solution, with neoclassical functions used to represent technologies and symmetric

Cobb-Douglas utility. It is a four-quadrant graph in which the east axis represents X1, the

south axis X2, the north axis c1 and the west axis c2. The north-east quadrant represents

production F1(X1) and the south-west quadrant production F2(X2). The north-west quad-

rant plots indi�erence curves in the consumption map (c1, c2), and the south-east quadrant

is the state map (X1, X2) in which state trajectories can be drawn as well as iso-value curves.

The dashed curve starting at (0, 0) in the state map corresponds to optimal steady states

satisfying F ′1(X1) = F ′2(X2).33 The corresponding optimal steady state consumption levels

32Such an iso-value curve is also de�ned for the limiting case m(X1, X2) = m̄, even if its mathematical
properties cannot be derived from our optimal control framework (see Corollary 1). Our analysis, based on
maximin pricing, does not allow us to answer the question whether Hartwick's rule is followed along the
Golden Rule paths of our model.

33This curve starts from (0, 0) because the two production functions have the same marginal product
at zero in this example. For di�erent technologies, the curve could start from a point (Xi, 0) satisfying
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F'1>F'2

F'1<F'2

F'1(X1)=F'2(X2)

m(X1,X2)

A

(X1*,X2*)

(c1*,c2*)

U(c1,c2)

c2(⋅)

c1(⋅)

c2

c1
F1(X1)

F2(X2)

X2

X1

Figure 1: Graphical representation for the neoclassical benchmark

are represented by the dashed curve starting at (0, 0) in the consumption map, which makes

it possible to relate the steady states to their maximin value on the indi�erence curves.

For any state south-west of the steady states curve (e.g., for state A on the �gure), stock

X2 is less productive at the margin (F ′1(X1) > F ′2(X2)). Along the maximin path, con-

sumption of stock 2 exceeds its production, while consumption of stock 1 is lower than its

production. The trajectory goes north-east along the iso-value curve. Consumption levels

and states converge toward the corresponding steady state. A similar pattern occurs north-

east of the equilibrium line. For any state, maximin shadow values are positive.

F ′i (Xi) = F ′j(0).
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We now illustrate non-regular cases. The boundary of the set of states satisfyingm(X1, X2) =

m̄ is the edge of a plateau of the maximin value function, represented as the hatched area

in Fig. 2a. This �gure is similar to Fig. 1, except that the production functions are single-

peaked.34 Without loss of generality we can assume that the stocks are indexed such that

there is an X1 ≥ 0 where F ′1(X1) = F ′2(0). Optimal steady states are along the line X1M .

Any state in the hatched area has maximin value m(X̄1, X̄2). Any maximin path start-

ing from a state in this region is non-regular in the sense that utility can be larger than

the maximin value m̄ for some time, until a point on the boundary is reached, after which

utility is constant at U(c1, c2) = m̄. Both stocks are redundant and have nil shadow val-

ues, even a stock below its sector productive peak if the other stock is so abundant that

m(X1, X2) = m̄.35 It does not mean, however, that capital above the production peak is

necessarily redundant. For states such that m(X1, X2) < m̄, a stock above the peak can be

used intensively as a substitute for a more productive resource to build it up, just as in the

neoclassical benchmark. Capital is not redundant.

Proposition 1 and Corollary 1 depend on the fact that both technologies have a production

peak. If one technology does not, so that F ′i (Xi) > 0 for all Xi, there is no stock redundancy,

even if there is an upper bound on the maximin value. When one sector is always productive

at the margin, the capital of another, single-peaked sector is never redundant if it can be used

as a substitute for the productive sector to grow, as illustrated in Fig. 2b. All capital stocks

have positive shadow values. This is a useful result for building a sustainability accounting

system in a world with substitutable assets.

3 Accounting for changes in sustainability

Having characterized the maximin path in our two-sector economy, we can use it as a

benchmark to assess the sustainability of current decisions, which may not correspond to

maximin decisions. From previous results, we can examine the consequences of consumption

34We used quadratic growth functions to represent the technologies. As a consequence, the steady states
curve is a straight line as the marginal products F ′i (Xi) are proportional to the stocks Xi, with i = 1, 2,
giving a linear relationship between X∗1 and X∗2 , for which F

′
1(X∗1 ) = F ′2(X∗2 ).

35Along the boundary separating the area of redundant stocks from the states with positive shadow values,
the shadow prices are also zero. As emphasized in footnote 32, the maximin framework is not suited to discuss
the role of Hartwick's rule along such a Golden Rule path.
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m(X1 ,X2)= mF1
' (X1)>F2

' (X2)

F1
' (X1)<F2

' (X2)

M

X1c2

c1

X2

X1

F1(X1)

F2(X2)

X2

X1
X1c2

c1

X2

F1(X1)

F2(X2)

X2

X1

(a) Two single-peaked technologies (b) One single-peaked technology

Figure 2: Graphical representation for single-peaked technologies

choices on the evolution of the sustainable level of utility, measured by the maximin value

and its evolution. This examination provides insights for sustainability accounting for non-

maximin paths.

Cairns and Martinet (2014) describe the interplay among consumption, the maximin

value and changes in sustainability. Net investment at maximin shadow values is a measure

of these changes. For any economic state, it is possible to de�ne the consumption levels

resulting in a positive maximin investment and an increasing of the level of utility that can

be sustained, i.e., sustainability improvement. We consider the regular case in the following

discussion. For non-regular cases, the maximin shadow values are nil, and so is sustainability

improvement.

For a given economic state (X1, X2), denote by (c?1, c
?
2) the maximin consumption levels.

These decisions, which satisfy U(c?1, c
?
2) = m(X1, X2), can be used as a reference point. To

do so, consider the indi�erence curve U(c1, c2) = m(X1, X2). At (c?1, c
?
2), one has

Uc1

Uc2
= µ1

µ2

(eq. 19). From the de�nition of net investment (eq. 4), we derive the condition for non-
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negative net investment, for given levels of the stocks and shadow values:

ṁ = µ1[F1(X1)− c1] + µ2[F2(X2)− c2] ≥ 0 ⇔ c2 ≤
µ1

µ2

[F1(X1)− c1] + F2(X2) . (32)

When ṁ = 0, there is a linear relationship between c1 and c2.

Fig. 3 depicts the possible consumption decisions along with their consequences for

changes in sustainability. In the consumption map, the line ṁ = 0 is tangent to the in-

di�erence curve U(c1, c2) = m(X1, X2) at (c?1, c
?
2). Three areas of interest are de�ned by

the two curves. Area 1 corresponds to consumption decisions with a sustainable utility

c2
⋆(X1,X2)

c1
⋆(X1,X2)

3

3

2

1

-μ1/μ2

m > 0

m < 0

U < mU > m

U(c1,c2) = m(X1,X2)

m(X1,X2,c1,c2)|(X1,X2) = 0

(X1,X2)

c2

c1

F1(X1)

F2(X2)

X2

X1

Figure 3: Utility, maximin and sustainability improvement

(U(c1, c2) < m(X1, X2)) and positive net maximin investment, i.e., to sustainability im-

provement (eq. 32). Area 2 corresponds to decisions with a unsustainable utility U(c1, c2) >

m(X1, X2), implying sustainability decline (ṁ < 0). In the two regions of Area 3, consump-

tion decisions induce a sustainability decline in spite of the fact that utility is lower than the

28



V
er

si
on

 p
re

pr
in

t

Comment citer ce document :
Cairns, R. D., Del Campo, S., Martinet, V. (2019). Sustainability of an economy relying on two

reproducible assets. Journal of Economic Dynamics and Control, 101, 145-160. , DOI :
10.1016/j.jedc.2019.02.002

maximin value. With di�erent decisions, the same utility could have been compatible with

sustainability improvement. These areas illustrate how reducing utility below the maximin

level improves sustainability only if there is an investment that increases the maximin value.

Conversely, in our mutliple capital good model, ill-considered consumption and investment

decisions can result in a decline of the sustainable level of utility even though the current

utility is below the sustainable, maximin level.

Changes in sustainability can be measured by net maximin investment along any path.

Therefore, maximin shadow values can be used as sustainability accounting prices. Basing

an accounting system on shadow values requires that these values be well de�ned and com-

putable. The analysis of this paper stresses that, as for any optimization problem, �nding

shadow values is a challenging task. The task for a maximin problem, however, is likely

no more di�cult than for other objectives.36 The challenge can be met with proper nu-

merical tools. Given the theoretical characterization of the maximin solution in this paper,

and given the recursive structure of the maximin objective, a Bellman algorithm could be

used to approximate maximin values and shadow values. Because there are strong links be-

tween maximin and viability (Doyen and Martinet, 2012), the numerical tools for set-valued

analysis could also be used for that purpose.

We have found that substitutability in utility is important for the properties of the

maximin solution and accounting values, as is substitutability in production (Solow, 1974;

Hartwick, 1977; Mitra et al., 2013). One task is to estimate the substitutability among

the di�erent goods in the economy. For some sectors (manufactured goods and services),

substitutability at the margin is a reasonable assumption and the elasticities of substitu-

tion estimated in the macroeconomic literature can provide a starting point. For environ-

mental resources, the task is harder. Drupp (2018) surveys the empirical estimates of the

substitutability between manufactured goods and ecosystem services. He relates this sub-

stitutability to the income elasticity of the willingness-to-pay for environmental goods, and

emphasizes the variability of the substitutability parameter. Most studies �nd a relatively

36The �shery problem is quite di�cult to solve in the discounted utilitarian framework, and is compara-
tively simpler in a maximin setting. The Dasgupta-Heal-Solow model was solved immediately for a maximin
problem (Solow, 1974), but not until much later for a discounted-utilitarian problem (Benchekroun and
Withagen, 2011).
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high substitutability. However, the degree of substitutability may change as the environ-

ment becomes scarcer (Baumgärtner et al., 2017; Drupp, 2018). At some point, or for some

resources or ecosystem services, substitution may not be possible.

Last, when all technologies are single-peaked, stock redundancy may occur. In that case,

all maximin shadow values are zero. Society is faced with surplus stocks (from the maximin

point of view) and sustainability accounting is trivial.

4 Conclusion

Sustaining utility is the very objective of a maximin problem. Even if maximin is not

chosen as a social objective and society does not aim at following a maximin path from its

current stage of development, the maximin value is an indicator of the highest utility level

that can be sustained given current economic and environmental endowments (Cairns and

Martinet, 2014; Fleurbaey, 2015). Maximin shadow values can be used along any trajectory

to compute maximin net investment, a particular genuine savings indicator which measures

the evolution of the capacity of the economy to sustain utility. These shadow values have to

be derived from the resolution of the maximin problem.

Maximin has been applied to only a handful of problems. In this paper, we have charac-

terized the maximin solution for an additional class of problems, corresponding to economies

with two separate sectors that interact indirectly through the utility function. We have shown

that maximin calls for a dynamic investment pattern that outperforms the static option of

maintaining current productive stocks. Whenever a capital stock produces more at the mar-

gin than the other, positive investment in this sector is made possible through substitution in

consumption and a decline of the less productive capital stock, according to Hartwick's rule

of nil net investment (Hartwick, 1977; Solow, 1993; Cairns and Long, 2006). The maximin

path ultimately leads to some optimal steady state, however, which depends on the initial

state of the economy and its maximin value.

Maximin has been criticized as a social objective as possibly maintaining a poor economy

in poverty. If growth out of poverty is pursued, it must be within sustainable limits. Com-

puting the evolution of the maximin value informs us on the e�ect of current consumption

and investment decisions on the level of sustainable utility. This accounting has to be done
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with maximin shadow values. In the presence of a single-peaked technology, if the other

technology is everywhere productive at the margin and consumption goods are substitutes,

both capital stocks have positive accounting prices. If all technologies are single-peaked, cap-

ital stocks may be redundant, and accounting prices for sustainability are nil. In all cases,

maximin accounting prices are well-de�ned and provide the relevant information about the

relative marginal values of di�erent stocks for net investment in the capacity to sustain

utility.

It is clear that solving the maximin problem for a modern economy, with all its various

assets, consumption goods, production techniques, etc., is conceptually and practically an

extraordinarily di�cult problem. Our study is only a tentative initial exploration of theo-

retic implications. Any complexity in determining accounting (shadow) prices in maximin,

however, stems from the complexity of the interactions of capital and consumption goods

in the economy, and hence is comparable in any accounting system based on shadow val-

ues. It would not do to use market prices for the shadow values, even for marketed assets.

Whatever may be maximized in a market is almost surely not the sustainable level of utility.

Even if the shadow values were found for our world, it is hard to conceive that they would

be implemented in a global political economy that cannot agree on or implement a price

for even a single good, atmospheric carbon. Still, the study of maximin solutions is useful

because it provides insight into how to evaluate the relative contributions of the di�erent

types of capital to the ability of the economy to sustain utility. It systematically confronts

the complicated interactions among all assets. Further research may indicate how shadow

values di�er from market prices and how the latter may induce unsustainable decisions in

the economy.
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A Appendix

A.1 Stability of the steady state

Let us sum up the necessary conditions into three main equations to get the following

dynamic system (π ≡ µ1
µ2
)


Ẋ1 = F1(X1)− c1 ;

Ẋ2 = F2(X2)− c2 ;

π̇ = π (F ′2(X2)− F ′1(X1)) .

(33)

Steady states are characterized by
c∗1 = F1(X∗1 ) ;

c∗2 = F2(X∗2 ) ;

F ′1(X∗1 ) = F ′2(X∗2 ) .

(34)

Consider the Jacobian matrix of the linearized system, evaluated at the steady states37

J? =

 F ′1(X∗1 ) 0 −∂c1(π)
∂π

0 F ′1(X∗1 ) −∂c2(π)
∂π

−πF ′′1 (X∗1 ) πF ′′2 (X∗2 ) 0

 (35)

37We use the equality F ′1(X∗1 ) = F ′2(X∗2 ) and express the Jacobian with respect to F ′1(X∗1 ) only.
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Let us compute the roots of the characteristic polynomial P(λ) = det(J∗ − λI3):∣∣∣∣∣∣∣
F ′1(X∗1 )− λ 0 −∂c1(π)

∂π

0 F ′1(X∗1 )− λ −∂c2(π)
∂π

−πF ′′1 (X∗1 ) πF ′′2 (X∗2 ) −λ

∣∣∣∣∣∣∣ = 0

⇔ (F ′1 − λ)

∣∣∣∣∣F ′1 − λ −∂c2(π)
∂π

πF ′′2 −λ

∣∣∣∣∣− πF ′′1
∣∣∣∣∣ 0 −∂c1(π)

∂π

F ′1 − λ −
∂c2(π)
∂π

∣∣∣∣∣ = 0

⇔ (F ′1 − λ)

(
− (F ′1 − λ)λ+ πF ′′2

∂c2

∂π

)
− πF ′′1 (F ′1 − λ)

∂c1

∂π
= 0

⇔ (F ′1 − λ)

(
− (F ′1 − λ)λ− π∂c1

∂π
F ′′1 + π

∂c2

∂π
F ′′2

)
= 0 . (36)

The �rst eigenvalue is λ1 = F ′1. Also, due to the strict convexity of indi�erence curves

(recall that at the optimum, π =
Uci

Ucj
), let α1 ≡ −∂c1

∂π
> 0 and α2 ≡ ∂c2

∂π
> 0. Let Γ ≡

−π (α1F
′′
1 + α2F

′′
2 ) > 0. We can reduce eq. (36) to λ2 − F ′1λ− Γ = 0. Eigenvalues are then

λ1 = F ′1 > 0, λ2 =
F ′
1−
√

(F ′
1)2+4Γ

2
< 0, and λ3 =

F ′
1+
√

(F ′
1)2+4Γ

2
> 0.38 The steady state is a

saddle-point.

38Note that strict concavity of production functions rule out nil eigenvalues.
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