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2017.—A diverse range of effects of the intestinal microbiota on mucosal defense
and injury has become increasingly clear over the past decade. Hydrogen sulfide
(H>S) has emerged as an important mediator of many physiological functions,
including gastrointestinal mucosal defense and repair. Hydrogen sulfide is produced
by gastrointestinal tract tissues and by bacteria residing within the gut and can
influence the function of a wide range of cells. The microbiota also appears to be
an important target of hydrogen sulfide. H>S donors can modify the gut microbiota,
and the gastrointestinal epithelium is a major site of oxidation of microbial-derived
H>S. When administered together with nonsteroidal anti-inflammatory drugs, H>S
can prevent some of the dysbiosis those drugs induce, possibly contributing to the
observed prevention of gastrointestinal damage. Exogenous H»S can also markedly
reduce the severity of experimental colitis and plays important roles in modulating
epithelial cell-mucus-bacterial interactions in the intestine, contributing to its ability
to promote resolution of inflammation and repair of tissue injury. In this paper we
review recent studies examining the roles of H>S in mucosal defense, the possibility
that H>S can damage the gastrointestinal epithelium, and effects of H,S on the gut
microbiota and on mucus and biofilm interactions in the context of intestinal
inflammation.

bacteria; biofilm; colitis; epithelium; inflammatory bowel disease; intestine; micro-

biota; mucus; NSAID

INTRODUCTION

Over the past 15 years, our understanding of the roles of the
gaseous mediator hydrogen sulfide (H»S) has grown consider-
ably. It is now clear that H,S plays important roles in many
physiological and pathophysiological processes (22, 44). Our
laboratories have been particularly interested in the ability of
H>S to act as a mediator of inflammation, homeostasis, and
repair in the gastrointestinal (GI) tract. H,S is an important
mediator of mucosal defense, affecting such basic processes as
mucosal blood flow, bicarbonate and mucus secretion, and
endothelial-leukocyte interactions (13, 19, 30, 49). Important
roles for H,S have also been demonstrated in visceral pain (7,
8, 10, 11) and in resolution of inflammatory disorders such
as colitis (14, 18, 23, 43). These observations have provided
the impetus for several groups to design and develop novel
H,S-releasing drugs that may be used to protect the GI tract,
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accelerate repair of GI damage, and reduce inflammation in
diseases such as ulcerative colitis, Crohn’s disease, and
nonsteroidal anti-inflammatory drug (NSAID)-induced gas-
troenteropathy (7, 21, 44).

The intestinal microbiome is a significant source of H»S,
some of which permeates across the intestinal epithelium (15,
25, 35), providing an energy source for epithelial and other
lamina propria cells (17, 29). Of course, diet can affect the
amounts of H,S production. Organic polysulfides contained in
garlic, onions, cruciferous vegetables (e.g., cabbage, cauli-
flower, kale, broccoli, etc.), and durian fruit can directly release
H,S through interactions with protein thiols or intracellular
thiols (e.g., glutathione). L-Cysteine is the main precursor for
mammalian H,S production, and H,S synthesis can be modu-
lated by dietary supplementation or restriction of this amino
acid or of homocysteine (a precursor of L-cysteine).

Since there is a clear role for microbiota in the pathogenesis
of many GI disorders, investigations began into the possible
interactions of H,S with luminal bacteria. Many questions have
arisen from these investigations: Can H,S damage the intesti-
nal epithelium and/or promote GI cancer? Does H,S affect
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mucus secretion and/or function? Does H,S modulate the
microbiota? Does H,S affect the interactions between micro-
biota and the epithelium?

Several recent studies have provided evidence that exoge-
nous and endogenous H»S can significantly reduce the suscep-
tibility of the GI mucosa to injury, and these effects appear to
be produced, at least in part, through modulation of the enteric
microbiota (4, 5, 30). Adverse, dysbiosis-inducing effects of
some commonly used drugs appear to contribute significantly
to the detrimental effects of those drugs in the GI tract but can
be markedly attenuated by coadministration of H,S. Indeed, a
novel class of NSAIDs has been developed to exploit these
beneficial effects of H,S in countering the damaging effects of
conventional NSAIDs (7), which are among the most widely
used drugs.

IS LUMINAL H>S TOXIC TO THE INTESTINAL EPITHELIUM?

H,S is produced by a wide range of enteric bacteria, primar-
ily of the +y-Proteobacteria genera [readers are referred to a
comprehensive review by Linden (25)]. H,S concentrations in
the cecum and rectum can reach 40 pM (36), and as much as
250 uM in the colon (1). There have been a wide range of
studies using different types of transformed or nontransformed
epithelial cells to determine their responsiveness to a range of
concentrations of H,S, including concentrations well above
250 wM (25). Not surprisingly, there are discrepant findings
from these studies, with no clear and consistent evidence for
toxic effects of H»S on epithelial cell integrity and considerable
variability in terms of the effects of H,S on epithelial cell
proliferation (25). Linden (25) noted that H,S (250 p.M) could
increase DNA damage in colon cancer cells in vitro, but only
when DNA repair was inhibited (1). Indeed, there are numer-
ous studies demonstrating antiproliferative and chemopreven-
tive effects of H,S in vitro and in vivo (9, 24, 32, 33, 46).

There has been speculation of potential links between bac-
terially derived H,S and inflammatory bowel disease (31).
These may include genotoxic properties and the disruption of
the mucus structure. In our laboratory, we have done extensive
studies in which H,S donors were administered to rodents or
dogs for periods of up to 2 wk but have not observed any
evidence of tissue injury. Even with twice-daily administration
of a garlic-derived H»S donor [diallyl disulfide (DADS)] for 5
days at a dose as high as 60 mmol/kg, there was no macro-
scopically or histologically detectable damage to the gastroin-
testinal epithelium, nor was there any mucosal inflammation
(5). On the contrary, with administration of H,S in this fashion,
the normal structure of mucus and microbiota was maintained
(30). Benavides et al. (3) demonstrated that when they added
DADS to a solution of glutathione, to mimic in vivo condi-
tions, ~50% was rapidly converted to H»S.

On the other hand, a recent study of pediatric Crohn’s
disease provided compelling evidence for a role of H,S in
promoting damage in a subset of patients who had a genetic
defect in mitochondrial oxidation of H,S (31). Interestingly,
those patients also had substantially increased numbers of
H,S-producing bacteria in their intestinal lumen (31). We
observed a similar increase in H»>S-producing intestinal bacte-
ria in rat studies of the exacerbation of NSAID-enteropathy by
proton pump inhibitors, which significantly worsened NSAID-
induced enteropathy (42). Our microbiome analysis revealed
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that a major effect of both omeprazole and lansoprazole was to
significantly increase the numbers of y-Proteobacteria in the
small intestine (4).

Several studies in recent years have clearly demonstrated
that H,S is an important metabolic fuel for the epithelial cells
that line the GI tract (17, 29). Colonic epithelial cells are
particularly efficient in oxidizing H»S, producing ATP in the
process (17, 29). The epithelium therefore functions both as
a physical barrier against potentially harmful agents that might
pass into the body from the lumen of the gut, as well as a
metabolic barrier, oxidizing bacteria-derived H,S (41). A de-
fect in this metabolic barrier function is what was observed in
the pediatric Crohn’s disease patients mentioned in the preced-
ing paragraph (31), which would allow H,S from luminal
bacteria to gain access to the lamina propria.

PROTECTIVE AND REPARATIVE EFFECTS OF H.S

H,S has been shown to exert protective effects against GI
injury induced by ethanol, NSAIDs, and ischemia-reperfusion,
as well as promoting resolution of inflammation and repair of
tissue damage (41). For example, H»S donors have been shown
to promote resolution of colitis in several animal models (14,
18, 23, 43). Endogenous H,S production is markedly elevated
at sites of mucosal injury, contributing significantly to promo-
tion of healing (40, 43). Moreover, rates of oxidation of H,S
are specifically and substantially reduced at sites of epithelial/
mucosal injury (14). On the other hand, inhibition of H»S
synthesis leads to increased susceptibility to mucosal injury,
impairment of healing, increased proinflammatory cytokine
expression, reduced expression of cyclooxygenase-2 (COX-2;
and an associated reduction of PG synthesis), and increased
mucosal granulocyte numbers (5, 14, 30, 43).

The protective effects of H,S in the GI tract have also been
demonstrated in numerous studies of novel H,S-releasing
NSAIDs. These drugs have been shown to cause negligible GI
damage despite markedly suppressing prostaglandin synthesis
in a wide range of animal models (39, 40). While NSAIDs
impair healing of gastric ulcers, H,S-releasing NSAIDs signif-
icantly accelerate healing, and this is mimicked by administra-
tion of H,S donors (39, 40).

H:S, MUCUS, AND BIOFILMS

Intestinal bacteria are thought to contribute significantly to
the pathogenesis of inflammatory bowel disease (IBD; ulcer-
ative colitis and Crohn’s disease; 28), but clear evidence for
clinical benefits of antibiotics or probiotics for treating these
conditions is lacking. A “leaky” mucus layer that can permit
bacterial invasion has been reported in humans with ulcerative
colitis, as well as in murine models of colitis (20). A recent
mouse study reported that antibiotics caused a thinning of the
mucus layer by directly reducing mucus granule numbers, an
effect that predisposed mice to further enteric infection with
Citrobacter rodentium (48).

In nature, bacteria form biofilms that reduce their exposure
to drugs and immune components (6). They are complex,
multispecies bacterial colonies encapsulated in a self-secreted
matrix of polysaccharides (10, 16). There is evidence that
microbiota living as biofilms promote gut homeostasis (27, 37).
We attempted to determine the changes in biofilms that occur
during experimental colitis and the impact of reduced endog-
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enous H>S synthesis vs. administering exogenous H,S (30).
Fluorescent in situ hybridization (FISH) was used to examine
the organization of gut microbiota in health and during colitis
in rats and the role that H>S might play in modulating biofilm
formation and stability.

In both mice and rats, the microbiota is sandwiched between
the sterile mucus layer and the luminal fecal content in a linear
structure (Fig. 1). Within a week of induction of colitis with a
hapten, the biofilm was severely disrupted in both mice and
rats (30). The microbiota was disorganized and heterogeneous,
with different size clusters of bacteria. Fragments of these
dysbiotic microbiota biofilms were also in close contact with
the host tissue, and there was clear evidence of translocation of
bacteria into the lamina propria, in a manner reminiscent of
what was recently reported in the intestine of patients with IBD
(37). Extensive depletion of epithelial mucus granules was also
evident.

Experiments with mice deficient of one of the key enzymes
for synthesis of H,S, cystathionine y-lyase (CSE), provided the
initial indication that endogenous H,S played a role in regu-
lating epithelial mucus production (30). In contrast to what was
observed in wild-type mice, the CSE-deficient mice exhibited
mild colonic inflammation with a thinner-than-normal inner
mucus layer. Despite evidence of a linear biofilm, there were
bacterial aggregates in close contact with the epithelium. Very
similar effects were seen in rats treated with an inhibitor of
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+vehicle

C

Colitis+ [§
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G145

CSE activity [B-cyanoalanine (BCA)]: the biofilm was frag-
mented, with bacteria in close contact with the colonic epithe-
lium, and granulocytes were present within the biofilm and the
lumen (Fig. 1). The depletion of epithelial mucus granules was
much more evident in rats treated with the H,S synthesis
inhibitor than in vehicle-treated rats. Taken together, the ex-
periments with CSE-deficient mice and with rats treated with a
CSE inhibitor suggest that CSE-derived H,S makes important
contributions to the promotion of colonic microbiota biofilm
formation and stability and contributes to enhanced mucus
barrier function and epithelial integrity (30).

Additional evidence to support this hypothesis comes from
studies of the effects of an H,S donor in experimental colitis.
In rats with colitis, intracolonic administration of DADS (twice
daily) for 1 wk resulted in a significant acceleration of the
resolution of colitis, which included acceleration of the resto-
ration of linear biofilm organization and reduced bacterial
translocation (30). After DADS treatment, a clear mucus layer
separated the epithelium from the microbiota biofilm (as ob-
served in healthy controls; Fig. 2). When treatment with DADS
was extended from 7 to 14 days, the mucus granule number per
intestinal crypt increased significantly, to a level greater than
that in healthy controls.

To further investigate the concept that H,S can enhance
formation of biofilms, in vitro studies were performed with
human-derived intestinal biofilms (30). These biofilms were

Fig. 1. Administration of an inhibitor of
endogenous H»S synthesis in healthy mice
and mice with hapten-induced colitis exac-
erbates inflammation and markedly alters the
intestinal microbiota biofilm. Fluorescent in
situ hybridization (FISH) was performed on
colonic sections from C57BL/6 mice 7 days
after induction of colitis with dinitrobenzene
sulfonic acid. Representative images (from a
total of 5 mice per group) are shown for
healthy controls (A), colitis treated daily with
vehicle (B), and colitis treated daily with
B-cyanoalanine (BCA; 50 mg/kg; C and D).
BCA is an inhibitor of H>S synthesis. Host
nuclei are colored red while FISH-positive
cells are green. Scale bars represent 25 uM
(A and C) or 50 pM (B and D). Dashed lines
indicate the limit of the mucosa. The asterisk
denotes translocated bacteria in the lamina
propria. DADS, diallyl disulfide. [From Motta
et al. (30).]
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Fig. 2. Administration of an H>S donor, dial-
1yl disulfide (DADS), restored the biofilm in
rats with hapten-induced colitis. After induc-
tion of colitis, groups of 4-5 rats each were
treated daily with DADS (0.5 ml of 30 pM)
or vehicle for 7 days. Fluorescent in situ
hybridization was performed on colonic sec-
tions from the rats. The images shown are
representative of what was observed in all
rats receiving the treatments: healthy controls C
(A) and colitis treated daily with vehicle (B
and C) or DADS (D). Scale bars represent 50
M. Dashed lines indicate the limit of the
mucosa. The asterisks denote translocated
bacteria in the lamina propria. DNBS, dini-
trobenzene sulfonic acid. [From Motta et al.
(30).]

Colitis+
vehicle

exposed to various concentrations of H,S donors (NaHS or
DADS). At concentrations of 1 and 10 pM, exposure to either
of the H,S donors resulted in a higher metabolic activity (a
reflection of increased numbers of bacteria in the biofilm) and
increased biomass (likely due to increased quantity of cells and
proteins within the biofilm).

CAN H,S MODIFY THE MICROBIOTA?

H,S donors derived from garlic have been shown to exert
antimicrobial effects on planktonic gram-positive and gram-
negative bacteria (12, 26, 34). We examined the effects of
twice-daily administration of an H,S donor (DADS) to rats at
doses of 10 or 30 mmol/kg. These doses of DADS were
ineffective and effective, respectively, in reducing the severity
of NSAID-induced damage in the rat stomach (21). We ob-
served that administration of the higher doses of DADS re-
sulted in significant shifts in the intestinal microbiota in rats
(demonstrated via DNA extraction and denaturing gradient gel
electrophoresis; Fig. 3). In the rats treated with the lower dose
of DADS, the microbiota remained similar to that in vehicle-
treated rats. None of the doses of DADS significantly changed
the total numbers of aerobic or anaerobic bacteria in the
jejunum (17).

Significant changes in the intestinal microbiota following
administration of NSAIDs are well documented (45). Gener-
ally, NSAIDs given at doses that can cause significant enter-
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opathy cause a shift in the microbiome toward more gram-
negative organisms (38), and this contributes significantly to
intestinal damage through TNF-a- and toll-like receptor 4
(TLR4)-dependent pathways (47). In contrast, administration
of an H,S-releasing NSAID to rats resulted in significantly
smaller shifts in the intestinal microbiome (4). It is not clear
whether this is the cause or an effect of the greatly reduced
intestinal injury with H>S-NSAID administration vs. conven-
tional NSAID administration, but the observations from studies
of other H,S donors suggest the former. One of the observed
changes that may contribute significantly to the reduced intes-
tinal damage observed with H,S-NSAIDs is a marked decrease
in the cytotoxicity of bile compared with that from rats treated
with a conventional NSAID (4). Secondary bile acids are much
more cytotoxic than primary bile acids, and the conversion of
primary to secondary bile acids is driven by bacterial enzymes
(2). As shown in Fig. 3, a similar reduction in the cytotoxicity
of bile was observed when rats were treated with an H»S donor
at a dose that also caused a marked shift in intestinal micro-
biota (5).

SUMMARY AND FUTURE DIRECTIONS

There is substantial evidence that H,S, produced by enteric
bacteria or host cells or administered exogenously, can affect
intestinal microbiota in a variety of ways. As well as reducing
GI inflammation and injury and promoting repair, exogenous
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and endogenous H,S can positively affect many aspects of
bacterial-epithelial interactions. There is evidence suggesting
potential for the use of H,S donors to favorably modulate the
intestinal microbiota. Promotion of biofilm formation and in-
tegrity by H,S donors is an important aspect, particularly in the
context of improved treatments for disorders such as ulcerative
colitis and Crohn’s disease.
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creased the cytotoxic effects of bile on intesti-
nal epithelial cells (IEC-6; ***P < 0.001). Bile
collected from rats that had been cotreated with
naproxen and an H>S donor [diallyl disulfide
(DADS)] exhibited reduced cytotoxicity, in a
dose-dependent manner (VP < 0.05; ¥WP <
0.001). The rats were treated orally twice daily
for 2 days with naproxen at 20 mg/kg and with
vehicle or DADS. B: denaturing gradient gel
electrophoresis analysis of intestinal microbiota
samples from rats treated with naproxen
(20 mg/kg) plus vehicle or DADS (30 mmol/
kg). Treatment with DADS (blue) caused a
marked shift in microbiota relative to vehicle-
treated rats (black). C: using a resampling tech-
nique (majority unweighted-pair-group method
with arithmetic mean algorithm), the dendro-
gram clustering observed in B was confirmed,
indicating a robust difference in microbiota
composition between groups (black, vehicle-
treated rats; blue, DADs-treated rats). Each
group consisted of five rats. Data were analyzed
with Dunnett’s multiple-comparison test (cyto-
toxicity). [From Blackler et al. (5).]

! @ DADS 30 mmol+kg™
I . DADS 30 mmol+kg?!

: .DADsaommol kg!

. Vehicle
) DADS 30 mmol<kg
i)

. DADS 30 mmol+kg?

. Vehicle
@ Vvehicle
@ Vehicle
. Vehicle

It is also becoming increasingly clear that in addition to
probiotics and antibiotics, several classes of drugs can dramat-
ically and rapidly alter the GI microbiota, including some of
the most widely used drugs (e.g., NSAIDs, proton pump
inhibitors, and histamine H, receptor antagonists; 42). Studies
in animals have provided proof-of-concept evidence that such
detrimental changes can be reduced or prevented with H,S
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donors. Moreover, the linking of H,S-releasing groups to existing
drugs is a promising approach to prevention of drug-induced
dysbiosis and tissue injury, as has been demonstrated with the
HsS-releasing NSAID, ATB-346 [2-(6-methoxynapthalen-2-yl)-
propionic acid 4-thiocarbamoyl phenyl ester; 4, 5, 39].
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