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ABSTRACT

Bias in genetic evaluations has been a constant con-
cern in animal genetics. The interest in this topic has 
increased in the last years, since many studies have 
detected overestimation (bias) in estimated breeding 
values (EBV). Detecting the existence of bias, and the 
realized accuracy of predictions, is therefore of impor-
tance, yet this is difficult when studying small data sets 
or breeds. In this study, we tested by simulation the 
recently presented method Linear Regression (LR) for 
estimation of bias, slope, and accuracy of pedigree 
EBV. The LR method computes statistics by compar-
ing EBV from a data set containing old, partial infor-
mation with EBV from a data set containing all infor-
mation (old and new, a whole data set) for the same 
individuals. The method proposes an estimator for bias 
∆p
�( ), an estimator of slope bp

�( ), and 3 estimators re-

lated to accuracies: the ratio between accuracies ˆ ,,ρw p( )  

the reliability of the partial data set accp
2�






, and the 

ratio of reliabilities ρp w, .2�





  We simulated a dairy scheme 

for low (0.10) and moderate (0.30) heritabilities. In 
both cases, we checked the behavior of the estimators 
for 3 scenarios: (1) when the evaluation model is the 
same as the model used to simulate the data; (2) when 
the evaluation model uses an incorrect heritability; and 
(3) when the data includes an environmental trend. For 
scenarios in which the evaluation model was correct, 
the LR method was capable of correctly estimating 
bias, slope, and accuracies, with better performance for 
higher heritability [i.e., corr b bp p, �( ) was 0.45 for h2 = 

0.10 and 0.59 for h2 = 0.30]. In cases of the use of incor-
rect heritabilities in the evaluation model, the bias was 
correctly estimated in direction but not in magnitude. 

In the same way, the magnitudes of bias and of slope 
were underestimated in scenarios with environmental 
trends in data, except for cases in which contemporary 
groups were random and greatly shrunken. In general, 
accuracies were well estimated in all scenarios. The LR 
method is capable of checking bias and accuracy in all 
cases, if the evaluation model is reasonably correct or 
robust, and its estimations are more precise with more 
information (e.g., high heritability). If the model uses 
an incorrect heritability or a hidden trend exists in the 
data, it is still possible to estimate the direction and 
existence of bias and slope but not always their magni-
tudes.
Key words: genetic evaluation, BLUP, bias, accuracy

INTRODUCTION

The study of bias has become more relevant in the 
last years, as several works have shown differences be-
tween the estimated genetic value of top young bulls at 
genomic prediction and after progeny results (Spelman 
et al., 2010; Sargolzaei et al., 2012). The most frequent-
ly used statistics to analyze bias in selection schemes 
are as follows: b u u0 = −ˆ  [the difference between the 
averages of estimated breeding values û (EBV) and 
true breeding values u (TBV)], associated with the 

genetic gain, and b
cov u u
var u1 =
( )
( )
, ˆ

ˆ
 (slope of the regression 

of TBV on EBV), related to the dispersion of the EBV. 
Values of b0 < 0 underestimate and b0 > 0 overestimate 
TBV. Similarly, values of b1 < 1 represent an overesti-
mation of selected animals. Both biases produce varia-
tion in the expected genetic gain, with implications at 
the moment of selection (Boichard et al., 1995; Män-
tysaari et al., 2010).

Studies in Lacaune sheep have shown overestimation 
of genetic gain (b0 > 0) as well as overdispersion (b1 < 
1) of the genomic estimated breeding values (GEBV), 
with more effect in those traits under important selec-
tion pressure (Astruc et al., 2014; Baloche et al., 2014). 
The origin of these biases is unknown, and they should 
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not occur under standard assumptions of animal breed-
ing (Henderson, 1984). In pedigree-based predictions, 
several situations can produce bias, such as the use of 
incorrect heritability (h2) in genetic evaluations, selec-
tive reporting, incorrect modeling of the age effect, an 
ill-defined contemporary group (CG) effect, or the use 
of genetic groups in pedigrees. In genomic predictions, 
incorrect models can also generate bias.

Currently, the most widely used tool in animal breed-
ing to benchmark genetic models and detect bias is 
time truncation of data and prediction of future records 
or averages of records (e.g., daughter yield deviations, 
DYD). However, this is difficult to do in certain con-
texts—for instance, in selection programs with small 
numbers of sires and small numbers of daughters each, 
or for traits with low heritability (Legarra and Reverter, 
2017). In the case of Pyrenean dairy sheep breeds, one 
of the problems for forward prediction is the existence 
of few sires, each with small progeny groups (Barillet 
et al., 2016).

In 2018, Legarra and Reverter presented the Linear 
Regression (LR) method, based on the comparison 
of EBV obtained from old records (partial data sets) 
with a data set containing both old and new records 
(a whole data set). The LR method does not require 
accurate EBV or precorrected phenotypes and can be 
used for any kind of traits (e.g., maternal effects on 
offspring). At the same time, VanRaden and O’Connell 
(2018) also proposed the use of changes in GEBV to 
validate published genomic reliabilities, although they 
did not address the existence of bias per se.

The LR method was formally presented and applied 
to an example data set (Legarra and Reverter, 2018), 
but it was not verified in depth. In particular, it as-
sumes that the heritability and the evaluation model are 
the correct ones, but these assumptions are not always 
true. In fact, it is of most interest to know whether the 
LR method can detect an incorrect model. In this work, 
we used simulations to analyze the potential of method 
LR to estimate the bias, the slope, and the accuracies 
of different scenarios: first when the evaluation model 
is correct, second when the heritability used for genetic 
evaluations is not correct, and finally when there is an 
environmental trend in the data that is not explicitly 
accounted for by the model. These cases may not be the 
most urgent of topics at present—for instance, bias due 
to ignoring genomic preselection in BLUP evaluations 
may be more urgent (Patry and Ducrocq, 2011)—but 
the aim of this study was to gain a general view of 
the capabilities of the LR method, especially when the 
model is reasonable. Only pedigree-based evaluations 
were considered, given the complexity of genomic pre-
dictions for the simulated data.

MATERIALS AND METHODS

Simulations

We simulated a dairy cattle breeding scheme with 
partially overlapping generations, progeny testing, and 
selection. Only females were phenotyped, with only 1 
record each, because of limitations of the simulation 
software. Two heritabilities (h2 = 0.10 and 0.30) were 
simulated. We used the QMSim v. 1.10 software pro-
gram (Sargolzaei and Schenkel, 2009), and the main 
parameters of the simulation are shown in Table 1 and 
the parameter file in Appendix 1. In each generation, 
8% of born males and 45% of born females were se-
lected to join the pool of reproducers, provided their 
EBV was high enough. Accordingly, animals with the 
lowest EBV in the pool were discarded. The pool of re-
producers contains, potentially, animals of all previous 
generations, and therefore parents of a given generation 
may came from any of the preceding generations. For 
instance, in Figure 1, we show an example of the gener-
ation of origin of parents of individuals in generation 7. 
It can be observed that, of 45,000 animals born in gen-
eration 7, 1,800 sires were born in generation 6, 1,192 
were born in generation 5, and so on. All born females 
have a single performance. The mating system seeks to 
minimize inbreeding (mating design = minf in QMSim 
parameter file; Sonesson and Meuwissen, 2000), achiev-
ing an average inbreeding, for all generations, close to 
zero. Instead of using QMSim internal BLUP evalua-
tions, genetic evaluations were performed at the end 
of each generation, using as external software blupf90 
(Misztal et al., 2002). Then QMSim selects individuals 
with higher external EBV to be parents for the next 
generation. This scheme allowed us the flexibility re-
quired to explore competing scenarios.

We considered 3 different strategies to evaluate the 
individuals in the population: (1) using the same model 
as the one used in simulation, (2) using a different h2 
for evaluation, or (3) adding an environmental trend. 
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Table 1. Main parameters used to simulate populations in QMSim 
software program (Sargolzaei and Schenkel, 2009)

Parameter  Value

Replicates 20
Generations 10
Sex ratio 0.5
Total animals in populations ~450,000
Phenotype Only 1 measure in females
Mating system Inbreeding control
Selection Higher EBV (BLUP)
Number of chromosomes 30
Number of QTL per chromosome 333
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In total, 11 scenarios were obtained: 2 using the correct 
model to evaluate, 4 using an incorrect h2, and 5 using 
an environmental trend effect. In all cases, TBV were 
simulated as the sum of QTL effects, sampled from 
a gamma distribution. All simulations used a genetic 
variance of 1, which implies that units (e.g., of bias) are 
in genetic standard deviations.

Correct Genetic Model. Phenotypes were simu-
lated, adding an overall mean and a residual deviate to 
TBV with 2 heritabilities: h2 of 0.10 (scenario T10) or 
0.30 (scenario T30). These heritabilities mimic, respec-
tively, health traits with low heritability, such as sub-
clinical mastitis, and moderately heritable production 
traits. The population was evaluated assuming the in-
finitesimal model (whereas the simulation uses a finite 
genome) y = 1μ + Zu + e, where u A~ , ,N u0 2σ( )  y is 
the vector of observations, μ is the overall mean, Z is 
the incidence matrix that relates the records to ani-
mals, e is the residual, A is the relationship matrix, 
and σu

2 is the genetic variance; and assuming the vari-
ance components used in simulations.

Incorrect Heritability. Phenotypes were simulated 
as above, with the same 2 heritabilities. However, the 
models used for genetic evaluation used wrong herita-
bilities. For simulations performed with an h2 of 0.1, 
we used h2 of 0.05 (scenario W05) and 0.15 (scenario 

W15) in the evaluation models, and for data simulated 
with an h2 of 0.3, the models for evaluation used h2 of 
0.25 (scenario W25) and 0.35 (scenario W35).

Environmental Trends. Phenotypes were simu-
lated as the sum of TBV, residual, and environmental 
trends, as follows. At each generation, an environmen-
tal trend was added of the form t × k, where t is the 
generation number and k is equal to half the genetic 
progress per generation. An example of phenotypic, 
genetic, and environmental trend is shown in Figure 
2. Then, at each generation, 9 CG with no effect were 
simulated, and the individuals were assigned randomly 
to each one. To guarantee genetic connections, CG 
included 5,000 individuals. The reason for this is that 
the number of daughters per male is low (approx. 11) 
and little overlap across generations occurs. Hence, to 
ensure connectedness, large groups are needed. Previ-
ous experimentation with 500 individuals provided very 
low connectivity, but results were qualitatively similar 
(data not shown). A sensible model (the “correct” one) 
for genetic evaluations for these conditions would be a 
regression on time to account for environmental trend, 
plus CG: yij = t × k + CGi + uj + eij.

We tried 2 approaches to perform the genetic evalu-
ation: CG as fixed effect or as random effect. In the 
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Figure 1. Generation of birth of the parents of 45,000 individuals 
of the seventh generation. Example of the first replicate of the simula-
tion scenario T10 (h2 = 0.10).

Figure 2. Phenotypic, genetic, and environmental trends corre-
sponding to the first replicate for the simulation scenario FCG30 (en-
vironmental trend, h2 = 0.30).
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first approach, CG was included as a fixed effect, yij = 
CGi + uj + eij. We expected that CG would capture the 
environmental trend. We simulated 2 heritabilities, 0.10 
(scenario FCG10) and 0.30 (scenario FCG30). In the 
second approach, CG was included as a random effect 
in the evaluation model, so that CG estimates would 
be reduced and may not fully capture the environmen-
tal trend. This second approach may therefore yield 
biased evaluations. We tried this approach using dif-
ferent variances of 0.0001 (scenario RCG0001), 0.001 
(scenario RCG001), and 0.01 (scenario RCG01). For 
this second approach, we performed simulations only 
for a heritability of 0.30.

Data Analysis

For each scenario, 20 replicates were obtained with 
10 generations each, and the LR method was applied 
starting in generation 5. After each generation we ran 
a BLUP genetic evaluation using blupf90 (Misztal et 
al., 2002). Thus, for each replicate there are 10 BLUP 
genetic evaluations. The LR method proceeds by com-
paring, only for individuals of interest (focal individu-
als), EBV with little information (partial) at genetic 
evaluation n and EBV with more information (whole) 
at genetic evaluation n + 1. Individuals of interest were 
males (approx. 1,800 in each generation), with parent 
average information during genetic evaluation n, and 
performance from daughters during genetic evaluation 
n + 1. Then the EBV of these individuals in the partial 
and whole evaluations are compared. Thus we proceed 
by comparing EBV across pairs of partial and whole 
evaluations. These individuals are selected by QMSim 
based on parent average, which has consequences for the 
estimated accuracy, as will be discussed later. In this 
manner, we have 5 comparisons per replicate (5 with 6, 
6 with 7, and so on until 9 with 10). We estimated the 
bias, slope, and accuracies using the formulas shown 
below, and we compared these with true bias, slope, 
and accuracies. The true values of bias, slope and ac-
curacy were obtained by comparing the EBV in genetic 
evaluation n with TBV.

Estimators

The LR method proposes estimators of bias ˆ ,∆p( )  
slope ˆ ,bp( )  ratios of accuracies ˆ ,,ρw p( )  reliability accp

2�





, 

and ratios of reliabilities ρ2�
w p, .






  Accuracies and reli-

abilities are “selected” ones, in the spirit of Dekkers 
(1992) and Bijma (2012); in other words, they are 
lower if the animals of interest are selected. For a 
deeper description of the statistics, see Legarra and 

Reverter (2018). All the estimators can be used in mul-
tiple trait evaluations as well.

To check the capability of the estimators of bias, 
slope, and accuracy, we report (a) means and standard 
deviation of true and estimated values and (b) correla-
tions between true and estimated values. The purpose 
of reporting the means is to verify whether the LR 
method is a consistent estimator. For instance, if true 
slope is 0.9, we want find an average of approximately 
0.9, not of 0.7 or 1.1. The purpose of reporting the 
correlations is to verify the precision of the LR method. 
For instance, if the true ratio of accuracies is 0.5, we 
want the estimator to cluster near this value.

Bias. The formula we used for bias was ˆ ˆ ˆ ,∆p p wu u= −  
where ûp are EBV based on partial data sets and ûw are 
EBV based on whole data sets. This statistic estimates 
the true bias (Δp) between EBV and TBV—that is, 
ˆ ,u up −  where u represents TBV. In the absence of true 
bias, the expected value of ∆̂p is zero. A metric of pos-
sible interest is the intercept of the regression of ûw on 

ûp, which is different from ∆̂p if 
cov u u

var u
w p

p

ˆ ˆ

ˆ

,( )
( )

≠ 1 (Män-

tysaari et al., 2010). However, we prefer not to consider 
this metric for our work, first because it does not check 
the property of BLUP that E(û) = E(u), regardless of 
selection; second because when making selection deci-
sions, as on preselected candidates for selection, it is ûp  
and not the intercept that is implicitly used to compare 
younger versus older generations. In our study, we con-
sidered a specific group of animals for which selection 
proceeds identically, by parent average. In more com-
plex settings (for instance, when the focal group con-
sists of a mixture of animals selected in different ways), 
it is unclear how selection across several pathways af-
fects differences among average EBV. The standard 
intercept of the regression may be helpful in such a 
case, as a perhaps more robust indicator of bias across 
several groups of individuals selected in heterogeneous 
manners.

Slope. This is the formula for the slope of the regres-
sion of EBV with whole data set (EBVw) on estimated 
breeding values with partial data set (EBVp): 

ˆ ˆ ˆ

ˆ

,
.b

cov u u

var up
w p

p

=
( )
( )

 This is an estimator of the true slope: 

b
cov u u

var up
p

p

=
( )
( )
, 

.
ˆ

ˆ
 This estimator is related to the disper-

sion of EBV, and the expected value of ̂bp in the absence 
of bias is 1. Values less than 1 indicate overdispersion of 
the EBV.

Ratio of Accuracies. This is the formula for the 
estimator of the ratio of accuracies: 

Macedo et al.: ESTIMATING GENETIC PREDICTION BIAS AND ACCURACY
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ˆ
ˆ ˆ

ˆ ˆ

,
.,ρw p

p w

p w

cov u u

var u var u
=

( )
( ) ( )

 The expected value of this es-

timator is 
acc
acc

p

w
, where accp is the true (“selected”) ac-

curacy in the partial data set and accw is the true ac-

curacy in the whole data set. Thus, 
1

ˆ ,ρp w
 is the relative 

increase of accuracy from partial to whole information. 
For instance, if ˆ ,ρp w is equal to 0.5, the addition of infor-
mation doubled the accuracy.

Accuracy of EBV from the Partial Data Set. 
The formula for accuracy in the partial data set is 

acc
cov u u

p
w p

g i

2
2

� =
( )ˆ ˆ,

,
,σ

 where σg i, 
2  is the genetic variance of 

the individuals of interest. The original Legarra and 
Reverter (2018) paper suggests the formula 

acc
cov u u

F fp
w p

g

2
21 2

� =
( )

+ −( )
ˆ ˆ,

,
,σ ∞

 where F  is the average in-

breeding coefficient, 2f  is the average relationship be-
tween individuals, and σ ∞g,

2  is the genetic variance at 
equilibrium in a population under selection. However, 
this formula applies if animals of interest are represen-
tative samples of their generation—in other words, they 
are not yet selected. The formula that we present here 
is more general. This statistic estimates the “selected” 
reliability (square of the accuracy) on a partial data 
set, although it does not estimate model-based accuracy 
(Dekkers, 1992; Bijma, 2012). We verified that true accp

2 
agreed with its expected value. The expected value was 
obtained considering the selection intensities used in 
the simulation; the model-based accuracies were ob-
tained from the inverse of the Mixed-Model Equations 
in the BLUP evaluations and using the expressions 
described in Bijma (2012), as shown in Appendix 2.

To estimate σg i,   
2  in our case (with true values known 

from simulation), we simply used

 σg i j jn
u

n
u,  ,2 2

21 1
= ∑ − ∑









  

which already considers the fact that animals may be 
related (although in our case, they were very little re-
lated). In real data sets, σg i, 

2  can be estimated for any 
subset of individuals by Gibbs sampling (Sorensen et 
al., 2001; Lehermeier et al., 2017). If there is no selec-
tion, the following formula may be used: 
σ σ σg i g gF f F f,  ,  ,2 2 21 2 1 2= + −( ) = + −( )∞  as no Bulmer 
effect occurs, only drift. Thus, this estimator is of easy 
use for unselected individuals or traits.

Ratio of Reliabilities. We used the following for-
mula to calculate the ratio of reliabilities: 

ρp w
p w

w

cov u u

var u,

ˆ ˆ

ˆ

,
.2� =

( )
( )

 This is a measure of the inverse in-

crease in (“selected”) reliabilities from partial to whole, 

with an expected value .,E
acc

accp w
p

w

ρ2
2

2
�





 =

RESULTS

Scenario 1: Correct Genetic Model

Figure 3 shows, across all replicates, true and esti-
mated biases. Because the model used in the genetic 
evaluation was the same as that used to simulate the 
data, no bias is expected. Nevertheless, a small true 
bias was generated due to chance. For the 2 heritabili-
ties, the estimator was able to indicate the true value of 
bias: corr p∆ ∆, .p

�( ) = 0 59 for T10 (Table 2 and Figure 3, 

left-hand panel). The best estimation was in the higher-
heritability scenario: corr p∆ ∆, .p

�( ) = 0 61 for T30 (Table 

2 and Figure 3, right-hand panel). In Figure 3, points 
of the same color belong to the same replicate, and it is 
clear that they do not cluster together. In other words, 
comparisons within replicates can be seen as indepen-
dent.

Similar results were observed (Figure 4 and Table 2) 
for the estimator of the slope of EBV: corr b bp p, .�( ) = 0 45 

for T10 and corr b bp p, .�( ) = 0 59 for T30. Thus, the true 

slope was more precisely estimated when heritability 
was high (h2 = 0.30).

Figure 5 shows ˆ ,ρw p and accp
2�, the estimator of the 

accuracy gain from partial to whole data sets and the 
estimator of reliability for partial data, versus true val-

ues from the simulations: 
acc
acc

p

w
 and accp

2, respectively. 

We found good agreement between estimators and true 
values; for instance, for scenario T10, 

corr
acc
accw p

p

w
ˆ , .,ρ









= 0 54 and corr acc accp p

2 2 0 45�, . .





 =  For 

scenario T30, we found corr
acc
accw p

p

w
ˆ , .,ρ









= 0 62 and 

corr acc accp p
2 2 0 53�, . .






 =  We also verified that values of 

true accuracy, accp
2, and estimated accuracy, accp�2

, agree 
with expectations based on model-based accuracies and 
selection decisions and intensities (see Appendix 2). In 
particular, the low mean values of accp

2, 0.022 and 0.033, 
are due to preselection on males based on parent aver-
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age, whereas model-based (or unselected) reliabilities 
are 0.16 and 0.25.

The estimator ρp w,
2�  behaved similarly to ˆ .,ρw p  For ex-

ample, corr w p p wˆ , ., ,ρ ρ2 0 91�







 =  for both heritabilities, 

0.10 and 0.30.

Scenario 2: Incorrect Heritability in Evaluation Model

When we used the wrong h2 in the model for evalu-
ation, the largest differences could be seen in the es-
timation of bias (Figure 6 and Table 3). The use of 
an incorrect heritability generates a strong true bias. 
Similarly to the detection of bias, the estimator was 
able to indicate the bias in the correct direction, but 
the magnitude was underestimated. For instance, the 
real bias of scenario W05 is approximately 0.10, but the 
estimated bias is approximately 0.05. These differences 
are more pronounced for lower h2.

In the case of the estimation of slope, Table 3 and 
Figure 7 show that the use of incorrectly high heritabil-

ity results in true values of slope bp less than 1, as indi-
cated by Reverter et al. (1994a), with the effect more 
important for the scenario with a simulated heritability 
of 0.10 (mean bp of 0.83 in scenario W15 and 0.97 in 
scenario W35). In addition, it is possible to observe 
that there is no important difference among means of 
the estimators of slopes across heritabilities, but differ-
ences do exist with respect to the variation of the esti-
mators, with the estimators of W05 and W15 being 
more variable than those of W25 and W35. Neverthe-
less, in all scenarios the slope could be estimated, al-
beit with low precision (Figure 7 and Table 3): 
corr b bp p, ˆ( ) for scenario W05 = 0.53, W15 = 0.44, W25 
= 0.46, and W35 = 0.46. We observe that for scenario 
W05, true bp was close to 1, whereas it should be 
higher; we have no explanation for this. Table 4 shows 
the results of the estimations of accuracies. In general, 
it is possible to estimate both the ratio of accuracies 
acc
acc

p

w










 and the squared accuracy accp

2( ). Note that the 

values of the squared accuracies in accp
2� are very small, 
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Figure 3. Estimated versus true bias, simulation scenarios T10 (h2 = 0.10) and T30 (h2 = 0.30). Different colors are used for each replicate.

Table 2. Mean, SD, and correlation between estimated ∆̂p( ) and true bias (Δp) and estimated b̂p( ) and true 

slope (bp) when the h2 used in the evaluation model was the correct one

Estimator  Scenario1
Estimated 
value (SD) True value (SD)

Correlation 
estimated—true

∆̂p T10 −0.001 (0.005) −0.001 (0.010) 0.59
T30 −6.55e−05 (0.008) −5.76e−04 (0.014) 0.61

b̂p T10 0.996 (0.067) 1.009 (0.167) 0.45
T30 1.006 (0.069) 0.992 (0.141) 0.59

1Scenario T10: h2 = 0.10; scenario T30: h2 = 0.30.
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because these animals have very little information when 
selected as candidates for selection: a phenotyped dam 
and possibly a few phenotyped half-sibs.

It is possible to observe a particular behavior in sce-
nario W05. For instance, this scenario estimates incor-
rect values of ˆ ,ρw p and of ρp w, .2�  A possible explanation 
could be the use of excessively low heritability, where 
sires’ EBV have a very small contribution from daugh-
ters’ phenotypes, and the EBV in successive genetic 
evaluations tend to strongly resemble parent average 
EBV.

Scenario 3: Not Fitting Environmental Trend

When we used CG as a fixed effect, because the CG 
are large enough, they correctly capture the effect of 
the environmental trend, and there is almost no bias in 
the evaluations, only relatively small biases due to 
chance (approx. 0.05 genetic standard deviation). Fig-
ure 8 shows that this bias cannot be very well esti-
mated: corr p p∆ ∆, ˆ  ( ) is 0.46 for scenario FCG30 and 
0.41 for scenario FCG10. Additionally, its estimated 
magnitude is too small. The estimator of the slope (Fig-
ure 9 and Table 5), whose direction is well estimated—
corr b bp p, ˆ( ) equal to 0.52 for FCG10 and 0.60 for 
FCG30—but whose magnitude is underestimated. Ac-
curacies are in general well estimated (Table 6).

When CG are used as random effect, at each genera-
tion the true bias increases, because the genetic trend 
captures the environmental trend (Figure 10). It is pos-
sible to observe that the confusion decreases as the 
variance used for the CG increases and the CG esti-

mates are less reduced, but in no case is it possible to 
estimate the true bias. Regarding the remaining , b̂p 
performed more poorly when CG were fit as random 
effects than when CG were used as fixed effects: 
corr b bp p, ˆ( ) were 0.43, 0.45, and 0.49 for RCG0001, 
RCG001, and RCG01, respectively. Meanwhile, the es-
timators of accuracies presented similar values to those 
of the fixed CG scenarios but with less correlation be-
tween estimator and estimated (Table 6).

DISCUSSION

Several reports have showed some concern about the 
bias of the genomic predictions of young bulls with 
genomic predictions (Spelman et al., 2010; Sargolzaei 
et al., 2012; Mikshowsky, 2018). Using different meth-
odologies, several studies have detected bias (Liu et al., 
2016; Mikshowsky et al., 2017). In addition, bias is a 
problem that continues to motivate studies of dairy 
sheep. In Pyrenees dairy sheep breed selection schemes, 
some bias was found, ranging from 4.92 (Basco-Béar-
naise) to 16.98 L of milk (Manech Tête Rousse) with 
pedigree evaluations and slopes of 0.44 (Manech Tête 
Noire) to 0.95 (Basco-Béarnaise; Legarra et al., 2014). 
This demonstrates that bias may be present in the ge-
netic evaluations of some dairy sheep breeds. However, 
these studies relied on the use of precorrected data, and 
we were interested in the possibility of using official 
genetic evaluations to quantify biases and accuracies.

Studies searching for methods to analyze bias in 
genetic evaluations are not new. In 1994 Reverter et 
al. (1994b) presented 3 statistics related to dispersion, 
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Figure 4. Estimated versus true slope, simulation scenarios T10 (h2 = 0.10) and T30 (h2 = 0.30).



536

Journal of Dairy Science Vol. 103 No. 1, 2020

accuracy, and genetic gain, obtained from subsets of 
EBV of successive evaluations. The following year, Boi-
chard et al. (1995) presented 3 methods to check bias in 
genetic evaluations; for the first 2 methods, work with 
raw data is needed, but the last method is based on 
statistics obtained from EBV obtained from different 
data sets. Following the same principles, Mäntysaari 
et al. (2010) developed the Interbull validation test 
for genomic evaluations, using GEBV from a reduced 
data set and DYD from a full data set. However, this 
requires access to the raw data sets, and DYD are not 
always computable or reliable, as we have seen among 
sheep and swine. In addition, for traits that have been 
genomically preselected, the estimated genetic trends 
and DYD using pedigree information only are possibly 
biased (Sullivan, 2018). Yet these pedigree evaluations 
pass the Interbull test, although they may not pass 
the Mendelian sampling variance test (Sullivan, 2018; 
Tyrisevä et al., 2018). Because the LR method does not 
use DYD, it should not be affected by biased DYD.

Comparing successive EBV is advantageous because 
there is no need to access the full data, and also because 

the procedure is very simple to execute. This is why 
comparing EBV was proposed by Reverter et al. (1994b) 
and Boichard et al. (1995). The genetic interpretation 
of this comparison, according to Thompson (2001), is, 
“Informally this statistic is asking the question does 
the recent data change the prediction of early animals. 
In a sense this is looking backwards.” The LR method 
is an extension of the ideas of Reverter et al. (1994b). 
Using standard BLUP theory, Legarra and Reverter 
(2018) showed that, by comparing old and new EBV, 
it is possible to infer biases and also accuracies at the 
population level. However, the behavior of this method 
in practice is unknown. In particular, the LR method 
assumes that the model for genetic evaluation is per-
fect. In this work, we used simulation to verify that 
the LR method is robust to departures from the true 
model (generally speaking), which is very advantageous 
because analytical models are always compromises that 
do not perfectly reflect the state of nature.

One of our results is the correlation between true 
and estimated value, as of the estimated accuracy. 
This number reflects the ability to estimate, in a data 
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Figure 5. Estimations of accuracies, simulation scenarios T10 (h2 = 0.10) and T30 (h2 = 0.30). (a) Estimations of the inverse of relative gain 
in accuracy from partial to whole data sets ˆ ,,ρw p( )  versus the ratio of the accuracy with partial data set to the accuracy with whole data set 
acc
acc

p

w










. (b) Estimations of reliability on partial data set accp
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 versus true reliability on partial data set accp

2( ).
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set, the parameter of interest using the LR method, 
but the variation of the true parameter of interest is 
generally small, and therefore the correlation is not a 
good guide. In addition, the correlation between the 
estimator and the true value is not available for a single 
study with real data. A confidence interval around the 
estimated value would be more useful. For this, Legarra 
and Reverter (2018) suggested bootstrap. This deserves 
investigation.

When the model is wrong, clear indications might 
or might not be present. For instance, Table 3 points 
out that heritabilities fit in the model appear to be 
incorrect, and the model may be changed accordingly. 
However, the LR method cannot “see” (e.g., Figure 10) 
that the model for random CG is biased.

In several cases, we observed that the bias was cor-
rectly estimated in direction but not correctly estimated 
in magnitude: for example, when the wrong heritability 

was used in the evaluation model. This is because if 
estimated EBV are too greatly or too little regressed 
(as due to an incorrect model), the statistics used are, 
therefore, scaled, but the sign does not change. In our 
case, the difference between true and used heritability 
was not very large, which results in signals of bias that 
are not very strong (see Table 3). Still, method LR 
in this scenario generally pointed out that problems 
existed in the evaluation.

However, when an environmental trend was simulated 
and CG was used as a random effect (a very incorrect 
model of evaluation) the EBV captured an important 
part of the environmental trend, and consequently 
estimation of bias through the LR method became 
impossible. When the model for genetic evaluation was 
robust, no bias occurred, and the LR method reported 
correct results. Globally, these 2 scenarios (incorrect 
heritability and environmental trend) show that the LR 
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Figure 6. Estimated versus true bias when the evaluation model used incorrect heritability: simulation performed with h2 = 0.10, evaluation 
model used h2 = 0.05 (W05) or h2 = 0.15 (W15); simulation performed with h2 = 0.30, evaluation model used h2 = 0.25 (W25) or h2 = 0.35 
(W35). Simulation scenarios T10 and T30 (when heritability used in the evaluation model was correct, h2 = 0.10 or 0.30, respectively) were 
included for comparison.

Table 3. Mean, SD, and correlation between estimated ∆̂p( ) and true bias (Δp) and between estimated b̂p( )  
and true (bp) slope when the h2 used in the evaluation model was incorrect

Estimator  Scenario1
Estimated 
value (SD) True value (SD)

Correlation 
estimated—true

∆̂p W05 −0.030 (0.006) −0.111 (0.015) 0.77
W15 0.035 (0.005) 0.091 (0.010) 0.36
W25 −0.027 (0.007) −0.054 (0.012) 0.55
W35 0.032 (0.009) 0.050 (0.014) 0.63

b̂p W05 1.091 (0.077) 0.976 (0.235) 0.54
W15 0.931 (0.083) 0.826 (0.135) 0.44
W25 1.026 (0.065) 1.059 (0.138) 0.46
W35 0.980 (0.071) 0.969 (0.109) 0.46

1Scenario W05: true h2 = 0.10, used h2 = 0.05; W15: true h2 = 0.10, used h2 = 0.15; W25: true h2 = 0.30, used 
h2 = 0.25; W35: true h2 = 0.30, used h2 = 0.35.
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method works reasonably well for detection of biases 
when the model is robust or close to the true one, and 
that it works well for estimation of accuracy even when 
the model is not good. This is because accuracies are 
correlations that are invariant to shift and scaling.

The most obvious use of statistics on bias is model 
selection. We suggest that a good model is one that is 
empirically (i.e., using the LR method or a similar one) 
unbiased (both in bias and slope) and that gives accu-
rate predictions. For instance, it seems reasonable to 
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Figure 7. Estimated versus true slope when the evaluation model used an incorrect heritability: simulation performed with h2 = 0.10, evalu-
ation model used h2 = 0.05 (W05) or h2 = 0.15 (W15); simulation performed with h2 = 0.30, evaluation model used h2 = 0.25 (W25) or h2 = 
0.35 (W35). Simulation scenarios T10 and T30 (when heritability used in the evaluation model was correct, h2 = 0.10 or 0.30, respectively) were 
included for comparison.

Table 4. Mean, SD, and correlation between estimated ˆ , ,ρ ρw p p p wacc, , and 2 2� �
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, when h2 used in the evaluation model was incorrect; values for scenarios  

T10 and T30 (when h2 used in the evaluation model was correct) are included for comparison1

Estimator  Scenario2
Estimated 
value (SD) True value (SD)

Correlation 
estimated—true

ˆ ,ρw p T10 0.381 (0.028) 0.385 (0.059) 0.54
W05 0.587 (0.043) 0.366 (0.074) 0.41
W15 0.305 (0.028) 0.360 (0.057) 0.43
T30 0.344 (0.024) 0.336 (0.045) 0.62
W25 0.371 (0.027) 0.340 (0.043) 0.50
W35 0.319 (0.022) 0.349 (0.036) 0.45

accp
2� T10 0.021 (0.003) 0.022 (0.007) 0.45

W05 0.020 (0.004) 0.018 (0.008) 0.32
W15 0.025 (0.003) 0.018 (0.006) 0.48
T30 0.033 (0.004) 0.033 (0.009) 0.53
W25 0.030 (0.004) 0.033 (0.009) 0.45
W35 0.036 (0.003) 0.035 (0.008) 0.44

ρp w,
2� T10 0.146 (0.016) 0.152 (0.046) 0.50

W05 0.319 (0.051) 0.139 (0.055) 0.28
W15 0.100 (0.011) 0.133 (0.042) 0.40
T30 0.118 (0.011) 0.115 (0.030) 0.57
W25 0.135 (0.014) 0.118 (0.030) 0.43
W35 0.104 (0.008) 0.123 (0.025) 0.48

1ˆ ,ρw p  = estimator of the ratio of accuracies; accp
2�  = estimator of the accuracy of EBV in partial data set; ρp w,

2� 

= estimator of the ratio of reliabilities; 
acc
acc

p

w
 = ratio of accuracies; accp

2 = accuracy of EBV in partial data set; 

and 
acc

acc
p

w

2

2  = ratio of reliabilities. 

2Scenario T10: h2 = 0.10; scenario T30: h2 = 0.30; scenario W05: true h2 = 0.10, used h2 = 0.05; W15: true h2 
= 0.10, used h2 = 0.15; W25: true h2 = 0.30, used h2 = 0.25; W35: true h2 = 0.30, used h2 = 0.35.
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choose, between 2 competing heritabilities, the one that 
would give less bias, as on Δp. However, this seems to 
work only for minor changes in the model, given that 
Δp is not estimable if the model is too far from reality 
or not robust, as in the environmental trend and ran-
dom CG scenario. Also, the theory only works within 
the model; that is, the results of checking ûp of model 1 
against ûw of model 2 do not have theoretical support. 
Still, a model that is more coherent (empirically unbi-
ased from run to run) always seems more attractive 
than one with erratic behavior, in which biases are ob-
served.

We presented 3 estimators related to accuracies, 2 of 
them being ratios of accuracies ˆ ,ρw p and ρ2�

w p, , which try 
to indicate the changes in accuracies due to the incre-
ment of information. Because they are ratios of the 
accuracy and the reliability, they should be equivalent 
(they are expectations of the same true values), but as 
the results show, they are not. One of the reasons is 
that expectations do not yield true values, so 2 expec-
tations constructed differently may give different val-
ues. Another, more relevant, reason for the difference is 
that ρ2�

w p,  is influenced by the dispersion of EBV in the 
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Figure 8. Estimated versus true bias when an environment trend effect was simulated: scenarios FCG10 (h2 = 0.10) and FCG30 (h2 = 0.30).

Figure 9. Estimated versus true slope when an environment trend effect was simulated and contemporary group (CG) is used as fixed effect 
in the model: scenarios FCG10 (h2 = 0.10) and FCG30 (h2 = 0.30).
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partial and whole data sets, whereas ˆ ,ρw p is not (Le-
garra and Reverter, 2018), so if the slope is not equal to 
1, the estimators will differ. In that sense, ˆ ,ρw p is robust 
to slopes not being 1.

All accuracies and reliabilities in this study are “se-
lected” ones, meaning that they refer to a selected set 
of individuals. Therefore, they are affected by selection 
and much lower than model-based accuracies and reli-
abilities, as shown in Appendix 2. Biases and slopes 
may both be affected by selection. For instance, if bp < 
1 (inflation of EBV), prediction is unbiased, consider-

ing averages of all animals in the first generation. How-
ever, selected animals will be overdispersed, and their 
estimated mean will be lower than the true mean. If 
selected animals are used for the LR method, then ∆̂p 
will be different from zero, showing that BLUP is not 
biased for this group of animals, which is the property 
of interest for breeders.

The ultimate aim of the LR method, and that of 
this study, is to reliably detect systematic biases in 
genetic evaluations that, if ignored, would hamper ge-
netic progress—as the overdispersion of EBV results in 
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Table 5. Mean, SD, and correlation between estimated ∆̂p( ) and true bias (Δp) and between estimated b̂p( )  
and true (bp) slope when an environmental effect was simulated

Estimator  Scenario1
Estimated 
value (SD) True value (SD)

Correlation 
estimated—true

∆̂p FCG10 4.34e−04 (0.003) 0.001 (0.013) 0.41
FCG30 0.001 (0.006) −0.001 (0.013) 0.46
RCG0001 −0.121 (0.008) 0.404 (0.121) 0.13
RCG001 −0.074 (0.012) 0.189 (0.075) −0.78
RCG01 −0.013 (0.006) 0.030 (0.022) −0.08

b̂p FCG10 0.995 (0.076) 0.984 (0.173) 0.52
FCG30 0.993 (0.072) 1.003 (0.133) 0.60
RCG0001 1.01 (0.056) 0.877 (0.112) 0.43
RCG001 1.01 (0.064) 0.936 (0.122) 0.45
RCG01 1.01 (0.064) 0.974 (0.137) 0.49

1Scenario FCG10: h2 = 0.10; FCG30: h2 = 0.30; RCG0001, RCG001, and RCG01: h2 = 0.30, and variance of 
contemporary groups = 0.0001, 0.001, and 0.01, respectively.

Table 6. Mean, SD, and correlation between estimated ˆ , ,ρ ρw p p p wacc, , and 2 2� �
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 when an environmental effect was simulated1

Estimator  Scenario2
Estimated 
value (SD) True value (SD)

Correlation 
estimated—true

ˆ ,ρw p FCG10 0.377 (0.031) 0.374 (0.061) 0.53
FCG30 0.337 (0.024) 0.338 (0.042) 0.59
RCG0001 0.382 (0.023) 0.340 (0.040) 0.54
RCG001 0.364 (0.022) 0.340 (0.043) 0.48
RCG01 0.344 (0.023) 0.333 (0.046) 0.54

accp
2� FCG10 0.020 (0.003) 0.020 (0.007) 0.39

FCG30 0.032 (0.003) 0.033 (0.009) 0.58
RCG0001 0.042 (0.004) 0.033 (0.008) 0.40
RCG001 0.037 (0.004) 0.033 (0.009) 0.44
RCG01 0.033 (0.003) 0.032 (0.009) 0.50

ρp w,
2� FCG10 0.143 (0.016) 0.144 (0.046) 0.42

FCG30 0.114 (0.011) 0.116 (0.028) 0.57
RCG0001 0.144 (0.012) 0.117 (0.027) 0.50
RCG001 0.131 (0.010) 0.117 (0.029) 0.40
RCG01 0.118 (0.011) 0.113 (0.030) 0.51

1ˆ ,ρw p  = estimator of the ratio of accuracies; accp
2�  = estimator of the accuracy of EBV in partial data set; ρp w,

2� 

= estimator of the ratio of reliabilities; 
acc
acc

p

w
 = ratio of accuracies; accp

2 = accuracy of EBV in partial data set; 
acc

acc
p

w

2

2  = ratio of reliabilities. 

2Scenario FCG10: h2 = 0.10; FCG30: h2 = 0.30; RCG0001, RCG001, and RCG01: h2 = 0.30, and variance of 
contemporary groups = 0.0001, 0.001, and 0.01, respectively.
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choosing too many young animals and leads to slower 
genetic progress. Overestimating genetic progress for a 
trait may result in changes to selection objectives. This 
problem is not merely theoretical; for instance, Powell 
and Wiggans (1994) describe a bias in the US national 
evaluation that generated overprediction of breeding 
values of US bulls in France (Bonaiti and Barbat, 1993).

Efron (2004) showed that parametric and nonpara-
metric (cross-validation) prediction error estimates are 
related, and, when the model used for genetic evalua-
tions is believable, estimation of error using parametric 
methods is more precise than the results of a nonpara-
metric method. Therefore, as an ancillary property, the 

LR method can assist finding a believable model from 
which statistics of interest (biases and accuracies) can 
be obtained parametrically.

CONCLUSIONS

The LR method is capable of estimating bias and 
accuracies if the model is reasonably correct or robust, 
and its estimates of bias and accuracies improve as 
information increases (that is, when the heritability 
of the trait is high). For incorrect genetic models—in 
our case, if the heritability used in genetic evaluations 
was wrong, or if there were hidden trends in the data 
such as an environmental trend—it is still possible to 
estimate bias if the model is robust. The direction of 
the bias will be correctly pointed out but not its mag-
nitude. However, if the model is seriously mis-specified 
(in our work, such that environmental trend could not 
be accommodated), the LR method cannot estimate 
the bias. However, the estimators of slope and accura-
cies generally performed well for all scenarios. Further 
research is warranted, using the LR method with real 
data.
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APPENDIXES

Appendix 1. Example of QMSim Parameter File  
for Heritability of 0.10

/******************************* 
** Global parameters ** 
*******************************/ 
seed = “./seed.prv”; 
nthread = 1; 
nrep = 20; //Number of replicates 
h2 = 0.10; //Heritability 
qtlh2 = 0.10; //QTL heritability 
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phvar = 1.0; //Phenotypic variance 
no_male_rec; //Males have no record 
/******************************* 
** Historical population ** 
*******************************/ 
begin_hp; 
hg_size = 100 [0] 100 [100] 100000 [110]; 
nmlhg = 5000; //Number of males in the last 
generation 
end_hp; 
/******************************* 
** Populations ** 
*******************************/ 
begin_pop = “p1”; 
begin_founder; 
male [n = 4500, pop = “hp”]; 
female [n = 45000, pop = “hp”]; 
end_founder; 
ls = 1; //Litter size 
pmp = 0.5; //Proportion of male progeny 
ng = 10; //Number of generations 
md = minf; //Mating design 
sr = 0.4; //Replacement ratio for sires 
dr = 0.2; //Replacement ratio for dams 
sd = ebv /h; //Selection design 
cd = ebv /l; //Culling design 
ebv_est = external_bv “Sol.sh”; 
begin_popoutput; 
data; 
stat; 
genotype /snp_code /gen 0 1 2 3 4 5 6 7 8 9 
10; 
end_popoutput; 
end_pop; 
/******************************* 
** Genome ** 
*******************************/ 
begin_genome; 
begin_chr = 30; 
chrlen = 100; //Chromosome length cm 
nmloci = 1500; //Number of markers 
mpos = rnd; //Marker positions 
nma = all 2; //Number of marker alleles 
maf = eql; //Marker allele frequencies 
nqloci = 333; //Number of QTL was 10000 
qpos = rnd; //QTL positions 
nqa = all 2; //Number of QTL alleles 
qaf = eql; //QTL allele frequencies 
qae = rndg 0.4; //QTL allele effects 
end_chr; 
mmutr = 2.5e-5 /recurrent; //Marker mutation 
rate 
qmutr = 0.01 /recurrent; //QTL mutation rate 
r_mpos_g; // Randomize marker positions 

across genome 
r_qpos_g; // Randomize QTL positions across 
genome 
end_genome; 
/******************************* 
** Output options ** 
*******************************/ 
begin_output; 
hp_stat; 
monitor_hp_homo /freq 1; 
allele_effect; 
end_output;

Appendix 2. Agreement of Selected Accuracies 
Computed Using the LR Method and Expected 

Accuracies from BLUP

Henderson (1975) proved (implicit in the paper and 
not explicitly shown) that for selection assuming L′y 
and L′X = 0, the distribution of variances and covari-
ances is as follows:
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where Bu represents the selection process, H0 repre-
sents the decrease in variance under selection, and C22 
represents the corresponding block of the inverse of the 
coefficient matrix for animal equations.

In other words, Var u G G B H Bu u( ) = = −* '0  de-
scribes the reduction in genetic variance due to selec-
tion, and then,
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similar to Legarra and Reverter (2018) but with G 
substituted by G*. For a set of little-related, homoge-

neous individuals of interest, G G* .,≈
σ

σ
g i

g

2

2
 The LR 

method estimates, using accp
2�, selected accuracies (called 

r*2 in Dekkers, 1992), which are r PEV

g i

* .
,

2
2

1= −
σ

 Thus, 

the way to compare with model-based reliabilities 

r PEV

g

2
2

1= −
σ

 [for instance, from the inverse of the 

mixed-model equations (MME)] is, considering selec-
tion intensities of candidates for selection, to check 
whether r*2 agrees with r2.
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Below, we calculate the expected value of equilibrium 
parent average reliability [r*2 = ρ ∞PA,

2  in Bijma (2012)], 

which is what accp
2�  tries to estimate, given model-based 

reliabilities and selection intensities. We follow Equa-
tion 10 of Bijma (2012) to calculate the parent average 
reliability at equilibrium with different selection in both 
sexes:

 r
k k
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2 2
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2

1 1
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−( )+ −( )
ρ

ρ ρ
∞

∞ ∞  

where ρ ∞m SC, ,
2  and ρ ∞f SC, ,

2  are the equilibrium reliabili-
ties of the selection criterion for each sex (m = males 
and f = females, parents of the focal individuals) and 
km and kf are the proportional reductions in variance for 
males (m) and females (f) (Robertson, 1977).

The terms ρ ∞m SC, ,
2  and ρ ∞f SC, ,

2  could be calculated 
from
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and ρm SC, ,0
2  and ρf SC, ,0

2  are the unselected reliabilities [r2 
in Dekkers (1992)] of selection criterion of males and 
females, ignoring selection—or, in other words, the 
model-based reliability derived from the inverse of the 
MME.

Application to Simulated Data

In the scenario with a correct genetic model, for both 
heritabilities, we calculated ρ ∞PA,

2  of the focal individu-

als of generation 7 (males born in generation 7 and used 
as sires in next generations) from the first replicate, 
taking the average model-based reliability (from BLUP) 
of his sires and dams as ρm SC, ,0

2  and ρf SC, , .0
2  In both cases, 

the proportion of selected was of 0.08 for males and 
0.45 for females, so km = 0.84 and kf = 0.65.

Case of h2 = 0.10 (T10)

For the lower heritability, we obtained values of 
ρm SC, , .0

2 0 37=  and ρf SC, , . .0
2 0 26=  Then, following the 

equations, ρm SC, , . ,∞ =
2 0 27  ρf SC, , . ,∞ =

2 0 14  and finally, 
ρPA, . ,∞ =

2 0 023  which represents the equilibrium parent 
average (PA) reliability for EBV on the partial data set 
and is the expected value of r*2 (true value) and of accp

2�  
(estimator), agreeing very well with both (Table 4). In 
addition, we obtained from the inverse of the MME the 
model-based (or unselected) reliability EBV using the 
partial data set (ûp). The mean reliability obtained 
from the MME was 0.16, which compares to the equi-
librium PA reliability of 0.023. We can see an important 
deviation from ρPA, ,∞

2  respecting the reliability obtained 
from BLUP evaluation, but this is because they express 
2 different reliabilities.

Case of h2 = 0.30 (T30)

Given ρm SC, , .0
2 0 57=  and ρf SC, , .0

2 0 49=  from BLUP 
evaluations, we calculated ρ ∞m SC, , . ,2 0 44=  ρ ∞f SC, , . ,2 0 33=  
and ρ ∞PA, . .2 0 046=  Our result for this case was 

acc accp p
2 2 0 033= =� .  (Table 4), a value lower than but 

reasonably close to ρ ∞PA, .2  The reason for the difference 
is perhaps that the reality of selection is not well de-
scribed by the expressions above. The mean of model-
based reliabilities from BLUP was 0.25.

It is necessary to highlight that here we showed ex-
amples taking focal males from the seventh generation 
and only 1 replicate for each heritability. The values of 
estimations presented in results are the mean across all 
the replicates, including 5 pairs of partial-whole data 
sets within each replicate.
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