S. Fatma, A. Hameed, M. Noman, T. Ahmed, M. Shahid et al., Lignocellulosic Biomass: A Sustainable Bioenergy Source for the Future, Protein Pept. Lett, vol.25, pp.148-163, 2018.

S. Apprich, Ö. Tirpanalan, J. Hell, M. Reisinger, S. Böhmdorfer et al., Wheat bran-based biorefinery 2: Valorization of products, LWT, vol.56, pp.222-231, 2014.

M. Naczk and F. Shahidi, Extraction and analysis of phenolics in food, J. Chromatogr. A, vol.1054, pp.95-111, 2004.

Y. M. Xing and P. J. White, Identification and function of antioxidants from oat greats and hulls, J. Am. Oil Chem. Soc, vol.74, pp.303-307, 1997.

J. H. Grabber, S. Quideau, and J. Ralph, p-coumaroylated syringyl units in maize lignin: Implications for beta-ether cleavage by thioacidolysis, Phytochemistry, vol.43, pp.1189-1194, 1996.

T. Kondo, K. Mizuno, and T. Kato, Cell wall-bound para-coumaric and ferulic acids in italian ryegrass, Can. J. Plant. Sci, vol.70, pp.495-499, 1990.

R. F. Helm and J. Ralph, Lignin hydroxycinnamyl model compounds related to forage cell-wall structure. 2. Ester-linked structures, J. Agric. Food Chem, vol.41, pp.570-576, 1993.

A. Bichot, J. Delgenès, V. Méchin, H. Carrère, N. Bernet et al., Understanding biomass recalcitrance in grasses for their efficient utilization as biorefinery feedstock, Rev. Environ. Sci, vol.17, p.3885, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02626399

A. Ragauskas, C. K. Williams, B. H. Davison, G. Britovsek, J. Cairney et al., The Path Forward for Biofuels and Biomaterials. Science, vol.311, pp.484-489, 2006.

V. S. Chang and M. T. Holtzapple, Fundamental Factors Affecting Biomass Enzymatic Reactivity. Twenty-First Symposium on Biotechnology for Fuels and Chemicals, vol.6, pp.5-37, 2000.

T. V. Weijde, C. L. Kamei, A. F. Torres, W. Vermerris, O. Dolstra et al., The potential of C4 grasses for cellulosic biofuel production, Frontiers in Plant Science, vol.4, 2013.

S. Dupoiron, M. Lameloise, M. Bedu, R. Lewandowski, C. Fargues et al., Recovering ferulic acid from wheat bran enzymatic hydrolysate by a novel and non-thermal process associating weak anion-exchange and electrodialysis, Sep. Purif. Technol, pp.75-83, 0200.
URL : https://hal.archives-ouvertes.fr/hal-01727163

A. U. Buranov and G. Mazza, Extraction and purification of ferulic acid from flax shives, wheat and corn bran by alkaline hydrolysis and pressurized solvents, Food Chem, vol.115, pp.1542-1548, 2009.

Z. M. Bundhoo, Microwave-assisted conversion of biomass and waste materials to biofuels, Renew. Sustain. Energy Rev, vol.82, pp.1149-1177, 2018.

H. Zhang, X. Yang, and Y. Wang, Microwave assisted extraction of secondary metabolites from plants: Current status and future directions, Trends Food Sci. Technol, vol.22, pp.672-688, 2011.

R. M. Alqaralleh, K. Kennedy, and R. Delatolla, Microwave vs. alkaline-microwave pretreatment for enhancing Thickened Waste Activated Sludge and fat, oil, and grease solubilization, degradation and biogas production, J. Environ. Manag, vol.233, pp.378-392, 2019.

G. J. Provan, L. Scobbie, and A. Chesson, Determination of phenolic acids in plant cell walls by microwave digestion, J. Sci. Food Agric, vol.64, pp.63-65, 1994.

N. Carniel, R. M. Dallago, C. Dariva, J. P. Bender, A. L. Nunes et al., Microwave-Assisted Extraction of Phenolic Acids and Flavonoids from Physalis angulata, J. Food Process Eng, vol.40, 2017.

L. Favretto, Basic Guidelines for Microwave Organic Chemistry Applications, 2014.

C. S. Eskilsson and E. Björklund, Analytical-scale microwave-assisted extraction, J. Chromatogr. A, vol.902, pp.227-250, 2000.

D. S. Oufnac, Z. Xu, T. Sun, C. Sabliov, W. Prinyawiwatkul et al., Extraction of Antioxidants from Wheat Bran Using Conventional Solvent and Microwave-Assisted Methods, Cereal Chem. J, vol.84, pp.125-129, 2007.

A. V. Del-rio, T. Palmeiro-sanchez, M. Figueroa, A. Mosquera-corral, J. L. Campos et al., Anaerobic digestion of aerobic granular biomass: effects of thermal pre-treatment and addition of primary sludge, J. Chem. Technol. Biotechnol, vol.89, pp.690-697, 2014.

H. G. Jung, V. H. Varel, P. J. Weimer, and J. Ralph, Accuracy of Klason Lignin and Acid Detergent Lignin Methods As Assessed by Bomb Calorimetry, J. Agric. Food Chem, vol.47, 1999.

R. Choudhary, A. L. Umagiliyage, Y. Liang, T. Siddaramu, J. Haddock et al., Microwave pretreatment for enzymatic saccharification of sweet sorghum bagasse, Biomass-Bioenergy, vol.39, pp.218-226, 2012.

T. B. Lam, K. Iiyama, and B. A. Stone, Distribution of free and combined phenolic acids in wheat internodes, Phytochemistry, vol.29, pp.429-433, 1990.

S. Mathew and T. E. Abraham, Ferulic Acid: An Antioxidant Found Naturally in Plant Cell Walls and Feruloyl Esterases Involved in its Release and Their Applications, Crit. Rev. Biotechnol, vol.24, pp.59-83, 2004.

S. I. Mussatto, G. Dragone, and I. C. Roberto, Ferulic and p-coumaric acids extraction by alkaline hydrolysis of brewer's spent grain, Ind. Crop. Prod, vol.25, pp.231-237, 2007.

M. M. Moreira, S. Morais, A. A. Barros, C. Delerue-matos, and L. F. Guido, A novel application of microwave-assisted extraction of polyphenols from brewer's spent grain with HPLC-DAD-MS analysis, Anal. Bioanal. Chem, vol.403, pp.1019-1029, 2012.

A. B. Díaz, M. M. Moretti, C. Bezerra-bussoli, C. D. Nunes, A. Blandino et al., Evaluation of microwave-assisted pretreatment of lignocellulosic biomass immersed in alkaline glycerol for fermentable sugars production, Bioresour. Technol, vol.185, pp.316-323, 2015.

P. Moodley and E. G. Kana, Development of a steam or microwave-assisted sequential salt-alkali pretreatment for lignocellulosic waste: Effect on delignification and enzymatic hydrolysis, Energy Convers. Manag, vol.148, pp.801-808, 2017.

A. M. Joglekar and A. T. May, Product excellence through design of experiments, Cereal Foods World, vol.32, p.857, 1987.

P. Carrión-prieto, P. Martín-ramos, S. Hernández-navarro, L. F. Sánchez-sastre, J. L. Marcos-robles et al., 5-HMF, acid-soluble lignin and sugar contents in C. ladanifer and E. arborea lignocellulosic biomass hydrolysates obtained from microwave-assisted treatments in different solvents, Biomass-Bioenergy, vol.119, pp.135-143, 2018.

J. Pinela, M. A. Prieto, A. M. Carvalho, M. F. Barreiro, M. B. Oliveira et al., Microwave-assisted extraction of phenolic acids and flavonoids and production of antioxidant ingredients from tomato: A nutraceutical-oriented optimization study, Sep. Purif. Technol, vol.164, pp.114-124, 2016.

A. Liazid, M. Palma, J. Brigui, C. G. Barroso, and M. P. Lovillo, Investigation on phenolic compounds stability during microwave-assisted extraction, J. Chromatogr. A, vol.1140, pp.29-34, 2007.

D. M. De-oliveira, A. Finger-teixeira, T. R. Mota, V. H. Salvador, F. C. Moreira-vilar et al., Dantas dos Santos, W. Ferulic acid: A key component in grass lignocellulose recalcitrance to hydrolysis, Plant Biotechnol. J, vol.13, pp.1224-1232, 2015.

P. Boonmanumsin, S. Treeboobpha, K. Jeamjumnunja, A. Luengnaruemitchai, T. Chaisuwan et al., Release of monomeric sugars from Miscanthus sinensis by microwave-assisted ammonia and phosphoric acid treatments, Bioresour. Technol, vol.103, pp.425-431, 2012.

S. Oussaid, K. Madani, K. Houali, M. Rendueles, and M. Díaz, Optimized microwave-assisted extraction of phenolic compounds from Scirpus holoschoenus and its antipseudomonal efficacy, alone or in combination with Thymus fontanesii essential oil and lactic acid, Food Bioprod. Process, vol.110, pp.85-95, 2018.

A. Galan, I. Calinescu, A. Trifan, C. Winkworth-smith, M. Calvo-carrascal et al., New insights into the role of selective and volumetric heating during microwave extraction: Investigation of the extraction of polyphenolic compounds from sea buckthorn leaves using microwave-assisted extraction and conventional solvent extraction, Chem. Eng. Process, vol.116, pp.29-39, 2017.

H. L. Thomas, D. Pot, E. Latrille, G. Trouche, L. Bonnal et al., Sorghum Biomethane Potential Varies with the Genotype and the Cultivation Site, Waste Biomass Valorization, vol.10, pp.783-788, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02090584

H. U. Goering and P. J. Van-soest, Forage fiber analyses (apparatus, reagents, procedures, and some applications). In No. 379. US Agricultural Research Service; US government printing office, 1970.

C. W. Dence, The Determination of Lignin, In Methods in Lignin Chemistry, pp.33-61, 1992.

R. Hatfield and R. S. Fukushima, Can lignin be accurately measured?, Crop Sci, vol.45, pp.832-839, 2005.

Y. Zhang, T. Culhaoglu, B. Pollet, C. Melin, D. Denoue et al., Impact of Lignin Structure and Cell Wall Reticulation on Maize Cell Wall Degradability, J. Agric. Food Chem, vol.59, pp.10129-10135, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01000978

J. Oliveira, M. Alves, J. Costa, and M. Alves, Optimization of biogas production from Sargassum sp. using a design of experiments to assess the co-digestion with glycerol and waste frying oil, Bioresour. Technol, vol.175, pp.480-485, 2015.

H. L. Thomas, J. Seira, R. Escudie, and H. Carrere, Lime Pretreatment of Miscanthus: Impact on BMP and Batch Dry Co-Digestion with Cattle Manure, Molecules, vol.23, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02626001

A. Witek-krowiak, K. Chojnacka, D. Podstawczyk, A. Dawiec, and K. Pokomeda, Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process, Bioresour. Technol, vol.160, pp.150-160, 2014.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution, Sample Availability: Samples of the compounds are not available from the authors. © 2019 by the authors. Licensee MDPI