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leptospirosis cases in Thailand 2011–2013
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Julien Cappelle2,5,6

Abstract

Background: Leptospirosis is an important zoonotic disease worldwide, caused by spirochetes bacteria of the
genus Leptospira. In Thailand, cattle and buffalo used in agriculture are in close contact with human beings. During
flooding, bacteria can quickly spread throughout an environment, increasing the risk of leptospirosis infection. The
aim of this study was to investigate the association of several environmental factors with cattle and buffalo
leptospirosis cases in Thailand, with a focus on flooding.

Method: A total of 3571 urine samples were collected from cattle and buffalo in 107 districts by field veterinarians
from January 2011 to February 2013. All samples were examined for the presence of leptospirosis infection by loop-
mediated isothermal amplification (LAMP). Environmental data, including rainfall, percentage of flooded area
(estimated by remote sensing), average elevation, and human and livestock population density were used to build
a generalized linear mixed model.

Results: A total of 311 out of 3571 (8.43%) urine samples tested positive by the LAMP technique. Positive samples
were recorded in 51 out of 107 districts (47.66%). Results showed a significant association between the percentage
of the area flooded at district level and leptospirosis infection in cattle and buffalo (p = 0.023). Using this data, a
map with a predicted risk of leptospirosis can be developed to help forecast leptospirosis cases in the field.

Conclusions: Our model allows the identification of areas and periods when the risk of leptospirosis infection is
higher in cattle and buffalo, mainly due to a seasonal flooding. The increased risk of leptospirosis infection can also
be higher in humans too. These areas and periods should be targeted for leptospirosis surveillance and control in
both humans and animals.
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Background
Leptospirosis is an important worldwide zoonotic dis-
ease, caused by spirochetes bacteria of the genus Leptos-
pira [1, 2]. This bacteria is classified into pathogenic and
nonpathogenic species, with more than 250 pathogenic
serovars [1–3]. The disease is particularly important in
tropical and subtropical countries. Human and animal
infections can occur through direct exposure to infected
animals or to indirect exposure to the soil or water

contaminated with urine from an infected animal
through skin abrasions or mucous membranes [1, 2].
In livestock, it is considered one of the most important

diseases, particularly in cattle due to reproductive fail-
ures (such as abortion, embryonic death, stillbirths and
weak off-spring), decreased milk production and growth
rates [1, 4–6]. This results in significant economic losses
[7] given the importance of these animals in tropical
countries. In Thailand, about 4.4 million beef cattle, 0.51
million dairy cattle, and 0.89 million buffaloes were
raised by 770,000, 160,000 and 200,000 households in
2012, respectively [8]. In rural areas, cattle and buffalo
live in close contact with agricultural workers, and can
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be a major source of leptospirosis in humans, as
highlighted by the predominance of the same serovars in
both livestock and humans [4, 9]. Furthermore, a rela-
tively high prevalence of leptospirosis have been de-
tected in the urine of cattle and buffalo in Thailand [10].
An important route of transmission of Leptospira from
livestock to humans could then be through contami-
nated urine [1, 2]. And as a consequence, flooding may
be an important factor facilitating the transmission of
Leptospira from livestock to humans and other animals
by facilitating the spread of bacteria in wet soils and sur-
face water, where the bacteria can survive for several
weeks or months [11].
In humans, the number of reported leptospirosis

cases in Thailand is highest after the peak in the
rainy season [12]. Higher numbers of leptospirosis
cases have been reported following rain or flooding in
tropical and subtropical areas (e.g., Laos [13], Guyana
[14], and Sri Lanka [15]). In Thailand, most reported
cases occurred in northern and northeastern regions,
where the main occupation is rice farming. Agricul-
tural workers are the most exposed to biological con-
taminates in the environment. A previous study in
Thailand found that human leptospirosis infections
were observed near rivers, and mostly in rice fields
likely to have flooding [16]. Furthermore, heavy rain
and flooding have been identified as environmental
drivers of leptospirosis infections in animals [17]. In
the same way, leptospirosis infection risk is associated
with flooding in Laos, particularly for human beings
who have behaviors and activities involving contact
with floodwater [13]. Overall, flooding appears as an
important driver of leptospirosis infection in both
humans and animals. By taking into account the sea-
sonal variations of flooding using remotely sensed in-
dicators, it may help in anticipating the risk of
leptospirosis infection and identify periods and areas
for increased surveillance and prevention [18].
The main objective of this study was to investigate the

association of several environmental factors (especially
remotely sensed indicators of flooding) with cattle and
buffalo leptospirosis cases in Thailand. A model of lepto-
spirosis infection risk at the district level was produced,
taking into account seasonal flooding.

Materials and methods
Epidemiological data
A total of 3571 urine samples derived from 488 buffalo and
3083 cattle, were collected from January 2011 to February
2013 under a cross-sectional program, which has been de-
scribed in detail in a recent article [4]. The sampling
process was prepared by the provincial Department of Live-
stock Development livestock officers in 107 districts from
28 provinces, and the samples were randomly selected from

each region of Thailand [4]. The sample size was calculated
using the multi-stage clustered sampling technique. Three
provinces in each of the 9 livestock administrative regions
were chosen to represent the area. Subsequently, districts
within the provinces were sampled. The target sample size
in each region was calculated with the method proposed by
Yamane [19]. In this study, we combined 9 regions of
Thailand into 4 parts with different climate and seasonal
flooding patterns, i.e. the Northern part, subdivided into
the Upper Northern and Lower Northern, Central part,
which consists of Central, Western and Eastern
sub-regions, Northeast part, which consist of Upper North-
eastern and Lower Northeastern regions, and the South,
which consist of Upper Southern and Lower Southern re-
gions. In their study, the number of samples in each district
was not controlled. Sampling was not systematically re-
peated in all districts, but data was collected during the
whole year in the different districts. All urine samples were
examined for the presence/absence of leptospiral infection
by loop-mediated isothermal amplification (LAMP) method
[4, 10]. This technique showed high sensitivity and specifi-
city at 96.8 and 97.0%, respectively [10].

Environmental data
The environmental variables tested in our study include
rainfall, flooded area, elevation, and human and livestock
population densities. Flooding is an important driver of
leptospirosis, but no data is readily available. The flooding
variable was calculated based on the modified normalized
difference water index (MNDWI). Other variables were
collected from national or international databases. All var-
iables were aggregated at the district level to match the
spatial resolution of the epidemiological data.
The amount of rainfall was obtained from near

Real-time TRMM (Tropical Rainfall Measuring Mission)
multi-satellite precipitation analysis (TMPA-RT), which
is produced at the National Aeronautics and Space
Administration, Goddard Earth Sciences Data and
Information Services Center (NASA GES DISC) [20].
The daily accumulated precipitation product is gener-
ated from the Near Real-Time Precipitation 3-hourly 1
day TMPA at a spatial resolution of 0.25 degree × 0.25
degree Version 7 (TRMM 3B42RT Daily) [21, 22]. In this
study, given the homogeneity of rainfall at the district
level, we only extracted the TRMM data at the centroid
of each district.
To identify flooded areas, we used the data from the

Moderate Resolution Imaging Spectroradiometer (MODIS)
of the Terra satellite (Surface Reflectance 8-Day L3 Global
500m SIN Grid V005 (MOD09A1)). In each image pixel,
the data provides an estimation of the surface spectral re-
flectance measured at ground level in the absence of atmos-
pheric scattering or absorption. The band 4 (green) and
band 7 (infrared) were used to calculate the modified
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normalized difference water index (MNDWI) [18, 23],
which allows an estimate of the water presence in each
pixel. Within all districts, each pixel was classified as
flooded if the MNDWI value was more than or equal to
zero. This threshold of zero for MNDWI is in the range of
optimal thresholds calibrated in previous studies [23–25].
Permanent water bodies such as rivers and lakes were
masked out using QGIS version 2.8.3 [26]. Then, the num-
ber of flooded pixels were counted to calculate the percent-
age of flooded land in each district.
Elevation can be associated with slopes and increased

movement of surface water [27], but slope data was not
available at a national scale in Thailand. Elevation data
was derived from the NASA Shuttle Radar Topographic
Mission (SRTM) 90m Digital Elevation Data, which pro-
vides elevation data for the entire world (http://
srtm.csi.cgiar.org/index.asp). The average elevation at
the district level was used in the model.
Human population data was obtained from the World-

Pop database, which presents the number of people per
hectare (http://www.worldpop.org.uk) (Additional file 2:
Figure S5). Human population density was included in
the model because it could be associated with different
agricultural practices in areas with different levels of
economic development. The animal population density
of livestock species (buffalo, cattle, goat, pigs and sheep)
were obtained from the Information and Communica-
tion Technology Center (ICT), Department of Livestock
Development of Thailand at the district level (http://
ict.dld.go.th) (Additional file 2: Figure S5). Goats, pigs
and sheep were included because they may also contrib-
ute to the circulation of leptospirosis in cattle and buffa-
loes. Seroprevalences of other livestock were shown in
Thailand from January to August 2001 in a previous
study [28]. In this study, no urine samples were collected
in urban districts because limited number of cattle and
buffaloes are found in areas of high human population
density. The districts with a human population density
above 1400 people/km2, which corresponds to the urban
centers of the main cities of Thailand, and no livestock
were not included in the risk mapping given the limited
number of animals in urban centers.

Statistical analysis
To investigate the association between the risk factors
listed in the previous paragraph (explanatory variables
with a fixed effect) and leptospirosis infection (the re-
sponse variable), we first study univariate linear re-
gressions. Using a generalized linear mixed model
(GLMM) with a logit link since the response variable
had a binomial distribution. We used R software [29]
with the package lme4 [30]. Since all individual urine
samples were not independent because they were col-
lected during common sampling occasions, we used

the sampling occasion index as a random effect vari-
able. Each sampling occasion was identified by a date,
a year and a district geocode. The best multivariable
model was selected using a stepwise backward ap-
proach based on the Akaike Information Criterion
(AIC). The Area Under the Curve (AUC) of the Re-
ceiver Operating Characteristic (ROC) plot was used
to estimate the model performance. We also used
cross-validation to measure the performance of the
best model. Data was randomly split into training (2/
3 of data) and test (1/3 of data) sets. Training data is
used to produce the prediction model, while the test
data is used to test the model performance. Given the
size of our dataset, we chose to keep 2/3 of the data
in the training set to optimize model performance.
We performed repeated cross-validations 1000 times
to estimate the mean and standard deviation of the
cross-validated AUC (cvAUC) of the best model.
The best model was used to predict leptospirosis infec-

tion risk in 2012 and 2016 for three periods (mid-Janu-
ary, mid-May and mid-September) which represents the
middle of the dry season, the beginning of the rainy sea-
son and the end of the rainy season, respectively for cen-
tral and northern Thailand.

Results
A total of 3571 urine samples of cattle and buffalo were
tested by the LAMP technique. 311 samples were posi-
tive. The overall uroprevalence over 107 districts is pre-
sented in Fig. 1. Positive samples were recorded in 51
districts (47.66% of districts). From the temporal aspect,
higher prevalence was observed in May (Fig. 2), which is
the beginning of the rainy season in the central and
northern part of Thailand [31].
The results of the univariate linear regressions show

that the percentage of flooded area and the percentage
of flooded area with a 1 month lag were found to be sig-
nificant (Additional file 1:Table S1). The risk of livestock
infection was higher if the percentage of flood area was
higher.
Three explanatory variables were kept in the final

model based on the stepwise backward approach: the
percentage of flooded area, human and livestock
population densities (Table 1). This final model was
applied to predict the risk of Leptospira presence at
the district level, it showed high performance with an
AUC of 0.8861 (Fig. 3). The percentage of flooded
area was the only variable significantly associated with
the prevalence of leptospirosis in cattle and buffalo in
the GLMM (p = 0.023, Table 1). The cvAUC had a
mean of 0.6427 (sd = 0.0827). The distribution of the
1000 estimations of the cvAUC is shown in Fig. 4.
Maps of leptospirosis infection risk were produced

from the final model in the middle of January, May, and
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September in 2012, which corresponds to the period when
most data were collected (Fig. 5). As expected from the
results of the model, the areas of increased leptospirosis
risk vary seasonally (Fig. 5) and are found in the regions
with a high percentage of area flooded (Additional file 2:
Figure S1). The districts with a high leptospirosis infection
risk in mid-January were mostly located in the southern
part of Thailand, especially in the south-east coastal
regions, i.e. during the high rainfall period in this area
(Additional file 2: Figure S2) [31]. In mid-May, high lepto-
spirosis infection risk mostly occurs in northern and north-
eastern parts, which correspond to the beginning of the

rainy season in this part of Thailand. In mid-September,
high leptospirosis infection risk areas occurred in all parts
except for the southern part, and was particularly high in
the central part. In this analysis, the final model was also
used to predict the leptospirosis infection risk in 2016
(Additional file 2: Figure S3). The leptospirosis infection
risk districts were also mostly found in regions with a high
percentage of flooded area (Additional file 2: Figure S4).

Discussion
This study investigates the relation between cattle and
buffalo leptospirosis infections and flooding based on

Fig. 1 Map of the positive rate of leptospirosis in cattle and buffalo in 107 districts of Thailand. Urine samples were tested by LAMP. The non-
sampled districts are presented in white
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cross-sectional surveillance during 2011–2013 in
Thailand. This analysis provides, to our knowledge, the
first predictive risk mapping for cattle and buffalo lepto-
spirosis in Thailand. The temporal and spatial variations
of leptospirosis infection in Thailand appears to be asso-
ciated with flooding.
Results of the GLMM show a significant association

between the percentage of flood area and leptospirosis
infection in cattle and buffalo at the district level.
The flooding area was evaluated using a remote sens-
ing indicator [18, 23]. This finding suggests that ex-
posure to flooding increases the risk of leptospirosis
infection for cattle and buffalo. Most of the samples
used in this study were collected in rural areas. In
these areas, the soil may become contaminated with
leptospires because of the presence of infected ani-
mals. When flooding or heavy rainfall occurs, the
water picks up contaminated soil and animal excreta
from the soil. This results in the spread of leptospir-
osis through contaminated water [32, 33]. Flooding
could possibly be the principal reason for leptospir-
osis epidemics above other factors [34]. This is con-
sistent with other studies showing that local flooding
can play an important role in leptospirosis transmis-
sion [17, 18, 34]. Therefore, flood control could be an

option to reduce the risk of leptospirosis infection in
animals, which can be a major reservoir for human
infection [4, 9].
Furthermore, the results of the univariate linear re-

gressions show that the flooding factor is the only sig-
nificant factor and is a better indicator than the amount
of rainfall and the accumulation of rainfall. It may be be-
cause rainfall does not directly influence leptospirosis
transmission while flooding facilitating it. Rainfall has
previously been associated with leptospirosis but often
with a time lag of 1–3months [35, 36] which is likely
the lag between rainfall and flooding. A remotely sensed
flooding indicator is likely to be a more accurate pre-
dictor of the risk of leptospirosis infection than using
rainfall.
The predicted risk maps of leptospirosis infection were

created based on the final model for 3 periods in 2012.
In each part of Thailand, higher infection risk was ob-
served during the first floods after a dry period in that
part of the country. This influence of the first flood of
the year has been suggested in other studies [18]. It
could be responsible for the rapid dissemination of lep-
tospires concentrated in small areas during the dry sea-
son. High prevalence in livestock is not predicted in the
same period for the whole Thailand. Three main periods

Fig. 2 The leptospirosis prevalence observed per month in both cattle and buffalo for 2011–2013

Table 1 Results of the best generalized linear mixed model as selected by a stepwise backward approach with the AIC

Variable Odd Ratio 95% Confidence Interval p-value

Intercept 0.0309 0.0183–0.0473 <2e-16***

Percentage of flood area 1.5794 1.0611–2.3629 0.023*

Human population density 1.3495 0.9511–1.9016 0.084

Livestock population density 0.5989 0.3079–1.0957 0.105

*p < 0.05, ***p < 0.001
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of risk can be identified and associated with three different
parts of Thailand (i.e., Northern, Central and Southern
parts) and are related with the periods of flooding. The
difference in these flooding periods is mainly due to two
factors: a) the difference of rainfall seasonality between
southern Thailand and the rest of the country, and b) the
delay between rainfall and flooding between the central
part and the northeastern part of the country. The central
part of the country is downstream of the most important
rivers in Thailand, and major flooding occurs later than in
the rest of the country, in September to November, with
an increased intensity. This explains why high risk occurs

for most districts in this period, which also corresponds to
its high population [12].
With the backward step approach, the final model in-

cludes human and livestock population densities. How-
ever, the model results show that those variables are not
significant. Furthermore, these variables should be inter-
preted very cautiously because several confounding fac-
tors could be involved. Thus, they were kept because
they improved the final model (based on the decrease of
the AIC), but they should not be over-interpreted.
Our study was based on a cross-sectional survey [4],

which was limited as there may be procedural concerns.

Fig. 3 ROC curve of the best generalized linear mixed model

Fig. 4 The cross-validated AUC distribution
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It does not provide data for all districts in the country and
for all seasons in each district. A longitudinal survey is
strongly suggested in further studies, with repeated sam-
pling in a larger number of districts in the whole country.
It would provide better data to understand the seasonality
of leptospirosis infection and could provide a more
accurate disease transmission model. The samples in
each district were mostly collected only once. How-
ever, the samples were distributed over every part of
Thailand for all seasons. Furthermore, the model had
a relatively good performance (AUC =0.8861) but a
lower and quite variable cross-validated AUC (mean
cvAUC = 0.6427, sd = 0.0827, Fig. 4). This difference
between AUC and cvAUC, and the variability of the
cvAUC may be explained by the relatively small size of
our dataset at the district level leading to a small valid-
ation dataset (71 districts for the training dataset and only
36 for the validation dataset). Furthermore, given this size
limit, some validation datasets may include a different
proportion of southern districts than their matching train-
ing datasets. The difference of flooding patterns between
southern Thailand and the rest of the country may then
further explain the lower cvAUC. Training the model on a
larger dataset and having an independent large dataset to
validate it would help build a more robust model.

The presence of pathogenic leptospires in livestock
was tested with LAMP [4, 10], which allows a simple
and rapid diagnosis of leptospirosis with high accuracy.
However, this technique cannot provide any genotypic
information, thus could not be used to compare patho-
genic strains in the study. However, in Thailand, the ac-
curacy of LAMP (97.0%) was higher than real-time PCR
(91.9%) [10]. Thus, results from this technique can be
used with confidence in our study to investigate the as-
sociation of livestock leptospirosis infection with envir-
onmental factors.
Other environmental risk factors such as soil type and

land use, which were not explored in this study, may be
required to better characterize leptospirosis infection
risk. A previous study showed that agricultural land and
clay loams soil are significantly associated with leptospir-
osis infection in humans [37]. These factors could influ-
ence the identification of high-risk areas and help
improve our model.
Other individual variables such as sex and age of the

animals investigated were not considered in this study
due to data limits. These factors could help us to im-
prove the model and may impact the results [38, 39].
Leptospira can infect a wide range of livestock including
pigs, goats and sheep [40, 41]. Studies of these animals

Fig. 5 Map of the prediction of leptospirosis infection risk using the final multivariate linear regression model in three different periods of 2012. A
leptospirosis infection risk of 0.1 indicates that approximately 1/10 livestock are expected to be positive by LAMP for leptospirosis infection. The
non-predicted districts are presented in white
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should also be implemented as they may also contribute
to leptospirosis epidemics. However, the present study
focused on the flooding indicator associated with cattle
and buffalo infection. The good performance of the
model shows that flooding is a major factor that should
be considered in leptospirosis risk models.

Conclusion
Our findings could identify flooding as a major driver of
the risk of leptospirosis infection in cattle and buffalo.
Public awareness about the risk of leptospirosis during
flooding should be raised in order for people to take pre-
vention measures when possible. The risk maps could
also help to develop effective intervention strategies and
optimize the allocation of public health resources, veter-
inary care and control measures. A high level of live-
stock infection could increase the risk to human health
due to contact with infected animals or a contaminated
environment by the urine of infected animals [2, 34].
Livestock may then play an important role as a potential
indicator of high-risk areas for leptospirosis in humans.
Further study needs to be done to assess the risks asso-
ciated with contact between livestock and humans. In
this regard, further data needs to be collected and made
available.
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presented in white. Figure S4. Percentage of Flood area in 2016.
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(animal/km2). (DOCX 3416 kb)
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