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Abstract. Fire resistance traits drive tree species composition in surface-fire ecosystems, but how they
covary at different scales of variation and with the environment is not well documented. We assessed the
covariation of bark thickness (BT), tree height, and crown base-to-height ratio across Alpine forests, after
accounting for the effects of tree diameter and competition for light on individual trait variation. Traits con-
sistently correlated across individuals and communities, although the variance of BT mainly occurred
among species, whereas crown elevation traits varied mainly within species. Aridity, temperature, and
competition contributed to explain the variation of fire resistance traits among and within species, driving
a trade-off between fire resistance and the ability to compete for light. Thick-barked species (fire-tolerant)
that self-prune their lower branches (flame-avoiders) dominated the most fire-prone and flammable com-
munities in sub-Mediterranean southern Alps, whereas thin-barked tree species that grow tall (competition
for light) dominated the least fire-prone communities in the northern Alps. Our findings suggest a long-
term interaction between mountain tree species and fire regime. Higher allocation to trunk elongation
occurs in moist and shade environments, while higher allocation to thicken the bark and distancing the
crown base from surface fuels occurs in open-canopy, dry forests where fire spreads with higher intensity.

Key words: bark thickness; crown basal height; height–diameter; interspecific; intraspecific; mountain forests; surface
fire; trait covariation.
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INTRODUCTION

Fire is a major ecological factor that shapes the
composition of plant communities and ecosys-
tem functioning. The suite of functional traits
that enables plant species to cope with wildfire
diverges among ecosystems (Schwilk and Ack-
erly 2001, Pausas 2015). While in crown-fire
ecosystems regeneration strategies drive species
persistence by vegetative resprouting or seedling
recruitment (e.g., Pausas and Keeley 2014), in
surface-fire ecosystems bark thickness (BT)

provides fire tolerance by insulating the cam-
bium and buds from lethal heating (Harmon
1984). In addition, tree height (TH) and the
height to crown base (crown base-to-height ratio;
CBR) enable trees to resist fire impacts by avoid-
ing flames reaching the canopy (Lawes et al.
2011, Dantas and Pausas 2013). Taken together,
fire resistance traits (BT, TH, and CBR) explain
interspecific differences in post-fire tree survival
(Lawes et al. 2011, Brando et al. 2012) and are
used to predict the mortality likelihood of the
aboveground biomass (Ibanez et al. 2013).
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Plant ecological strategies are commonly
defined by functional traits and their covariation
among species (e.g., Westoby et al. 2002). Trait-
based studies have been mostly based on species
mean values to assess trait–environment relation-
ships and infer plant ecological strategy. How-
ever, functional trait variation is not necessarily
consistent across different scales of variation. For
example, variation within species has been found
larger than expected in the tropics (Messier et al.
2016), while global correlation patterns of the leaf
economics spectrum do not necessary occur
within species (Niinemets 2015). Moreover, the
study of environmental filtering processes needs
to account for the variation of traits with onto-
geny (e.g., size) and biotic interactions such as
competition (Bennett et al. 2016). This variation
is particularly important in the study of fire resis-
tance strategies when considering TH which is
also largely involved in competition for light
(Falster and Westoby 2003, Kunstler et al. 2016).
This variation beyond the species-level chal-
lenges our understanding of fundamental pro-
cesses shaping plant ecological strategies and
their application in predictive ecosystem models
(Anderegg et al. 2018). Therefore, assessing
whether covariation among functional traits is
consistent across individuals, among species,
communities, or biomes is essential to scale up
individual variation to ecosystem dynamics,
such as vegetation response to fire. For instance,
it has been shown that fire-resistant pine species
are tall with thick barks and high self-pruning
(Schwilk and Ackerly 2001, Pausas 2015). How-
ever, it is not well documented how variation in
fire tolerance (thick bark) and flame avoidance
(elevated crown) is distributed across individu-
als, species, communities, and biogeographic
regions, and how this variation correlates with
environmental gradients (Pausas 2017).

Here, we aim to investigate patterns of varia-
tion of fire resistance traits from individuals to
biogeographic regions across the wide climatic
and vegetation gradients of the western Alps.
Alpine forests are mostly prone to surface fires
(Genries et al. 2009, Moris et al. 2017), and fires
are expected to increase in frequency and inten-
sity with future warmer and drier conditions
(Schumacher and Bugmann 2006, Dupire et al.
2017). Paleoecological analyses have shown long-
term differences in fire activity between species

and plant communities in the Alps (Tinner et al.
2000, Blarquez et al. 2012). In accordance with
recent evidence, we hypothesize that (1) most trait
variation occurs at the species level (Messier et al.
2010, Siefert et al. 2015), (2) warmer and drier
environments are dominated by species with
thicker barks than in less fire-prone communities
(Rosell 2016, Pellegrini et al. 2017), and (3) canopy
closure drives variation of crown elevation traits
(TH and CBR) in response to light availability.
Furthermore, we question whether fire resistance
traits are positively correlated along these fire
proneness gradients, once individual trait varia-
tion with tree size and competition are accounted
for, that is, whether fire-tolerant individuals (thick
bark) exhibit both a flame avoidance strategy
(high crown elevation) and a high ability to com-
pete for light (tall trees relative to diameter) across
Alpine forests, or alternatively whether these
strategies trade-off across scales.

MATERIALS AND METHODS

Fire resistance traits
An extensive sampling of TH (m), CBR, BT

(mm), and tree diameter at breast height (dbh,
cm) was carried out in the western Alps (N
plots = 94) during summer 2012–2013. Nine out
of the main European mountain tree species
(Fig. 1) were sampled, including two angiosperm
species (Fagus sylvatica L., Quercus pubescens
Willd.) and seven gymnosperm species (Abies
alba Mill., Larix decidua Mill., Picea abies (L.)
Karst., Pinus nigra Arn., Pinus sylvestris L., Pinus
cembra L., and Pinus uncinata Mill.). We followed a
stratified random sampling within the four bio-
geographic regions of the western Alps (forest
ecosystem type in Fr�ejaville et al. 2016): (1) sub-
Mediterranean open forests (2), sub-Mediterranean
closed forests, (3) subalpine open forests, and (4)
moist montane forests (Fig. 1). Within each
region, multiple locations along elevation, slope,
and aspect gradients were sampled to capture a
broad range of vegetation and habitat conditions.
Locations showing recent evidence of manage-
ment (e.g., logging) or disturbance (e.g., fire)
were avoided. European mountain tree species
are traditionally managed using natural regener-
ation. Therefore, trees were assumed to derive
from the local gene pool, except the naturalized
black pine (P. nigra) that has been introduced
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Fig. 1. Map of sampling sites and biogeographic regions in the western Alps. The 94 plots (+) were clustered
by biogeographic region using their geographical location: dry subalpine forests in the inner continental range
(n = 27), moist montane forests of the northern Alps (n = 16), open-canopy sub-Mediterranean forests (n = 29)
and closed-canopy sub-Mediterranean forests of the southern Alps (n = 27; modified from Fr�ejaville et al. 2016).
Species relative abundance (basal area ratio) in the 94 plots is indicated by boxplots.
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during the late-19th century to protect land-
scapes from erosion and landslides. We assumed
that trait variation should reflect spatial diver-
gence in current and recent environmental condi-
tions.

Plot size was 200–400 m2, depending on tree
density. We used the percentage of basal area of
each species as a measure of species relative
abundance within each plot. For each tree, BT
was averaged from two measurements at breast
height (uphill and downhill) of the thickness of
both inner and outer barks. The CBR was com-
puted as the ratio between the crown basal
height and TH to reflect the distance between the
ground and canopy fuels relative to the height of
the crown. Height measurements were per-
formed using a vertex IV (Hagl€of).

To characterize the environment at each sam-
pled community, we used 30 arc-second (1 km at
the equator) resolution data of climate and fire
weather (Fr�ejaville and Curt 2015): the annual
mean temperature and the annual drought code,
both averaged over the period of 1979–2009. The
drought code is a component of the fire weather
index system that estimates fuel dryness from
deep litter layers to living biomass (van Wagner
1987). Because this aridity index is highly corre-
lated with fire activity in the Mediterranean Basin
and mountain forests (Loepfe et al. 2014, Fr�ejav-
ille and Curt 2017), we used it to characterize the
fire proneness of each community, rather than
actual fire data that were not available over the
entire study area at sufficient spatial resolution.

Finally, we used previous simulations of the
fireline intensity (energy released per linear unit
of the flaming front, in kW/m) under extreme
weather conditions to characterize the potential
fire intensity at each plot (Fr�ejaville et al. 2018)
and to test whether fire resistance traits vary as a
function of vegetation flammability in addition
to temperature, aridity, and tree cover condi-
tions. Fire simulations were performed on the
basis of 30 arc-second resolution climate data
and field measurement of surface fuel parame-
ters across litter, grass, and shrub layers; fuel
sampling and fire simulations are explained in
detail by Fr�ejaville et al. (2018).

Variance partitioning
Variance component analyses were performed

to compute the variance distribution of traits

across nested ecological scales in the following
increasing order: individual (intraspecific variance
within species), species (interspecific variance
within communities), community (among-
community variance within regions), and biogeo-
graphic region (among-region variance). A linear
mixed-effect model was fit to the variance of each
trait (log-transformed) using a restricted maxi-
mum likelihood method. The 95% confidence
interval (95% CI) was calculated for the percent-
age of variance explained at each nested level by
bootstrapping, that is, 500 runs with 1000 ran-
domly sampled data points with replacement
(Messier et al. 2010).
Differences of explained trait variance among

ecological scales were tested using ANOVA and
Tukey post-hoc tests. To assess the relative
importance of tree size (before standardizing its
effect on trait variation), we added the dbh (log-
transformed) as covariable in the model (fixed
effect) and included it in the comparison.

Trait standardization
We standardized trait variation for the effects

of dbh (ontogeny) before analyzing trait varia-
tion across scales and environmental gradients.
First, we used linear mixed-effect models to
fit species-specific allometric relationships. For
each species j and each trait T, the allometric
model Aj was fit by regressing log Tj against log
dbhj. Plot was used as random effect to control
for unaccounted variability among plots and to
account for the nested design of individual trait
measurements within plots. Species-specific
model residuals were computed from fixed
effects only (i.e., dbh) to extract the intraspecific
trait variance which was not explained by tree
size.
Second, the interspecific component of each

trait was computed by using the Aj models to
predict the species mean trait values for a given
diameter (the mean dbh across all species). Third,
intraspecific and interspecific components were
summed to obtain the total trait variation, stan-
dardized for dbh, and corrected for potential
sampling-induced differences in the among-
species distribution of dbh. Community-level
trait data were then computed by averaging stan-
dardized trait values of all sampled trees within
each community for each component of trait
variation (total, intraspecific, and interspecific).
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Because dbh had no significant effects on CBR,
we used measured data for standardization. Spe-
cies mean traits were thus used to compute the
interspecific component, and differences between
individual values and species means were used
to compute the intraspecific component.

Interspecific trait differences, trait covariation,
and trait–environment relationships

To test interspecific trait differences, we used
ANOVA and Tukey’s HSD post-hoc tests on the
total variation of standardized traits (both inter-
and intraspecific components). Log-transformation
and standardization of traits satisfied normality
assumptions.

To test correlations among traits, we used
mixed-effect models with tree cover as covariate to
control for competition, and plot as random factor:

T1sc ¼ b0 þ a1ðT2scÞ þ a2ðtree coverÞ
þ random ðPlotÞ þ e

To test whether trait correlations differed
across scales, models were fit from standardized
traits T at both individual and community levels
for each component sc of trait covariation (total,
intraspecific, and interspecific). Then, partial cor-
relations were tested by computing Spearman’s
rank coefficients between T2 (the focal explana-
tory trait) and T1 partial residuals (i.e., after
accounting for tree cover on T1).

Similarly, to test trait variation with the envi-
ronment at the community level, we used mixed-
effect models to assess the relative effect of tree
cover, annual drought, and temperature:

Tsc ¼ b0 þ a1ðtree coverÞ þ a2ðdrought codeÞ
þ a3ðannual temperatureÞ
þ random ðPlotÞ þ e

As supplementary analyses, we also tested the
relative effect of fireline intensity (log-transformed)
and the relative effect of tree basal area (cumula-
tive basal area at breast height of all inventoried
trees, in m2/ha) that is commonly used to infer tree
competition (Kunstler et al. 2016).

To test whether correlations are consistent among
and within species, models were fit for each com-
ponent of trait variation sc, and Spearman’s rank
coefficients were computed between each environ-
mental variable and Tsc partial residuals (i.e., after
accounting for other environmental effects).

Finally, we applied ANOVA to explore the rel-
ative contribution of interspecific and intraspeci-
fic components of correlations among traits and
trait variation with the environment, on the basis
of sum of squares (Lep�s et al. 2011). All analyses
and computations were carried out in the R soft-
ware environment (R Core Team 2013), using
lme function of nlme package for mixed-effect
modeling (Pinheiro et al. 2015).

RESULTS

Trait variation across ecological scales
The variance partitioning analysis indicated

that the relevance of each level to overall varia-
tion differed among traits (Fig. 2). Tree dbh was
the main source of variation in TH (55%) and BT
(47%), whereas it accounted for <5% in CBR.
After accounting for tree size, BT varied first
among species (32%), whereas CBR and TH var-
ied first within species (33% and 15%, respec-
tively, P < 0.05). The intraspecific level accounted
for 13% of variance in BT. The biogeographic
level accounted for a substantial part of the vari-
ance in all traits (7–14%). Within regions, the plot
level accounted for 21% in CBR and 13% TH and
<1% in BT.

Interspecific differences in fire resistance traits
Allometric relationships used to standardize BT

and TH are presented in Appendix S1: Table S1
and Fig. S1. Species dominating sub-Mediterra-
nean forests (Pinus nigra, Pinus sylvestris, and
Quercus) had thicker barks (Appendix S1:
Fig. S2a), higher CBR (Appendix S1: Fig. S2b),
and lower height (Appendix S1: Fig. S2c). Con-
trary, species dominating moist montane forests
(Fagus, Abies, and Picea) were taller and had lower
CBR and BT. In subalpine forests, Larix was taller
and had thicker barks, Pinus uncinata and Pinus
cembra had thinner barks, and P. cembra had the
lowest CBR.

Covariation among fire resistance traits
Partial correlation analyses indicated that, once

dbh and tree cover were accounted for, BT and
CBR were positively correlated at the individual
(r = 0.33, P < 0.001; Fig. 3a) and community levels
(r = 0.58, P < 0.001; Fig. 3b), whereas BT and
TH were negatively correlated at the individual
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(r = �0.27, P < 0.001; Fig. 3c) and community
levels (r = �0.41, P < 0.001; Fig. 3c).

At both individual and community levels,
Spearman coefficients indicated stronger correla-
tions for the interspecific than the intraspecific
component of trait covariation (P < 0.001, Fig. 3;
Appendix S1: Table S2). At the community level,
BT accounted for 6% of the variance in CBR and
20% in TH (Appendix S1: Table S2). At the
individual level, within-species correlations
between BT and CBR as well as between BT
and TH were non-significant, positive or nega-
tive depending on the species (Appendix S1:
Figs. S3, S4).

Trait–environment relationships
Partial correlation analyses indicated that BT

decreased, whereas CBR and TH increased with
tree cover (Fig. 4). In addition, BT and CBR
increased, while TH decreased with increasing
aridity and annual mean temperature (P < 0.05;
Fig. 4; Appendix S1: Fig. S5). Trait–environment
correlations were conserved at the interspecific
and intraspecific levels, with few exceptions
(Fig. 4; Appendix S1: Fig. S5). Variance analyses
indicated that aridity was the main determinant of
BT (23% of explained variance) mostly at the inter-
specific level, whereas tree cover accounted for the
main part of the variance in CBR and TH (34%
and 31%, respectively) mostly at the intraspecific
level (Appendix S1: Table S3). In total, tree cover,
drought, and annual temperature explained 33%
of the variance in community mean BT, 51% in
CBR, and 50% in TH (Appendix S1: Table S3). Sup-
plementary analyses showed similar but higher
correlations between traits and tree cover than
between traits and tree basal area (Appendix S1:
Fig. S6), indicating that tree cover captured the
effect of tree basal area which is a more common
index used to infer competition between trees. In
addition, supplementary analyses indicated that
traits did not vary with the fireline intensity once
the drought code is accounted for, although weak
but significant increase of BT and decrease of TH
with increasing fireline intensity were found at the
interspecific level (Appendix S1: Fig. S7).

DISCUSSION

Our results suggest that (1) fire resistance traits
vary across different ecological scales and they cor-
relate in the same direction across individuals and
communities; (2) trait covariation mostly results
from trait differences among species along gradi-
ents of tree cover and aridity, although intraspeci-
fic variation accounts for a substantial part of
trait–environment relationships; and (3) fire resis-
tance (thick bark and elevated crown base) and
competition for light strategies (tall trees relative
to diameter) trade-off in Alpine forests.
Trait covariation was explained at the biogeo-

graphical level by the dominance of thick-barked
species that self-prune their lower branches
(resistance strategy by fire tolerance and flame-
avoidance, respectively) in fire-prone, sub-
Mediterranean forests. These species inhabit the

Fig. 2. Variance structure of log bark thickness (BT)
(a), crown base-to-height ratio (CBR) (b), and log tree
height (TH) (c) across ecological scales, once the effect
of tree diameter (dbh) was accounted for. At each level,
the relative variance distribution was computed by
bootstrapping; bars (and lines) indicate mean (�SD)
values. The conditional r-squared, that is, the amount
of explained variance by fixed (dbh) and random
effects (scales), is indicated; dbh accounted for 0.40,
0.03, and 0.45 of explained variance (marginal
r-squared) in BT, CBR, and TH, respectively.
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most arid conditions across the western Alps and
occur in flammable environments throughout
their geographic range (Fr�ejaville et al. 2018).
The resistance to surface fires of the dominant
pines Pinus nigra and Pinus sylvestris is well doc-
umented in historical studies (Ful�e et al. 2008,
Leys et al. 2014). Contrary, taller trees are
thin-barked species which dominate the least fire-
prone communities across the wettest and shadi-
est forests of the Alps (Fr�ejaville et al. 2018).
These findings provide additional evidence on
interspecific variation of BT with fire activity
(e.g., burned area) and precipitation (e.g., Rosell
2016, Pellegrini et al. 2017). Furthermore, we also
show that BT increases and TH decreases with both

aridity and potential fire intensity (Appendix S1:
Fig. S7), suggesting that ecological patterns of
forest flammability (Fr�ejaville et al. 2018) may
partly explain fire resistance trait patterns in
mountain forests. Our results suggest a well-
documented trade-off in the allocation to bark
vs. the ability to grow tall and compete for
light between shade-intolerant and shade-
tolerant species (Gignoux et al. 1997, Niinemets
1998, Lawes et al. 2011). In particular, fire
tolerance through thick bark relative to diameter
dominates in fire-prone ecosystems (e.g., open
savannas), whereas resource acquisition strate-
gies through plant height or height relative to
diameter and specific leaf area dominate in

Fig. 3. Partial correlations between standardized traits at individual (a, c) and community levels (b, d). Within
each panel, the total (left), intraspecific (top-right), and interspecific (bottom-right) components of trait covaria-
tion are shown. Trait variation with the tree cover was prior accounted for to control for competition; variance
analyses of trait covariation components are reported in Appendix S1: Table S2. Mean values (and SD) by species
(a, c) and biogeographic regions (b, d) are indicated by large circles (and bars). Spearman’s rank correlation coef-
ficients (r) are indicated: ���P ≤ 0.001, ��P ≤ 0.01, �P ≤ 0.05. Regression lines are shown for illustrative purpose.
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unburned dense forests (Cavender-Bares and
Reich 2012, Hoffmann et al. 2012, Dantas et al.
2013).

Our findings suggest that drought and tree
cover structure the species-level trade-off between
growing tall in low fire-prone environments vs.

Fig. 4. Partial correlations between community mean standardized traits and the environment: tree cover (a–c)
and the drought code (d–f). Within each panel, the total (left), intraspecific (top-right), and interspecific (bottom-
right) components of trait–environment correlations are shown. Trait variation with other environmental factors
(than the focal one) was prior accounted for; variance analyses of trait-environment correlation components are
reported in Appendix S1: Table S3. Mean values (and SD) by biogeographic regions are indicated by large circles
(and bars). Spearman’s rank correlation coefficients (r) are indicated: ���P ≤ 0.001, ��P ≤ 0.01, �P ≤ 0.05. Regres-
sion lines are shown for illustrative purpose.
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thickening the bark and distancing the crown
base from surface fuels in dry, open-canopy envi-
ronments. On the contrary, the lower flammability
and shadier conditions of moist montane forests
(Fr�ejaville et al. 2016) may have promoted a
higher allocation to height against the promotion
of fire resistance in Fagus, Picea, and Abies (thin
barks and low self-pruning), which reflects their
high sensitivity to fire (Colombaroli et al. 2007,
Maringer et al. 2016). These correlative observa-
tions in mountain forests suggest that both BT
and CBR reflect a strategy to resist fire by heat tol-
erance and flame avoidance, respectively, whereas
TH relative to diameter (stem elongation) reflects
a strategy to compete for light.

In subalpine forests of the inner Alps, commu-
nities are dominated by mixed strategies: Pinus
uncinata and especially Pinus cembra are fire-
sensitive (thin barks, low crown bases, and
moderate heights), while the co-dominant Larix
presents competitive and fire-resistant traits, in
addition to a lower bark flammability (Fr�ejaville
et al. 2013). These differences in fire resistance traits
likely explain the dominance of Larix over P. cembra
in periods of higher fire occurrence over the last
18,000 yr (Carcaillet and Blarquez 2017). Climate
change together with the high fire intensity in sub-
alpine forests (Fr�ejaville et al. 2016) might induce
population decline of P. cembra in the Alps, if fire
return intervals become shorter than the time
required to reach maturity (Blarquez et al. 2012).

Our results show that intraspecific variability
accounts for a substantial part of the variance in
fire resistance traits (Fig. 1), as it has been
observed in other traits and biomes (Siefert et al.
2015, Vil�a-Cabrera et al. 2015). The intraspecific
variation mostly accounts for community differ-
ences in flame avoidance (CBR) and competition
for light strategies (TH) along tree cover condi-
tions (Fig. 4), and it accounts for the increase in
community fire tolerance (BT) in parallel to the
decrease of TH with annual temperature
(Appendix S1: Fig. S5), showing that canopy con-
ditions and individual variation have more influ-
ence on fire resistance traits than expected.
Moreover, our results show a consistent correla-
tion between traits and environmental conditions
among- and within species. These findings sug-
gest that competition is an environmental filter
that shapes fire resistance trait variability between-
and within species, and across communities, in

addition to fire (Cavender-Bares and Reich 2012,
Siefert et al. 2015). This role of competition on
fire-related traits has been also demonstrated in
the forest–savanna transition. For example, the
lower flammability and higher competitive envi-
ronment of closed-canopy forests promotes the
dominance of thin-barked, tall species, while the
high flammability of open savanna forests pro-
motes the dominance of thick-barked, small sta-
ture species (Hoffmann et al. 2012).
Finally, we found that correlation among traits

was not consistently conserved within each spe-
cies (Fig. 3; Appendix S1: Figs. S3, S4), suggesting
an ecological trade-off between competitive and
fire-resistant traits rather than a physiological or
evolutionary trade-off. That is, our results indicate
that a higher allocation to trunk elongation is not
always concomitant with a lower allocation to
bark (e.g., Larix), but that both vary with environ-
mental conditions in opposite directions (Fig. 4).
However, considering all species together our
results show that trait covariation was invariant
from individuals to species and communities in
the Alps (Fig. 3), suggesting that environmental
drivers of fire resistance consistently drive trait
coordination across scales. These findings high-
light that the trade-off observed at the individual
and species levels between competition for light
and fire resistance strategies may be scaled up to
communities and biogeographic regions in Euro-
pean mountain forests, to predict vegetation
response to fire. Together with the absence of fire-
resistant traits in the competitive environments of
moist montane forests, our results suggest long-
term interplays between species and fire regime
in Alpine forests. At the same time, our results
show that trait–environment correlations were
stronger at the interspecific than intraspecific
level, and that the latter reduced the strength of
correlations based on differences between species
traits (Fig. 4; Appendix S1: Figs. S5–S7; Anderegg
et al. 2018). Our results thus emphasize the
importance of individual variability in under-
standing community assembly processes (Laugh-
lin et al. 2012) that may be critical for predicting
how changing fire regimes (Fr�ejaville and Curt
2017) will shift the distributions of fire-sensitive
and fire-resistant mountain tree species. The
increasing severity of fire weather conditions
(Dupire et al. 2017) together with higher fire
intensity and crown fire likelihood at the dry
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range margin of mountain trees (Fr�ejaville et al.
2018) may increase the importance of fire resis-
tance traits driving the composition of mountain
forests, and the response of their communities to
climate change.
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