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Abstract
A multitude of resistance deployment strategies have been proposed to tackle the 
evolutionary potential of pathogens to overcome plant resistance. In particular, many 
landscape-based strategies rely on the deployment of resistant and susceptible culti-
vars in an agricultural landscape as a mosaic. However, the design of such strategies is 
not easy as strategies targeting epidemiological or evolutionary outcomes may not be 
the same. Using a stochastic spatially explicit model, we studied the impact of land-
scape organization (as defined by the proportion of fields cultivated with a resistant 
cultivar and their spatial aggregation) and key pathogen life-history traits on three 
measures of disease control. Our results show that short-term epidemiological dynam-
ics are optimized when landscapes are planted with a high proportion of the resistant 
cultivar in low aggregation. Importantly, the exact opposite situation is optimal for 
resistance durability. Finally, well-mixed landscapes (balanced proportions with low 
aggregation) are optimal for long-term evolutionary equilibrium (defined here as the 
level of long-term pathogen adaptation). This work offers a perspective on the poten-
tial for contrasting effects of landscape organization on different goals of disease man-
agement and highlights the role of pathogen life history.
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1  | INTRODUCTION

The use of resistant crop cultivars against pathogens typically reduces 
epidemic development and associated yield losses in agricultural pro-
duction systems. However, such cultivars may rapidly become inef-
fective owing to the well-documented ability of pathogens to evolve 
and overcome plant resistance genes (Burdon, Zhan, Barrett, Papaïx, & 
Thrall, 2016; Zhan, Thrall, & Burdon, 2014; Zhan, Thrall, Papaïx, Xie, & 

Burdon, 2015). The development of new crop cultivars carrying novel 
resistance genes is usually long, expensive and frequently constrained 
by available resistance sources. As a consequence, there is significant 
merit in considering how different spatiotemporal deployment strate-
gies for resistant cultivars may impact on resistance durability (Burdon, 
Barrett, Rebetzke, & Thrall, 2014; Gilligan & van den Bosch, 2008). 
To maximize any advantages to be gained, such approaches should 
explicitly address and integrate epidemiological and evolutionary per-
spectives of pathogens (Thrall et al., 2011), noting that the definition 
of an optimal strategy may vary between different stakeholders for 

*Both authors contributed equally to this work.

www.wileyonlinelibrary.com/journal/eva
http://orcid.org/0000-0003-2273-5334
http://creativecommons.org/licenses/by/4.0/
mailto:julien.papaix@inra.fr


706  |     PAPAÏX et al.

crop production systems. The epidemiological perspective is focused 
on reductions in pathogen population size and the severity of disease, 
and consequently its impact on farm profitability. In this context, the 
goal is for resistance deployment to persist as long as possible; that 
is, resistances must be still effective after a long period of use, de-
spite the pathogen’s evolutionary abilities. However, the medium to 
long-term control and the short-term epidemiological control offered 
by a resistant cultivar are not necessarily correlated (Johnson, 1984). 
Therefore, the design of deployment strategies that optimize both 
epidemiological and evolutionary outcomes is not an easy task, and 
both criteria must be used to fully assess the performance of different 
disease management options (Burdon et al., 2014; Zhan et al., 2015).

The epidemiological impact of using a resistant plant cultivar on 
pathogen populations mostly depends on the type of resistance. Two 
resistance types are usually described in the literature. Qualitative re-
sistance, also called “major-gene resistance,” refers to the gene-for-
gene model (Flor, 1955). This resistance relies on the noncompatible 
interaction of a specific host resistance protein with a pathogen avir-
ulence effector, usually leading to complete immunity of the host (i.e., 
avirulent strains of the pathogen cannot successfully infect resistant 
hosts, while they can infect susceptible hosts). When deployed homo-
geneously across large areas and over extended time periods, qualita-
tive resistance imposes strong and directional selection on pathogen 
populations. In such situations, new infectivity may quickly emerge in 
pathogen populations, resulting in total breakdown of the resistance 
gene (Johnson, 1983, 1984). In contrast, quantitative resistance re-
sults from the additive effect of multiple minor genes. It does not block 
infection but constrains disease as compared to susceptible cultivars 
(Mundt, 2014) due to reduced pathogen fitness (e.g., colonization, re-
production and transmission—Brown, 2015; Lannou, 2012; Parlevliet, 
2002; Stuthman, Leonard, & Miller-Garvin, 2007). In this system, the 
loss of resistance efficiency is best described as a progressive erosion, 
due to pathogen evolution consisting of an increase in one or more 
aggressiveness traits (Brown, 2015; Mundt, 2014). In either qualitative 
or quantitative host–pathogen interactions, evolution of a pathogen 
towards increased infectivity or aggressiveness on a resistant host is 
often penalized by a fitness cost on susceptible hosts (Leach, Cruz, 
Bai, & Leung, 2001; Montarry, Cartier, Jacquemond, Palloix, & Moury, 
2012; Thrall & Burdon, 2003). As a consequence, generalist pathogens 
(able to infect a wide range of host genotypes) are often less adapted 
to a particular host than specialist pathogens, indicating the existence 
of life-history trade-offs in many pathogens (Laine & Barrès, 2013).

As resistance breakdown or high levels of erosion results in re-
sistant cultivars becoming ineffective, several approaches have been 
proposed to improve their durability including the use of chemicals, 
agronomic practices, varying crop diversity either temporally (i.e., crop 
rotations) or spatially (e.g., pyramiding, mixtures, mosaics of fields), or 
combinations of some or all of these cultural practices (Brown, 2015; 
Burdon et al., 2014; Mundt, 2014; Stuthman et al., 2007; Zhan et al., 
2015). The efficiency of some of these approaches has been experi-
mentally evaluated, as exemplified by the large-scale assessment of rice 
mixtures to control rice blast in China (Zhu et al., 2000). However, em-
pirical data are often difficult to obtain for landscape-scale strategies 

in spite of considerable evidence from modelling studies that land-
scape organization can affect pathogen population size and impede 
adaptation to host resistance (for reviews, see Plantegenest, Le May, 
& Fabre, 2007; Real & Biek, 2007). Empirical evidence of the impact 
of landscape organization originates mostly from studies in natural 
systems (Allan, Keesing, & Ostfeld, 2003; Condeso & Meentemeyer, 
2007; Haas, Hooten, Rizzo, & Meentemeyer, 2011; Langlois, Fahrig, 
Merriam, & Artsob, 2001). For example, these studies have shown 
that spatiotemporal heterogeneity in environmental conditions (in-
cluding host genetic structure) plays a crucial role in determining the 
potential for species and genotypes to coexist and in shaping the 
evolution of populations and species. Host–pathogen systems are no 
exception; metapopulation processes were shown to be key determi-
nants of observed patterns of disease and genetic diversity (Burdon 
& Thrall, 1999; Jousimo et al., 2014; Laine, Burdon, Dodds, & Thrall, 
2011; Smith, Ericson, & Burdon, 2003; Soubeyrand, Laine, Hanski, & 
Penttinen, 2009; Tack & Laine, 2014).

In the few simulation models developed to investigate the case of 
agricultural systems, most describe agricultural landscapes of suscep-
tible and resistant cultivars allocated to different fields as a mosaic. In 
this way, the impact of several landscape characteristics (e.g., cultivar 
composition within fields, aggregation of fields sharing the same com-
position, presence of a wild reservoir) on disease control was evaluated 
in different pathosystems. One general result that emerges from many 
spatially explicit but purely demographic models (Holt & Chancellor, 
1999; Papaïx, Touzeau, Monod, & Lannou, 2014; Papaïx, Adamczyk-
Chauvat et al., 2014; Skelsey, Rossing, Kessel, & van der Werf, 2010) 
is that an “optimal” landscape in the context of epidemiological control 
of disease should be composed of a high proportion of fields occupied 
by the resistant cultivar, hereafter referred to as the “cropping ratio” 
(i.e., the proportion of fields where the resistant cultivar is deployed) 
and a low degree of landscape aggregation (i.e., the mean proportion 
of neighbouring fields that share the same cultivar). The effect of ag-
gregation is, however, not straightforward as highly aggregated land-
scapes can perform better when considering quantitative resistances 
(Papaïx, Touzeau et al., 2014).

In models that explicitly integrate pathogen evolution, the im-
pact of cropping ratio may strongly depend on the type of host re-
sistance (Lo Iacono, van den Bosh, & Paveley, 2012) and epidemic 
intensity (Fabre, Rousseau, Mailleret, & Moury, 2012, 2015). However, 
as these models (Fabre et al., 2012, 2015; Lo Iacono et al., 2012) are 
not spatially explicit, the effect of landscape aggregation could not be 
explicitly evaluated. In addition, Fabre et al. (2015) did not simulta-
neously evaluate epidemiological and evolutionary measures of the 
effectiveness of different strategies. However, van den Bosch and 
Gilligan (2003) emphasized that different measures of resistance du-
rability (time to establishment of a population carrying a new infec-
tivity, infectivity frequency and yield) could potentially be affected in 
different ways by the cropping ratio of the resistant cultivar. Using a 
demogenetic model to study how the spatial and temporal distribution 
of remnant wild vegetation patches embedded in an agricultural land-
scape can influence the ability of a pathogen to evolve onto a crop, 
Papaïx, Burdon, Zhan, and Thrall (2015) also found that the emergence 
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of a crop pathogen and its subsequent specialization on the crop host 
were impacted in a different way by landscape organization (composi-
tion and spatial structure of remnant wild vegetation patches). Indeed, 
landscape organizations that promoted larger pathogen populations 
on the wild host facilitated the emergence of a crop pathogen, but 
such landscape organizations also reduced the potential for the patho-
gen population to adapt to the crop.

Here, we developed a spatially explicit model to study the impact 
of landscape organization on both the efficiency and evolutionary du-
rability of crop resistance following deployment. Although the model 
was loosely based on rusts, a group of foliar fungal diseases consisting 
many economically important pathogens (Chen, Wellings, Chen, Kang, 
& Liu, 2014; Park, 2008), our aim was to examine how spatial het-
erogeneity of resistance may shape the epidemiology and evolution 
of agricultural pathogens in general contexts rather than focusing on 
any particular pathosystem. We thus provide here a theoretical anal-
ysis of an ideal situation where the landscape structure is simple and 
remains unchanged across time to focus on the role of spatial het-
erogeneity in shaping the epidemiology and evolution of agricultural 
pathogens. Using this approach, a resistant cultivar consisting of a 
pyramid of both qualitative and quantitative resistances, and a sus-
ceptible cultivar are allocated to different fields as a mosaic across an 
agricultural landscape. The choice of considering a resistant cultivar 
carrying both qualitative and quantitative resistances was motivated 
by empirical evidences of increased durability of qualitative resistance 
when combined with quantitative ones (e.g., Brun et al., 2010). Three 
model outputs are used as optimization criteria for this resistance de-
ployment strategy: short-term epidemiological dynamics (defined here 
as the average proportion of healthy plants for the susceptible cultivar 

before the resistant cultivar loses its immunity), resistance durability 
(defined here as the first year the resistant variety loses its immunity) 
and long-term evolutionary equilibrium (defined here as the stable 
level of long-term pathogen adaptation). The model is stochastic and 
based on the Susceptible-Exposed-Infectious-Removed (SEIR) archi-
tecture to describe the life cycle of the pathogen. In addition to the 
impact of landscape organization, we also assessed the influence of 
some life-history traits of the pathogens on the different outputs.

2  | MODEL AND STATISTICAL ANALYSES

2.1 | Model

2.1.1 | Model overview and definitions of 
disease risk

The model we developed describes the epidemiological and evolu-
tionary dynamics of a pathogen population in an agricultural land-
scape. It assumes that the pathogen disperses passively across the 
whole landscape (e.g., via wind dispersed propagules). The landscape 
is composed of fields where a susceptible crop cultivar and a resistant 
crop cultivar are sown in controlled proportions and degree of spatial 
aggregation. The crop is present all year-round although plant cover 
is reduced during the off-season. For a given simulation, the spatial 
structure of the landscape is assumed to remain the same across years.

The two crop cultivars impose selection pressure on the pathogen 
population through a single life-history trait, the efficacy of infection. 
Thus, pathogen genotypes are characterized by their associated ability 
to infect the two host cultivars. We assumed that the resistant cultivar 

F IGURE  1 Genetic composition 
(frequencies of the different genotypes, 
black = 100%, white = 0%) of the pathogen 
population (a and b, RC = resistant cultivar, 
SC = susceptible cultivar); and evolution 
of the healthy area duration (HAD, c 
and d, 1 = no disease, 0 = maximum of 
disease) during 50 years of simulation for 
the susceptible cultivar (dashed line) and 
the initially resistant cultivar (solid line). 
The blue line indicates the time when 
the resistant cultivar loses its immunity 
(referred as resistance durability). The 
values of the parameters used in these 
simulations are as follows: β = 1, r = 5 and 
μ0=10 (a, b, c and d); the landscape is 
composed by 90% of the resistant cultivar 
with a grouped aggregation (a and c), or by 
70% of the resistant cultivar with a mixed 
aggregation (b and d)
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consists of a pyramid of both qualitative and quantitative resistances. 
Thus, at the beginning of a simulation, the pathogen population is only 
adapted to the susceptible cultivar and cannot attack the resistant 
cultivar. However, new pathogen genotypes can progressively arise 
through mutation, resulting in the emergence of genotypes associated 
with gradually increasing infection efficacy on the resistant cultivar. 
These new pathogen genotypes are only partially adapted to the re-
sistant cultivar because of the presence of quantitative resistance. In 
addition, they are penalized by decreasing infection efficacy on the 
susceptible cultivar to account for life-history trade-offs, as has been 
documented for several rust pathogens (Laine & Barrès, 2013).

Using this modelling framework in a theoretical context, we quan-
tified the impacts of the cropping ratio of the resistant cultivar and its 
spatial aggregation on three measures representing different phases 
of pathogen adaptation to the resistant cultivar (Figure 1): short-term 
epidemiological dynamics, resistance durability and long-term evo-
lutionary equilibrium. For this, the healthy area duration (HAD)—the 
integral of healthy green canopy area during the yield forming period 
(Waggoner & Berger, 1987)—of plant cover, for either the suscepti-
ble cultivar or the resistant cultivar, is computed by integrating, each 
year, the proportion of healthy individuals during the cropping season. 
This reflects the cumulative photosynthetic tissue available for grain 
production and filling. Then, the three model outputs are computed 
after a 50-year simulation (see Figure 1 for an example) as follows. 
The short-term epidemiological dynamics is assessed by computing 
HAD for the susceptible cultivar and averaged over the period from 
the beginning of the simulation to the time when the resistant cultivar 
loses its immunity (following the emergence of pathogen genotypes 
able to infect the resistant cultivar). In this study, this time is defined 
as the first year when HAD of the resistant cultivar dropped by 5% and 
is thereafter referred as resistance durability. Finally, the long-term 
evolutionary equilibrium is assessed at the end of the simulation by 
averaging HAD of both cultivars over the final 5 years, assuming that 
pathogen evolutionary dynamics reached their equilibria.

2.1.2 | Landscape model

A landscape pattern composed of approximately 155 fields is gen-
erated by simulating a set of fields using a T-tessellation algorithm 
that makes it possible to control the size, number and shape of 
fields (Kiêu, Adamczyk-Chauvat, Monod, & Stoica, 2013; Papaïx, 
Adamczyk-Chauvat et al., 2014). Following this step, a suscepti-
ble crop cultivar and a resistant crop cultivar are deployed across 
the simulated landscape using controlled spatial arrangements de-
fined by their proportions in terms of surface coverage (10%, 30%, 
50%, 70% and 90% of the resistant cultivar) and aggregation level 
(Figure 2). The landscape patterns are replicated five times, and the 
allocations of cultivars to fields are replicated twice, by means of a 
simulated annealing algorithm. Although simulated landscapes do 
not represent the full complexity of agricultural systems, their use 
in theoretical studies makes it possible to consider a variety of land-
scapes with controlled features as well as stochastic variations in 

the landscape structure rather than a unique situation, which lim-
its the generality of the results (Papaïx, Adamczyk-Chauvat et al., 
2014).

2.1.3 | Pathogen demogenetic dynamics

We consider a Susceptible-Exposed-Infectious-Removed (SEIR) model 
with foliar sites as individuals (i.e., a site where a lesion can develop). 
The host population is composed of two genotypes (corresponding 
to the susceptible and resistant cultivars) and the pathogen popula-
tion of p genotypes. The initial pathogen genotype corresponds to the 
full specialist on the susceptible cultivar (it cannot infect the resistant 
cultivar) and the other genotypes correspond to those associated with 
gradually increasing infection efficacy on the resistant cultivar. These 
genotypes are considered as generalists with different degrees of spe-
cialization as they can infect both cultivars, at least to some extent. 
The model then describes the dynamics of the number of foliar sites 
in each of the following states and for each field i (i = 1,…,I): healthy 
sites (Si), latent sites infected by pathogens of genotype p (Ei,p), infec-
tious sites infected by pathogens of genotype p (Ii,p) and removed sites 
infected by pathogens of genotype p (Ri,p). Spores produced by infec-
tious sites correspond to the propagule state.

Epidemics were simulated over 50 years, each composed of 
12 months of 30 days. This duration was chosen to ensure detection 
of the long-term impact of the deployment strategy on disease epi-
demics and pathogen evolution. The cropping season formed the first 
120 days of the year, whereas the off-season was represented by the 
remaining 240 days of the year. Below, we describe each sequential 
step of the model as it occurs during a cropping season. The full de-
scription is given in the Appendix S1.

Initial conditions
For each simulation, the pathogen population is initially composed of 
the specialist of the susceptible cultivar (p = 1). Epidemics are initiated 
by assuming that plants in susceptible fields are randomly infected 
with a probability of .01 (infected plants at t = 0 are at an infectious 
stage).

Reproduction and mutation
Infectious sites produce r = 5 or 10 effective spores per day resulting 
from the number of spores effectively landing on new hosts after dis-
persal, and the propensity of hosts to be infected (Soubeyrand, Sache, 
Lannou, & Chadoeuf, 2007). Spores are associated with the same 
genotype as their parental lesion with probability mpp = 0.996. When 
a mutation occurs (with p = .004), we assume that the pathogen popu-
lation evolves gradually: a new genotype arises from closely related 
genotypes by mutation with small gains or losses in infection efficacy 
by setting mp(p-1) = mp(p+1) = 0.002. The exceptions are pathogen geno-
types with the highest infection efficacy on either susceptible or the 
resistant cultivars—these mutate towards less specialized genotypes 
with a probability of .004 to ensure their overall mutation rate is equal 
to that of other genotypes.
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Spore dispersal
Spores migrate from field i to field j with probability μij computed from:

Where Ai and Aj are the areas of fields i and j, respectively (Bouvier, 
Kiêu, Adamczyk, & Monod, 2009). g

(
||z−z�||

)
 is the individual disper-

sal function with an inverse power law shape:

where ||z−z�|| is the Euclidean distance between locations z and z′ 
b > 0 is a scale parameter and a > 2 determines the weight of the dis-
persal tail. The parameter a is fixed at 3.4 to simulate a fat-tailed dis-
persal function. The mean dispersal distance is defined by μ=2b∕(a−3) 
and is varied to represent 2.5%, 10% and 25% of the landscape length 
(noting that the simulated landscape is square).

Invasion of healthy sites
Spores arriving in a field invade a healthy site with probability π(xi(t)),  
where π(⋅) is an increasing function of xi(t), the proportion of healthy sites 
in field i at time t. Indeed, all of the infection sites on an individual plant are 
not equally accessible to spores, for instance because of the plant physi-
cal structure. Then, the possible new infections are distributed among the 
pathogen genotypes according to their proportion in the set of spores 
arriving in the field i at time t and following a multinomial distribution.

Infection of invaded sites
A healthy site receiving a spore (invaded site) becomes infected with 
probability ep,v(i) the infection efficacy associated with pathogen geno-
type p on crop cultivar v(i) cultivated in field i.

We assume a trade-off in infection efficacy on the two crop culti-
vars (respectively, ep,RC and ep,SC for the resistant and the susceptible 
cultivars): a gain in infection efficacy on the resistant cultivar has a cost 

in terms of reduced infection efficacy on the susceptible cultivar (and 
vice versa). Gain and cost are linked through the relationship (Débarre 
& Gandon, 2010):

with emax = 0.4 the infection efficacy of a fully specialist and β the 
global shape of the trade-off curve: the curve is concave when β is 
below unity, linear when β = 1 and convex otherwise. We will refer 
hereafter to concave curves as weak trade-offs, because they corre-
spond to cases where the cost of being a generalist is low. Similarly, 
convex curves will be referred to as strong trade-offs; β can then be 
referred as the trade-off strength (Ravigné, Dieckmann, & Olivieri, 
2009). The infection efficacies associated with the different pathogen 
genotypes are computed from Equation 1, by varying the infection 
efficacy on the resistant cultivar between 0 and emax and by consider-
ing three values for the trade-off strength, β = 0.8, β = 1 and β = 1.2.

Transition from latent (E) to infectious (I) sites
Once infected, the invaded sites remain latent for an average of τ=5 
days (Azzimonti, 2012) before becoming infectious.

Removal of infectious sites
After an average of T = 10 days of sporulation (i.e., the length of the 
infectious period; Azzimonti, 2012), infectious sites are removed and 
unable to produce new propagules.

Host growth and removal of sites
To initiate a cropping season, plant cover is set to 10% of the field 
acreage. The crop then grows locally until it reaches the carrying 
capacity of the field, Ki, where Ki is assumed to be proportional to 
the area of field i. In the following, results are expressed as ratios so 
that they are independent of the constant of proportionality (except 
for when very low carrying capacities are considered, in which case 
demographic stochasticity can be very important, which is not the 
case in this study). In addition, we consider that only healthy sites (Si) 

μi,j=

∫
Ai

∫
Aj

g
(
||z−z�||

)
dzdz�

Ai

,

g
(
||z−z�||

)
=
(a−2)(a−1)

2πb2

(
1+

||z−z�||
b

)−a

,

(1)ep,RC=emax−1+

(
1−ep,SC

1

β

)β

F IGURE  2 Simulated landscapes with 30% of the crop being represented by the resistant cultivar and an increasing aggregation level (a: low; 
b: intermediate; c: high)
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contribute to biomass production (equivalent to a castrating patho-
gen). At the end of the cropping season an arbitrary proportion of 
99.9% of the sites is removed randomly, regardless of their infection 
state, and the total number of sites is kept constant during the off-
season (i.e., no host growth).

2.2 | Statistical analyses

Simulations were performed using a complete factorial design to explore 
the five input parameters of interest: cropping ratio (five values—10%, 

30%, 50%, 70% and 90%), landscape aggregation (three values—low, in-
termediate and high), strength of the trade-off between infection effica-
cies (three values—0.8, 1 and 1.2), spore production rate (two values—5 
and 10 spores.day−1) and mean distance of spore dispersal (three val-
ues—2.5%, 10% and 25% of the landscape length). For each combination 
of these five parameters, 20 replicates were simulated (five landscape 
pattern replicates, two allocation replicates and two model replicates to 
account for stochasticity). This resulted in a total of 5400 simulations.

Firstly, we analysed the simulations by fitting generalized linear 
models to the three model outputs including the effect of the five input 

TABLE  1 Best models retained after the stepwise selection based on the Bayesian information criterion (BIC) for the three model outputs 
computed from the healthy area duration (HAD), along with the direction of correlations between input parameters and model outputs and 
effect sizes (total sensitivity indices)

Definition of disease risk (HAD-based model outputs)

Short-term epidemiological dynamics Resistance durability Long-term evolutionary 
equilibrium
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F IGURE  3 Relationship between landscape organization (proportion of the resistant cultivar and spatial aggregation) and the three model 
outputs based on the computation of the healthy area duration (HAD—a, d, g and j, short-term epidemiological dynamics; b, e, h and k, 
resistance durability; c, f, i and l, long-term evolutionary equilibrium). A baseline scenario (a, b and c—values of parameters: β = 0.8, r = 5 and 
μ0=25%) is compared to a scenario with decreased pathogen dispersal (d, e and f—values of parameters: β = 0.8, r = 5 and μ0=2.5%), with 
increased spore production (g, h and i—values of parameters: β = 0.8, r = 10 and μ0=25%) and with a linear trade-off (j, k and l—values of 
parameters: β = 1, r = 5 and μ0=25%)
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parameters and their second order interactions. Stepwise selection 
based on the Bayesian information criterion (BIC) allowed us to retain 
the most parsimonious models (Table 1). Secondly, we computed the 

total sensitivity indices of the different input parameters, relative to 
the three model outputs (Table 1). Lastly, we put emphasis on the role 
of landscape organization (cropping ratio and landscape aggregation) 
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using meta-models consisting of second degree Legendre polynomi-
als (Sudret, 2008). This allowed us to establish the response surfaces 
(Figure 3).

3  | RESULTS

In all, 7.2% of simulations were discarded because the pathogen popu-
lation went extinct in the initial stages of the simulation as a result 
of demographic stochasticity during the off-season (when only a few 
hosts were available). Pathogen extinction occurred most frequently 
in mixed landscapes with a high proportion of the resistant cultivar 
and when life-history trait parameters were clearly to the disadvan-
tage of the pathogen (low dispersal ability, low spore production and 
a strong trade-off).

In the remaining simulations, the epidemics are characterized by 
an initial period of immunity of the resistant cultivar (Figure 1). Then, 
new infectivity emerges in the pathogen population through muta-
tion. From this point time, the qualitative component of resistance is 
overcome and the quantitative component begins to erode through 
subsequent mutations in the pathogen genotypes able to overcome 
qualitative resistance (Figure 1).

3.1 | Short-term epidemiological dynamics

In the short term (during the phase when the resistant crop culti-
var is still immune to disease), the HAD of the susceptible cultivar 
ranged from 11.7% to 73.2% over all simulations (the median was 
~50%). From the GLM analysis, a lower amount of disease in the 
short term occurred with lower spore production capacity (Table 1). 
In addition, higher dispersal ability was associated with lower disease 
in the short term (Table 1) probably due to an increased alloinfec-
tion/autoinfection ratio. The trade-off strength was not retained in 
the best model (Table 1). The adjusted response surfaces indicated 
that both cropping ratio and the spatial aggregation of crop culti-
vars have a strong impact on short-term epidemiological dynamics 
(Figure 3 and Table 1). As expected, we found that the HAD of the 
susceptible cultivar increases with greater proportion of the resist-
ant cultivar and lower spatial aggregation. The cropping ratio had the 
largest effect with the proportion of the immune cultivar explaining 
60% (r = 5) or 40% (r = 10) of the variability in short-term disease dy-
namics (Table 1).

3.2 | Resistance durability

The emergence of infectivity in the pathogen population was observed 
in 88.5% of the simulations. In almost 40% of the simulations, the re-
sistant cultivar lost its immunity after only 1 or 2 years (the median 
was 5 years) postintroduction. Increases in pathogen dispersal ability 
and spore production decreased resistance durability while stronger 
trade-offs resulted in more durable resistance (Table 1). Resistance 
durability was the highest with low cropping ratios (i.e., deployment 
of the resistant cultivar on a low proportion of fields; Figure 3 and 

Table 1). Interestingly, we found a positive effect of spatial aggrega-
tion (Figure 3 and Table 1): increases in the aggregation of fields where 
the resistant cultivar was sown increased the durability of resistance. 
The sensitivity analysis showed that the cropping ratio was always the 
most influential parameter on resistance durability (Table 1).

3.3 | Long-term evolutionary equilibrium

Following the emergence of new infectivity in pathogen populations, 
both cultivars were susceptible to disease (at least to some extent) 
and the HAD of the agricultural landscape at the end of the simulation 
was dependent on the global level of adaptation of the pathogen pop-
ulation. Over all simulations, the HAD of the entire landscape ranged 
from 17.2% to 62.4% (the median was 26.7%). In 72.6% of simula-
tions, two pathogen genotypes coexisted in the population at the end 
of the simulation; each of them being more adapted to one of the two 
cultivars (e.g., Figure 1a). In the other 27.4% of simulations, only one 
pathogen genotype was maintained in the population (e.g., Figure 1b). 
Consistent with the results for resistance durability, increases in ei-
ther pathogen dispersal ability or spore production capacity increased 
the long-term level of adaptation of the pathogen while stronger 
trade-offs led to reduced levels of adaptation (Table 1). The long-term 
evolutionary equilibrium leading to the lower amount of disease was 
achieved by combining both cultivars in balanced proportions with 
low spatial aggregation (Figure 3 and Table 1). Depending on the val-
ues of the pathogen life-history traits, such landscape organization 
may result in either the selection of one generalist pathogen or the 
selection of two different genotypes but with a low degree of spe-
cialization. The sensitivity analysis showed that the cropping ratio was 
always the most influential parameter but aggregation still explained 
between 25% (r = 5) and 35% (r = 10) of the variability of long-term 
evolutionary equilibrium (Table 1).

4  | DISCUSSION

To go beyond the blanket deployment of resistance genes, the sus-
tainable management of crop resistance to disease needs a better un-
derstanding of the demogenetic dynamics of pathogen populations 
from the initial release of a new resistant cultivar to the breakdown/
erosion of its resistance and further adaptation of pathogen popu-
lations. The present study is a first attempt to characterize, using a 
theoretical framework, the dynamics of HAD following the deploy-
ment of an initially resistant cultivar and a susceptible cultivar across 
a landscape (with a deployment strategy combining pyramiding and 
mosaic as well as qualitative and quantitative resistance) in response 
to pathogen demography and evolutionary dynamics. This study is 
based on a stochastic and spatially explicit SEIR model applied to a 
foliar fungal disease as typified by cereal rusts. It offers a perspective 
on the strong differences that may exist between management strat-
egies of resistance deployment accounting for different measures 
of disease risk, derived either from epidemiological or evolutionary 
perspectives.
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The effect of the combination of susceptible and resistant culti-
vars at field (mixtures) and landscape (mosaic) scales on disease de-
velopment has been classically studied in the literature (Mundt, 2002; 
Papaïx, Touzeau et al., 2014; Skelsey et al., 2010). It has generally 
been found that the best epidemiological control is obtained when 
the cropping landscape is composed of a high proportion of the re-
sistant cultivar and weak spatial aggregation. However, these results 
are typical of mixtures and mosaics governed by qualitative plant– 
pathogen interactions but must be mitigated when considering 
quantitative plant–pathogen interactions as spillover from the 
susceptible to the partially resistant variety may decrease disease 
control in landscapes with low spatial aggregation (Papaïx, Touzeau 
et al., 2014). Our results are in agreement with these studies as low 
spatial aggregation was found to increase HAD. Note that our short-
term criterion deals only with complete resistance as it was calcu-
lated over the period when the resistant cultivar was still immune 
to disease.

The optimal spatial structure of the landscape is different when 
our second criterion (resistance durability) is taken into account. 
Durability of resistance genes as a function of the deployment strat-
egy has previously been studied using nonspatial models (but see 
Sapoukhina, Tyutyunov, Sache, & Arditi, 2010 for an example at the 
field scale). The basic finding of such studies is that a low cropping 
ratio of the resistant cultivar minimizes selection pressure on the 
pathogen population and thus increases the durability of the resis-
tance gene (Fabre et al., 2012; Pietrevalle, Lemarié, & van den Bosch, 
2006; Pink & Puddephat, 1999). However, high cropping ratios can 
also delay the breakdown of resistance by drastically reducing patho-
gen population size, resulting in a U-shaped function of durability 
against cropping ratio (van den Bosch & Gilligan, 2003). Using a 
spatially explicit model, we also found such a pattern but with low 
cropping ratios always being more durable. However, our model has 
refined this result on the effects of cropping ratio as increasing spa-
tial aggregation and thus decreasing fragmentation of the landscape 
were found to favour resistance durability. Indeed, in our simulations 
epidemics typically proceeded on the resistant cultivar via spillover 
from the susceptible cultivar. Thus, more aggregated spatial patterns 
of cultivar deployment lead to a smaller interface between suscep-
tible and resistant crop cultivars, which limits immigration and the 
emergence of resistance-breaking genotypes in the pathogen popu-
lation. As a consequence of the effect of this interface, we observed 
a strong interaction between the cropping ratio and spatial aggre-
gation. Indeed, the influence of cropping ratio was stronger for high 
levels of aggregation.

Time to emergence of new infectivity in crops treated by fun-
gicides was studied by Bourget, Chaumont, and Sapoukhina (2013) 
using a nonspatial model. They identified a particular situation for 
which a strategy based on a small proportion of treated fields was 
not as durable as one based on treating a high proportion of fields. 
This arose if the pathogen population had a low growth rate and high 
migration abilities. In our model, we also found that increasing patho-
gen dispersal ability decreases resistance durability. However, low 
cropping ratios were never found to significantly decrease resistance 

durability compared to high cropping ratios. Indeed, in most cases, 
resistance durability was preserved by hindering pathogen dispersal 
between the resistant and susceptible crop (i.e., when dispersal was 
low, aggregation was high) and preferentially when the resistant crop 
was at low proportion. The main difference between Bourget et al. 
(2013) and our results comes from the fact that we did not explore 
situations with low pathogen growth rates as we focused on foliar 
fungi that typically have high growth rates. Finally, durability was 
found to be sensitive to the shape of the trade-off function, which 
influences the ability of the pathogen to perform well on both cul-
tivars. This is consistent with Fabre et al. (2012) who found that the 
cost of virulence was the most important parameter with regard to 
explaining resistance durability.

The long-term evolutionary equilibrium as assessed by HAD at the 
end of a simulation was also found to be highly sensitive to the spa-
tial structure of the landscape. As for qualitative resistance, increase 
in the area covered by the resistant cultivar is expected to increase 
the speed of pathogen evolution and thus the erosion of quantita-
tive resistance (Lo Iacono et al., 2012). However, as demonstrated by 
Lo Iacono et al. (2012), the integrated gain on yield over time, which 
comes from cultivating high ratios of the resistant cultivar, may out-
weigh the more rapid evolution of the pathogen. In addition to the 
speed of resistance erosion, cropping ratio also affects the level of 
adaptation of the pathogen population at equilibrium. Consistent 
with previous studies (e.g., Papaïx, David, Lannou, & Monod, 2013), 
we found that balanced proportions of susceptible and resistant culti-
vars and low spatial aggregation reduced the long-term impact of the 
disease. In the present work, we focused on the role of host spatial 
heterogeneity and considered that quantitative resistance only af-
fected one pathogen trait, infection efficacy. According to Lo Iacono 
et al. (2012), quantitative resistance that targets infection efficacy 
is indeed more efficient in controlling disease (in an epidemiological 
sense) than quantitative resistance targeting pathogen reproduction 
rate (but see Bourget, Chaumont, Durel, & Sapoukhina, 2015). The 
role of quantitative resistance in driving pathogen adaptation is gain-
ing attention in the literature with emphasis on determining which 
pathogen life-history traits are affected by host resistance (Azzimonti, 
Lannou, Sache, & Goyeau, 2013; Pariaud, Ravigné et al., 2009). When 
a high penalty exists for the new infectivity against a resistance, com-
pensation via other traits may operate to improve pathogen fitness 
on resistant hosts. In this case, susceptible cultivars may also be af-
fected as they will suffer the effects of higher aggressiveness from 
the pathogen population (van den Berg, Lannou, Gilligan, & van den 
Bosch, 2013; Gandon, Mackinnon, Nee, & Read, 2001). The evolu-
tionary consequences of possible correlations between life-history 
traits (trade-off, pleiotropy) are also important as they determine the 
adaptive landscape for pathogen populations (Lannou, 2012; Pariaud, 
Robert, Goyeau, & Lannou, 2009). For example, Bourget et al. (2015) 
showed that resistances affecting pathogen life-history traits that are 
in conflict with each other are more durable.

The significance of the current study is that it jointly analyses evo-
lutionary and epidemiological outputs of a landscape-scale strategy of 
resistance deployment using a stochastic and spatially explicit model. 
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It clearly shows that the management of disease risk through spatial 
organization of the agricultural landscape faces strong constraints de-
pending on whether short-term epidemiological dynamics, resistance 
durability or long-term evolutionary equilibrium is targeted. Indeed, 
we found that low aggregation combined with a high proportion of the 
resistant cultivar is optimal for short-term epidemiological dynamics, 
whereas the exact opposite (high aggregation and low cropping ratio) 
is optimal for resistance durability. Finally, well-mixed landscapes (low 
aggregation with balanced proportions) are optimal for long-term evo-
lutionary equilibrium of pathogen populations.

Nevertheless, these conclusions must be nuanced by the theoret-
ical context of this study. The target of this work was to specifically 
explore the short- to long-term impacts of spatial heterogeneity on 
resistance durability and disease control. Thus, we considered that the 
landscape organization remained the same for the whole simulation 
run. In practice, the same resistance genes may be introgressed into 
many commercial cultivars and continuously used for long periods of 
time although particular cultivars containing these resistance genes 
may turn over frequently (Johnson, 1984; Niks, Qi, & Marcel, 2015; 
Stuthman et al., 2007). However, when genes are used in successive 
cultivars, they are generally associated with different combinations 
of qualitative resistances or with different genetic backgrounds, 
modifying the selective pressure over the period during which the 
genes are used (e.g., Goyeau & Lannou, 2011). More specifically, our 
results could be modified in different ways by the consideration of 
temporal heterogeneity, mainly depending on its shape (arm race vs. 
boom-and-bust cycles) and on the life-history traits that are impacted 
(Débarre & Gandon, 2011). Temporal heterogeneity implies a stron-
ger bottleneck because of the need for the pathogen to reach the 
new host sown to different fields in the following season, potentially 
leading to the loss of adaptive mutations through drift and thus de-
laying resistance breakdown. However, temporal heterogeneity can 
also increase pathogen diversity by increasing the possibilities for 
specialist and generalist genotypes to coexist in different geographic 
locations in the landscape because of asynchrony in crop rotations 
(Papaïx, Burdon, Lannou, & Thrall, 2014). It is then unclear if this 
diversity increases or not disease severity and pathogen abilities to 
adapt to new cultivars. In the case of directional gradual changes (e.g., 
due to selection of cultivars more and more resistant), the outputs 
are extremely sensitive to the speed at which growers are able to 
produce new cultivars with respect to the speed at which the patho-
gen evolves (Polechová, Barton, & Marion, 2009). Thus, similar to co-
evolving systems (Burdon & Thrall, 2009), the dynamics of resistance 
evolution depend also on the adaptive response to pathogen evolu-
tion of stakeholders for crop production systems (Zhan et al., 2015). 
Currently, crop rotations are recommended to provide disease breaks 
(Bennett, Bending, Chandler, Hilton, & Mills, 2012) as they may re-
duce pathogen population size from year to year, given that only a 
portion of pathogen population may successfully land and survive on 
newly sown susceptible fields. For example, Fabre et al. (2015) found, 
with a spatially implicit model for virus epidemics, that a combination 
of mosaics and rotations performed better than mosaics alone from 
both epidemiological and evolutionary perspectives. However, the 

efficiency of crop rotations could be limited in regions where the crop 
is cultivated over large areas, particularly for diseases spread by aerial 
primary inoculum. For example, a combination of a 6-year rotation (to 
reduce the soil inoculum) with a delayed sowing (to avoid the peak 
of the aerial inoculum) was recommended by McDonald and Peck 
(2009) to control Ascochyta blight on field peas (Pisum sativum L.). 
In our model, temporal heterogeneity was considered through sea-
sonality in host density. Indeed, for biotrophic pathogens, host har-
vest can represent a severe bottleneck, potentially eliminating rare 
adaptive mutations. We assumed that, during the off-season, host 
genotypes remain the same as during the cropping season and that 
individual plants are homogenously distributed within a field. These 
assumptions limit the effect of spatial structure on both off-season 
eco-evolutionary dynamics (Tack & Laine, 2014) and the inoculum 
for the new cropping season (Mundt, Leonard, Thal, & Fulton, 1986) 
and imply homogeneity in the direction of selection between the 
off-season and the cropping season (Papaïx et al., 2015). Finally, we 
assumed that infectivity was absent from the initial pathogen popu-
lation. However, resistance genes can originate from wild relatives 
of crops. In that case, a pathogen population may have already been 
exposed to the resistance gene and consequently evolved towards 
new infectivity (Leroy, Le Cam, & Lemaire, 2014). The pre-existence 
of infectivity in the pathogen population, even at low frequency, can 
change dramatically the durability of the resistance gene in the crop 
as well as which deployment strategy is optimal (Lof, de Vallavieille-
Pope, & van der Werf, 2017).

Future investigations using our modelling approach may include 
consideration of additional temporal heterogeneity in the landscape as 
well as the simulation of more complex resistance deployment strate-
gies, which are likely to be better approaches to deploy plant resistance 
(Fabre et al., 2015). Furthermore, the use of quantitative resistance tar-
geting different pathogen life-history traits possibly in combination with 
a diversity of major resistance genes should be investigated in the con-
text of spatiotemporal deployment strategies given its potential to keep 
pathogen population maladapted (Brown, 2015; Zhan et al., 2015). In 
addition, disease control is better achieved using a combination of agri-
cultural practices (Meynard, Doré, & Lucas, 2002). In particular consid-
ering pesticide treatments in combination with high diversity in genetic 
resistance will provide additional guidance for more realistic manage-
ment strategies. Lastly, the definition of management strategies for a 
specific agricultural region has to be based on actual landscape patterns 
with crop species and varieties allocated through decision rules inte-
grating technical and socio-economic constrains (Rounsevell & Arneth, 
2011).
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