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Abstract: Waterborne disease outbreaks (WBDOs) remain a public health issue in developed countries,
but to date the surveillance of WBDOs in France, mainly based on the voluntary reporting of clusters of
acute gastrointestinal infections (AGIs) by general practitioners to health authorities, is characterized
by low sensitivity. In this context, a detection algorithm using health insurance data and based on
a space–time method was developed to improve WBDO detection. The objective of the present
simulation-based study was to evaluate the performance of this algorithm for WBDO detection
using health insurance data. The daily baseline counts of acute gastrointestinal infections were
simulated. Two thousand simulated WBDO signals were then superimposed on the baseline data.
Sensitivity (Se) and positive predictive value (PPV) were both used to evaluate the detection algorithm.
Multivariate regression was also performed to identify the factors associated with WBDO detection.
Almost three-quarters of the simulated WBDOs were detected (Se = 73.0%). More than 9 out of
10 detected signals corresponded to a WBDO (PPV = 90.5%). The probability of detecting a WBDO
increased with the outbreak size. These results underline the value of using the detection algorithm
for the implementation of a national surveillance system for WBDOs in France.

Keywords: waterborne disease outbreak; simulation study; health insurance data; space–time detection

1. Introduction

Outbreaks of infectious waterborne diseases are still a public health concern in developed
countries [1,2]. Most of the time, acute gastrointestinal infections (AGIs) are the syndrome involved.
In most of the waterborne disease outbreaks (WBDOs) reported in the last decade in Europe, the United
States of America, and Canada, several hundred to several thousand people became ill after drinking
water contaminated by infectious pathogenic agents. In rare cases, tens of thousands of people were
affected. This occurred for example in two waterborne cryptosporidiosis outbreaks which occurred
in 2010 and 2011 in Sweden, infecting 27,000 and 20,000 people, respectively [3,4], and in the 1993
disaster in Milwaukee, which affected 400,000 people [5]. There is also concern in France with respect
to WBDOs [6], but to date, in the absence of a specific nationwide surveillance system, the detection of
these events is mainly based on the voluntary reporting of clusters of AGIs by general practitioners
to health authorities. The mean outbreak size of reported WBDOs (ranging from several hundred to
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thousands of AGI cases) suggests that only the most important events are reported. Despite the need
for the development of a specific nationwide surveillance system to improve the detection of outbreaks
caused by contaminated drinking water in France, and accordingly help health authorities with the
microbial risk management of drinking water, the creation of such a specific surveillance system is a
challenge for French authorities.

For several years, Santé publique France (the French Public Health Agency) has been using
the French Health Insurance Administrative Database (Système national d’information inter régimes
de l’Assurance maladie, SNIIRAM) for the syndromic surveillance of the medicalized AGI cases by
employing a specifically developed algorithm [7]. Medicalized AGI cases are aggregated by day
and by zip code. Although not all medicalized AGI cases can be specifically attributed to drinking
water contamination, the correspondence between AGI cases and water distribution zones (DZs)
at a local level provides the opportunity to study the ecological relationship between tap water
and infectious gastrointestinal diseases. Medicalized AGI data have already proven relevant for
studying the relationship between tap water quality parameters (e.g., turbidity) and the incidence
of AGIs [8,9], and also for retrospectively identifying and describing outbreaks of AGIs notified by
general practitioners [8,10]. Consequently, using these data to develop a specific automated nationwide
system for local WBDO detection offers a promising way forward.

By so doing, an integrated approach to detect and localize WBDOs using medicalized AGI
cases from SNIIRAM data was published in 2017 by Coly et al. [11]. The authors’ approach relied
on a space–time statistical method developed by Kulldorff [12] used to detect local outbreaks of
AGIs. Their approach integrates the DZ as the ecological unit of exposure to tap water. A detected
outbreak of AGIs localized in a DZ (compared with no outbreak in the surrounding DZs) is considered
as a potential WBDO and is characterized by epidemiological criteria (day one of detected signal,
duration, number of expected cases, and number of observed cases, DZ identity code). Each outbreak
is retrospectively investigated in terms of various environmental criteria during the days before the
onset of the outbreak: weather (e.g., heavy rain) and technical incidents in drinking water treatment
(e.g., chlorination breakdown, alarm malfunction) or in the distribution system (e.g., water pipe
breaks). However, the performance of this integrated approach in the implementation of nationwide
retrospective automated WBDO detection has not been evaluated to date. Another detection method,
inspired by field investigator practices in France and based on the comparison of the incidence
ratio mean between the zip code and specific French administrative districts (called départements)
was published in 2016 [13]. However we did not decide to select this method for evaluation as its
theoretical foundations were considered insufficient [14].

A simulation-based study was performed to evaluate Coly et al.’s detection algorithm in
order to implement a nationwide surveillance system. Simulation studies were performed to
evaluate surveillance methods and disease control measures [15,16]. To our knowledge, to date,
no simulation-based study has been specifically developed to evaluate an automated WBDO detection
system. One of the major challenges regarding outbreak detection systems of contaminated water is to
identify the largest number of clusters corresponding to real WBDO (i.e., maximizing the sensitivity)
while avoiding clusters that are inconsistent with WBDO assumption (i.e., minimizing the number of
false positives).

The objective of our study was therefore to evaluate, through simulations, the performance of the
integrated approach developed by Coly et al. for WBDO detection [11] and to highlight the DZ and
outbreak features which most influence WBDO detection.

2. Materials and Methods

2.1. Study Area and Period

Two French départements, Puy-de-Dôme and Isère, with 655,498 and 1,253,410 inhabitants,
respectively [17], were selected. Puy-de-Dôme was included in the previous study by Coly et al.
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for the construction of the WBDO detection algorithm. Isère is known for chronic microbiological
pollution of DZ. The period studied extended from 1 January 2010 to 31 December 2013.

2.2. Reference Health Data

Health data represented medicalized AGI cases from the French National Health Insurance
Information System (Système national d’information inter régimes de l’Assurance maladie, SNIIRAM).
SNIIRAM aims to evaluate beneficiaries’ healthcare consumption and associated expenditures.
It covers more than 98% of the French population and records all patient reimbursements for
out-of-pocket medical procedures, medications, and payments to professionals for consultations [18].
Almost all medicalized AGI cases in France, irrespective of the route of infection (contaminated
drinking water, person-to-person transmission, food poisoning), can be identified from SNIIRAM
using a specifically developed algorithm detailed elsewhere [7]. Using the algorithm, medicalized
AGI cases were selected from people who consulted a general practitioner and went to a pharmacy
to buy medications prescribed to treat AGI. To be included, the individual had also to meet a set of
conditions regarding the delay of purchase after the visit to doctor, and the combination of drugs
prescribed. A national survey study showed that 33% of individuals with symptomatic AGI consulted
a doctor in France [19]. Cases were aggregated by day and residence zip code at the municipality level
(note: départements are comprised of smaller municipal areas).

2.3. Simulation Study

Several steps were implemented to simulate WBDOs (Figure 1).
We simulated the daily baseline counts of AGI at the zip code level using the SNIIRAM data.

A variety of simulated WBDO signals were then superimposed on the baseline data. The simulation
study was based on a methodology developed to evaluate the performance of an algorithm for outbreak
detection of infectious diseases, which met the objectives of our study [15].
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Figure 1. Algorithm of the overall process for simulation of baseline data and WBDOs. SNIRAM:
Système national d’information inter régimes de l’Assurance maladie (the French Health Insurance
Administrative Database); AGI: acute gastrointestinal infection.

2.4. Simulation of Baseline Data

Baseline counts of AGI were first generated at the département level (1) and then at the zip code
level (2).

(1) A Poisson regression was used to model the daily observed counts of AGI at the département level
(SNIIRAM data). A thin-plate regression spline [20] was used to model trend and seasonality
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in order to account for the seasonality of the AGI, in particular the variability of winter viral
pandemic of AGI. Adjustments were made for days of the week and holidays [21].

(2) The estimated expected values obtained from the regression model at (1) were then distributed at
the zip code level in proportion to the number of cases observed in the SNIIRAM data. Finally,
to introduce stochasticity, daily counts of AGI cases were simulated using a negative binomial
distribution [15,21] (Figure 2).
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Figure 2. Simulation of time series of incident AGI cases before the inclusion of the simulated WBDO:
daily number of observed AGI cases from the French Health Insurance Administrative Database
(SNIIRAM) between 1 January 2010 and 31 December 2013 (n = 8677) (top), number of estimated
expected cases (middle), and number of simulated cases (bottom) for a zip code with 18,541 inhabitants.

2.5. The Simulation Process of Waterborne Disease Outbreaks

The spatial unit of interest for the WBDO simulation in our study was the DZ. By definition, a DZ
delivers water of homogenous quality to consumers, meaning that all people serviced by the same DZ
are exposed to the same risk in terms of water quality apart from situations of backflows, and where
contamination directly enters the network. There are 25,000 DZs and 35,000 zip codes in France. As the
health outcome (i.e., AGI cases) was simulated at the zip code level, when the selected DZ serviced
more than one zip code, AGI outbreak daily cases were distributed according to the proportion of
inhabitants serviced by the DZ in each zip code [22].

1. DZs were randomly selected. DZs servicing fewer than 200 inhabitants were excluded from the
simulation study to ensure statistical power of detection and because of their reduced impact on
public health.
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2. For each simulation, the variation of incidence ratio (VI), defined as the proportion between the
number of outbreak AGI cases and the number of expected cases of AGI (baseline data) during
the outbreak period, was randomly selected between 0.5% and 6%. These values were chosen
according to what we observed in previous WBDOs [10].

3. The outbreak duration was randomly selected between 3 and 28 days in accordance with the
observed values in reported WBDOs [6].

4. The outbreak size, that is, the number of AGI cases in the outbreak, was generated by multiplying
the VI by the number of inhabitants serviced by the DZ.

5. Finally, outbreak cases were distributed over time according to a log-normal distribution [15,21]
(Figure 3). The parameters of the log-normal distribution used to shape the time distribution of
the outbreak AGI cases were randomly chosen between 0.33 and 0.5 for the median, and fixed at
0.5 for the standard deviation [10,21]. When the selected DZ serviced more than one zip code,
daily cases in the AGI outbreak were then distributed according to the proportion of inhabitants
serviced by the DZ in each zip code.
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A total of 2000 simulations were run (1000 for each of the two French départements studied).
Each simulated set included the simulation of the baseline data and a WBDO.

The simulation study was performed using the R software version 3.3.0 (R foundation for
Statistical Computing, Vienna, Austria).

2.6. Detection of Simulated Waterborne Disease Outbreaks

The WBDO detection method used is detailed elsewhere [11]. First, an algorithm was used for
grouping zip codes (and corresponding AGI cases) which share the same DZ so that tap water exposure
could be taken into account in the detection process. Then the space–time permutation scan statistic
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developed by Kulldorff et al. [12] was applied to grouped zip codes. The scan statistic was based on
overlapping cylinders to define a scanning window. In our study, the scanning window is represented
by grouping zip codes sharing the same DZ and defined by the algorithm.

With a space–time permutation scan statistic, expected cases are calculated using observed cases.
A generalized likelihood ratio is then used as a measure of the evidence that a tested cylinder contains
an outbreak (i.e., number of observed cases exceeds the number you would typically expect to see in a
comparable period of time). The cylinder with the maximum generalized likelihood ratio constitutes
the space–time cluster of cases least likely to occur by chance, and consequently it is the primary
candidate for a true outbreak. Within the space–time permutation model, adjustments were made for
days of the week and holidays.

This detection study was performed using SaTScan version 9.3 [23] and R version 3.3.0.

2.7. Data Analysis

2.7.1. Evaluation Method

The running of the scan on the simulated dataset generated a set of clusters. All clusters associated
with a statistical threshold (p-value) of 0.05 were considered, whether they revealed a true alarm
(i.e., WBDO detected) or not. A true alarm was declared if at least one detected day and one detected
zip code corresponded to the days and zip codes involved in the simulated WBDOs [15]. The other
clusters were considered as false alarms.

To evaluate the performance of the WBDO detection method we considered the sensitivity (Se)
and the positive predictive value (PPV). Sensitivity was estimated as the ratio between the true alarm
and the number of simulated WBDOs (i.e., 1000 WBDOs generated per administrative area). The PPV
was defined as the ratio between the number of true alarm and the number of all the clusters detected
associated with a statistical threshold of 0.05. The Se and VPP were described by administrative area,
by DZ size (inhabitants served), by outbreak size, and by season.

2.7.2. Factors Associated with WBDO Detection

A multivariate Poisson regression was performed on true alarms to identify the factors associated
with WBDO detection and to estimate the strength of these associations [21]. Five dependent variables
were considered: outbreak duration, size of the DZ population, outbreak incidence ratio, outbreak
size, and season (“winter” for December, January, February and March/“other seasons” for April to
November). We tested for potential interactions among these factors. Incidence rate ratios (IRRs) and
their 95% confidence intervals (CIs) were computed. The IRR is the ratio between the incidence rate in
a considered group and the incidence rate in the reference group. All analyses were performed using
Stata 12.0 (StataCorp LP, College Station, TX, USA).

3. Results

3.1. Description of Simulated WBDO

Simulated WBDOs involved between 1 and 7392 AGI outbreak cases (median = 22; mean = 96).
Most (90%) included 200 AGI cases or fewer (Table 1). The mean outbreak duration was 15 days (3 to
28 days). All DZ sizes were represented: 35.8% of the randomly selected DZs serviced 200 to 500 people,
21.9% between 500 and 1000 people, 15.5% between 1000 and 2000 people, 21.1% between 2000 and
10,000, and 5.9% more than 10,000 people. Among all the simulated WBDOs, 26.7% (n = 534/2000)
involved a DZ which serviced more than one zip code: 162 WBDOs generated for Isere with 2 to 13 zip
codes were serviced by the same DZ, and 372 WBDOs for Puy-de-Dôme with 2 to 53 zip codes were
serviced by the same DZ.
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Table 1. Description of simulated WBDOs by département.

Variables n

Both départments Puy-de-Dôme Isère

Total Detected
%

Undetected
%

Total Detected
%

Undetected
%

Total Detected
%

Undetected
%

2000 1460 540 1000 726 274 1000 734 266

DZ size (number of inhabitants served by DZ)

200–500 715 353 49.4 362 50.6 385 201 52.2 184 47.8 330 152 46.1 178 53.9
501–1000 437 330 75.5 107 24.5 204 153 75.0 51 25.0 233 177 76.0 56 24.0
1001–2000 309 264 85.4 45 14.6 128 107 83.6 21 16.4 181 157 86.7 24 13.3
200–10,000 421 396 94.1 25 5.9 188 171 91.0 17 9.0 233 225 96.6 8 3.4
>10,000 118 117 99.2 1 0.8 95 94 98.9 1 1.1 23 23 100.0 0 0.0

Outbreak size (number of simulated cases of AGI)

Min 1 5 1 2 6 2 1 5 1
p10 5 11 2 5 11 2 5 12 2

Median 22 38 6 22 35 6 23 39 6
Mean 96.2 128.8 8.1 122.5 165.3 8.9 69.9 92.6 7.3

p90 199 271 14 255 412 15 140 187 14
Max 7392 7392 133 5551 5551 133 7392 7392 33

Duration (days)

Min 3 3 3 3 3 3 3 3 3
Median 16 15 17 15 14 16 16 15 18
Mean 15.4 15.0 16.4 15.2 14.8 16.3 15.6 15.2 16.5
Max 28 28 28 28 28 28 28 28 28

DZ area (number of municipalities served)

1 1466 1042 71.1 424 28.9 628 445 70.9 183 29.1 838 597 71.2 241 28.8
>1 534 418 78.3 116 21.7 372 281 75.5 91 24.5 162 137 84.6 25 15.4

Season

Winter 605 414 68.4 191 31.6 298 199 66.8 99 33.2 307 215 70.0 92 30.0
Other

seasons 1395 1046 75.0 349 25.0 702 527 75.1 175 24.9 693 519 74.9 174 25.1
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3.2. Sensitivity and Positive Predictive Value of the Detection Method

Almost three-quarters of the 2000 simulated WBDOs were detected (sensitivity = 73.0%).
More than 9 out of 10 detected signals corresponded to a simulated WBDO (PPV = 90.5%).
Sensitivity increased with DZ size and with outbreak size (Table 2). Moreover, WBDOs in non-winter
seasons (hereafter “other seasons”) were better detected than WBDO simulated during the winter
season. Indeed, to reach the same sensitivity value of 75%, WBDO size had to be greater in the winter
season than in other seasons (at least 15 cases versus 10 cases) (Figure 4).
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Table 2. Sensitivity and predictive positive value of the detection method according to outbreak size, distribution zone (DZ) size, season, and DZ area.

Variables

Total Isère Puy-de-Dôme

Se PPV Se PPV Se PPV

% N1 % N2 % N1 % N2 % N1 % N2

73.0 2000 90.5 1614 73.4 1000 89.0 825 72.6 1000 92.0 789

DZ size (number of inhabitants served by DZ)

200–500 49.3 715 88.0 401 46.0 330 82.1 185 52.2 385 93.0 216
501–1000 75.5 437 91.4 361 75.9 233 92.6 191 75.0 204 90.0 170
1001–2000 85.4 309 92.9 284 86.7 181 91.2 172 83.5 128 95.5 112
2001–10,000 94.0 421 91.4 433 96.5 233 89.2 252 90.9 188 94.4 181

>10,000 99.1 118 86.6 135 100.0 23 92.0 25 98.9 95 85.4 110

Outbreak size (number of simulated cases)

1–10 15.2 466 77.1 92 13.8 224 77.5 40 16.5 242 76.9 52
11–15 68.5 312 91.4 234 64.6 150 85.8 113 72.2 162 96.6 121
16–20 86.4 170 91.8 160 83.3 90 90.3 83 90.0 80 93.5 77
21–50 95.3 449 90.8 471 97.9 240 89.0 264 92.3 209 93.2 207
>50 99.5 603 91.3 657 100.0 296 91.0 325 99.0 307 91.5 332

Season

Winter * 68.4 605 87.7 472 70.0 307 84.3 255 66.7 298 91.7 217
Other
season 74.9 1395 91.5 1142 74.8 693 91.0 570 75.0 702 92.1 572

DZ area (number of municipalities served)

1 71.0 1466 90.2 1155 71.2 838 88.7 673 70.8 628 92.3 482
>1 78.2 534 91.0 459 84.5 162 90.1 152 75.5 372 91.5 307

Se: sensitivity; PPV: positive predictive value; N1: number of WBDO simulated; N2: number of clusters detected with p-value ≤ 0.05; DZ: distribution zone; * Winter: December, January,
February, March.
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Figure 4. Sensitivity of detection method according to outbreak size (number of simulated AGI cases)
and season (winter: December, January, February, March).

For WBDOs occurring in more than one zip code (a total of 534 for both departments studied),
the sensitivity of detection was higher than for WBDO associated with a DZ servicing only one zip
code (78.3% and 71.1%, respectively), while the PPV was stable (90.2% versus 91.1%, respectively).
For half of the WBDOs associated with a DZ servicing several zip codes, 80% of these zip codes were
included in the detected signal for Isere and 50% for Puy-de-Dôme.

The undetected WBDOs involved mostly small DZ (200–500 inhabitants) and few outbreak
cases (Table 1).

3.3. Factors Associated with WBDO Detection

In the multivariate Poisson regression, the outbreak size, the VI, and the duration and the season
of WBDOs were all significantly associated with detection (Table 3). The interaction of VI and the
outbreak size was significant. WBDOs involving at least 10 AGI cases, with a 14-day duration or less,
and occurring between April and November, had a higher probability of being detected. The variable
“outbreak size” had the strongest association with detection.
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Table 3. Final multivariate regression model with factors significantly associated with WBDO detection, stratified by variation of the incidence ratio.

Variables
VI: 0.5%–2.0% VI: 2.0%–4.0% VI: 4.0%–6.0%

n = 642 IRR [95% CI] n = 659 IRR [95% CI] n = 699 IRR [95% CI]

Outbreak size (number of simulated cases)

1–10 331 ref 129 ref 6 ref
11–15 79 7.70 [5.03–11.74] 130 2.01 [1.55–2.61] 103 1.59 [0.71–3.58]
16–20 40 10.30 [6.79–15.60] 51 2.62 [2.02–3.39] 79 1.91 [0.86–4.28]
21–50 96 12.80 [8.7118.82] 151 2.85 [2.24–3.62] 202 1.96 [0.88–4.37]
>50 96 13.70 [9.29–20.07] 198 2.92 [2.30–3.70] 309 2.03 [0.91–4.53]

Season

Winter * 193 ref 193 ref 219 ref
Other

seasons 449 1.37 [1.20–1.56] 466 1.11 [1.03–1.19] 480 1.05 [1.01–1.10]

Outbreak duration (days)

3–7 131 ref 136 ref 133 ref
8–14 173 0.84 [0.73–0.97] 180 1.00 [0.92–1.09] 184 0.97 [0.94–1.01]

15–21 178 0.77 [0.66–0.90] 170 0.89 [0.81–0.97] 178 0.94 [0.90–0.99]
22–28 160 0.64 [0.54–0.76] 173 0.89 [0.81–0.98] 204 0.93 [0.89–0.97]

VI: variation of the incidence ratio; IRR: incidence rate ratio; CI: confidence Interval; WBDO: waterborne disease outbreak; * winter: December, January, February, March.
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4. Discussion

4.1. Simulation Process

The first step of this simulation-based study was to generate the baseline incidence of the disease.
This step employed a published method [15] adapted for AGI epidemiology by adding a flexible
adjustment function (spline) to account for high winter incidence of AGIs due to the enteric virus
outbreak. Days of the week and holidays were adjusted for to reflect the closure of pharmacies during
weekends and holidays. This ensured an acceptable representativeness of seasonality and of AGI
incidence (Figure 1).

Simulated WBDOs were generated using a log-normal distribution model [15]. The parameters
used to build these epidemic signals were inspired by past outbreaks of waterborne AGIs. Accordingly,
the chosen epidemic duration ranging (from 3 to 28 days) and the chosen VI (between 0.5% and 6%)
are realistic. When compared with the health impact of WBDOs assessed in cohort studies in which
the attack rate varied between 30% and 50%, the AGI outbreak cases observed in SNIIRAM data
are less frequent. This difference is probably due to several factors, including healthcare-seeking
behaviors: in France, the mean consultation rate for AGI is quite low at 32% [19] and depends on
age and pathogen agent. The true distribution of cases during outbreaks is described in a previous
article which compared, for two WBDOs, the true distribution of cases identified in cohort studies
among the impacted population and the true distribution of medicalized cases identified in the
SNIIRAM database [10]. Results highlighted a good temporal correlation between both data sources.
Moreover, a descriptive study of 11 WBDOs reported in France between 1998 and 2006 gives the main
parameters of outbreak distributions [6].

One limitation of this study was the choice not to perform WBDO simulations for DZ servicing
fewer than 200 inhabitants. This prevented us from being able to evaluate the algorithm for these DZs.
However the public health concern is less important for these small zip codes.

Another limitation regards the use of the SNIIRAM database. Disease severity associated with
an epidemic may be a criterion that influences control measures. Nevertheless, medicalized AGI
cases (i.e., those who consulted a doctor and subsequently went to the pharmacy with a prescription)
identified from the health insurance database cannot be distinguished in terms of illness severity in
the absence of a specific association between severity and the drugs prescribed. This said, medicalized
AGI cases represented almost 32% of AGI cases in one French national survey [19]. In that study,
less than 1% of all individuals with an AGI went to a hospital for consultation. The main reported
reasons for consulting were: prolonged symptoms (49%), vomiting (31%), diarrhea (28%), and unusual
symptoms (27%). The main reasons for not consulting were: quick recovery/no serious symptoms
(64%) and feeling that a consultation was not necessary (47%). After multivariate analysis, gender, age,
duration of illness, and symptoms (headache) were associated with consultation for AGIs. Given these
results, AGI medicalized cases can be considered as the most severe cases.

4.2. Algorithm Performance for WBDO Detection

Globally, the algorithm has a high sensitivity (detecting 73% of simulated WBDOs) and a high
positive predictive value among the detected signals (90.5% corresponded to simulated WBDOs).
These indicators reached, respectively, 99.2% and 86.7%, for DZs servicing more than 10,000 people
(Table 2). The performance (sensitivity and positive predictive value) of the algorithm mainly depended
on the serviced population size and the outbreak size. The influence of the season and the number of
zip codes served by the same DZ were less important (Tables 2 and 3). If we focus on the influence of
the serviced population size, a threshold of 500 inhabitants resulted in increased sensitivity, from 50%
(fewer than 500 people served) to more than 75% (more than 500 people served) of detected WBDO.
Likewise, when the outbreak size exceeded 10 AGI cases, the sensitivity was four times greater than
with smaller outbreaks (10 cases or fewer). For these two parameters, the most significant variations
in sensitivity were observed when between 200 and 2000 people were serviced (from 49.4% to 94.1%,
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respectively) and between fewer than 10 AGI cases to over 50 (17.2% and 99.3%). Nevertheless, the
10-case sensitivity threshold should be treated with caution and is not the main consideration for the
implementation of surveillance system of WBDO. With respect to the positive predictive value, there is
no outbreak size threshold which could influence detection. Therefore, the criterion for considering
large epidemics or large DZ is a criterion of public health efficiency (avoided cost from an avoided case).

4.3. Factors Influencing Detection

In addition to the evaluation of the performance of the detection algorithm, the simulation study
also allowed us to identify and quantify the three factors which most influence the performance
of WBDO detection as follows: outbreak size, duration and season (“winter” or “other seasons”).
The existence of a significant interaction between the outbreak size and the variation of incidence led
us to consider the results according to three classifications of the incidence ratio (0.5% to 2%; 2% to 4%;
4% to 6%) (Table 3).

From the results of our analysis, outbreak size had the strongest association with detection
sensitivity, especially for a variation of incidence value below 4%. Above this value, outbreak size was
no longer associated with detection. For variation of incidence rate between 0.5% and 2%, the outbreak
size has a dominant effect (vis-à-vis duration and season), with a detection capacity 13 times greater for
an outbreak of 20 AGI cases or more than for an outbreak of 10 or fewer cases (the incidence rate ratio is
7.7 when going from fewer than 10 cases to 15 cases). For a variation of incidence between 2% and 6%,
the detection ratio (IRR) did not exceed 3 between the most extreme values (more than 50 cases versus
fewer than 10 cases). These results suggest a strong improvement in detection ability for WBDOs with
more than 10 AGI cases and a variation of incidence greater than 2%. These values are consistent with
the previous study’s results which described the detection algorithm and its application to real health
data [11]. Of the 11 clusters detected in this study, the values of the medication rate in the population
(indicator close to the variation of incidence) ranged from 0.7% to 4.8%, and the cluster size from 21 to
67 AGI cases.

As mentioned above, “duration” and “season” also affected detection but much less substantially
than outbreak size. WBDOs with a lower variation of incidence (0.5–2%) were primarily affected by
these three factors. Accordingly, the number of detected WBDO was 1.3 times higher in non-winter
season outbreaks of AGI. Similarly, outbreaks which lasted less than 14 days were better detected than
longer outbreaks.

4.4. International Comparison

To our knowledge, few previously published simulation studies on WBDO detection exist.
Different Canadian research studies have presented an agent-based simulation model for generating
realistic multivariable outbreak signals [24]. This model was used to simulate a WBDO caused by
Cryptosporidium, taking into account parameters for population, water consumption, and disease
progression. To verify whether the simulation model produced credible results, the authors attempted
to replicate the largest documented WBDO of cryptosporidiosis, which occurred in Milwaukee in
1993. During that outbreak, over 400,000 people were estimated to have diarrhea attributable to acute
Cryptosporidium infection [5]. The results showed that the simulated curve was slightly more positively
skewed and peaked one to two days earlier than the historically observed curves. These simulated
data were then used to improve early outbreak detection using a hidden Markov model [25].

Although French health insurance data constitute an adequate source for the retrospective
surveillance of WBDO, they do not allow—at least for the moment—the possibility of implementing a
prospective approach within the context of a public health alert system.

5. Conclusions

Our study presents a global approach for simulating AGI baseline data using reference health
data and superimposing simulated WBDOs. The algorithm for WBDO detection was evaluated as
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being able to detect almost 90% of WBDOs, with few false positive alarms. We also estimated the
factors which most influence WBDO detection. The results of our study underline the value of using
the detection algorithm for the implementation of a national surveillance system for WBDOs in France
upon which to base public health action.

Author Contributions: Conceptualization, D.M., S.G., M.M., P.B., C.G., A.G., C.D. and Y.L.S.; Data curation,
S.G. and M.M.; Formal analysis, D.M. and S.G.; Methodology, S.G., P.B., C.G., A.G., C.D. and Y.L.S.;
Project administration, D.M., A.G. and C.D.; Software, M.M.; Supervision, D.M.; Validation, Y.L.S.;
Writing—original draft, D.M.; Writing—review & editing, D.M., S.G., P.B., A.G., C.D. and Y.L.S.

Funding: This research received no external funding.

Acknowledgments: The authors wish to express their appreciation and gratitude to the National Health Insurance
for access to data from SNIIRAM, to Magali Corso of the French national public health agency for the preparation
of case data of acute gastroenteritis using this data, to Loïc Rambaud of the French national public health agency
for his contribution to the conceptualization of the study, to the Health Ministry and Henri Davezac for water
data drawn from the Sise-Eaux database, and to Farida Mihoub and Jude Sweeney for their help in translating
and revising the English version of the manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Craun, G.F.; Brunkard, J.M.; Yoder, J.S.; Roberts, V.A.; Carpenter, J.; Wade, T.; Calderon, R.L.; Roberts, J.M.;
Beach, M.J.; Roy, S.L. Causes of outbreaks associated with drinking water in the United States from 1971 to
2006. Clin. Microbiol. Rev. 2010, 23, 507–528. [CrossRef] [PubMed]

2. Hrudey, S.E.; Hrudey, E.J. Safe Drinking Water: Lessons from Recent Outbreaks in Affluent Nations;
IWA Publishing: London, UK, 2004.

3. Widerstrom, M.; Schonning, C.; Lilja, M.; Lebbad, M.; Ljung, T.; Allestam, G.; Ferm, M.; Bjorkholm, B.;
Hansen, A.; Hiltula, J.; et al. Large outbreak of Cryptosporidium hominis infection transmitted through the
public water supply, Sweden. Emerg. Infect. Dis. 2014, 20, 581–589. [CrossRef] [PubMed]

4. Rehn, M.; Wallensten, A.; Widerstrom, M.; Lilja, M.; Grunewald, M.; Stenmark, S.; Kark, M.; Lindh, J.
Post-infection symptoms following two large waterborne outbreaks of Cryptosporidium hominis in Northern
Sweden, 2010–2011. BMC Public Health 2015, 15, 529. [CrossRef] [PubMed]

5. MacKenzie, W.R.; Schell, W.L.; Blair, K.A.; Addiss, D.G.; Peterson, D.E.; Hoxie, N.J.; Kazmierczak, J.J.;
Davis, J.P. Massive outbreak of waterborne cryptosporidium infection in Milwaukee, Wisconsin: Recurrence
of illness and risk of secondary transmission. Clin. Infect. Dis. 1995, 21, 57–62. [CrossRef] [PubMed]

6. Beaudeau, P.; De Valk, H.; Vaillant, V.; Mannschott, C.; Tillier, C.; Mouly, D.; Ledrans, M. Lessons learned
from ten investigations of waterborne gastroenteritis outbreaks, France, 1998–2006. J. Water Health 2008,
6, 491–503. [CrossRef] [PubMed]

7. Bounoure, F.; Beaudeau, P.; Mouly, D.; Skiba, M.; Lahiani-Skiba, M. Syndromic surveillance of acute
gastroenteritis based on drug consumption. Epidemiol. Infect. 2011, 139, 1388–1395. [CrossRef] [PubMed]

8. Beaudeau, P. Syndromic Surveillance of Acute Gastroenteritis: An Opportunity for the Prevention of the
Infectious Risk Attributable to Tap Water. Ph.D. Thesis, Université de Rennes, Rennes, France, 2012.

9. Beaudeau, P.; Le Tertre, A.; Zeghnoun, A.; Zanobetti, A.; Schwartz, J. A time series study of drug sales and
turbidity of tap water in Le Havre, France. J. Water Health 2012, 10, 221–235. [CrossRef] [PubMed]

10. Mouly, D.; Van Cauteren, D.; Vincent, N.; Vaissiere, E.; Beaudeau, P.; Ducrot, C.; Gallay, A. Description of
two waterborne disease outbreaks in France: A comparative study with data from cohort studies and from
health administrative databases. Epidemiol. Infect. 2016, 144, 591–601. [CrossRef] [PubMed]

11. Coly, S.; Vincent, N.; Vaissiere, E.; Charras-Garridol, M.; Gallay, A.; Ducrot, C.; Mouly, D. Waterborne disease
outbreaks detection: An integrated approach using health administrative databases. J. Water Health 2017.
[CrossRef] [PubMed]

12. Kulldorff, M.; Heffernan, R.; Hartman, J.; Assuncao, R.; Mostashari, F. A space-time permutation scan
statistic for disease outbreak detection. PLoS Med. 2005, 2, e59. [CrossRef] [PubMed]

13. Rambaud, L.; Galey, C.; Beaudeau, P. Automated detection of case clusters of waterborne acute gastroenteritis
from health insurance data—Pilot study in three French districts. J. Water Health 2016, 14, 306–316. [CrossRef]
[PubMed]

http://dx.doi.org/10.1128/CMR.00077-09
http://www.ncbi.nlm.nih.gov/pubmed/20610821
http://dx.doi.org/10.3201/eid2004.121415
http://www.ncbi.nlm.nih.gov/pubmed/24655474
http://dx.doi.org/10.1186/s12889-015-1871-6
http://www.ncbi.nlm.nih.gov/pubmed/26041728
http://dx.doi.org/10.1093/clinids/21.1.57
http://www.ncbi.nlm.nih.gov/pubmed/7578760
http://dx.doi.org/10.2166/wh.2008.051
http://www.ncbi.nlm.nih.gov/pubmed/18401114
http://dx.doi.org/10.1017/S095026881000261X
http://www.ncbi.nlm.nih.gov/pubmed/21108871
http://dx.doi.org/10.2166/wh.2012.157
http://www.ncbi.nlm.nih.gov/pubmed/22717747
http://dx.doi.org/10.1017/S0950268815001673
http://www.ncbi.nlm.nih.gov/pubmed/26194500
http://dx.doi.org/10.2166/wh.2017.273
http://www.ncbi.nlm.nih.gov/pubmed/28771145
http://dx.doi.org/10.1371/journal.pmed.0020059
http://www.ncbi.nlm.nih.gov/pubmed/15719066
http://dx.doi.org/10.2166/wh.2015.135
http://www.ncbi.nlm.nih.gov/pubmed/27105415


Int. J. Environ. Res. Public Health 2018, 15, 1505 15 of 15

14. Goria, S.; Mouly, D.; Rambaud, L.; Guillet, A.; Beaudeau, P.; Galey, C. Evaluation of Different Methods of
Detection of Aggregates of Cases of Medicalized Acute Waterborne Gastroenteritis; Santé Publique France: Saint
Maurice, France, 2017.

15. Noufaily, A.; Enki, D.G.; Farrington, P.; Garthwaite, P.; Andrews, N.; Charlett, A. An improved algorithm for
outbreak detection in multiple surveillance systems. Stat. Med. 2013, 32, 1206–1222. [CrossRef] [PubMed]

16. Buckeridge, D.L.; Jauvin, C.; Okhmatovskaia, A.; Verma, A.D. Simulation Analysis Platform (SnAP): A tool
for evaluation of public health surveillance and disease control strategies. Annu. Symp. Proc. 2011,
2011, 161–170.

17. Insee. Available online: https://www.insee.fr (accessed on 8 December 2015).
18. Tuppin, P.; Rudant, J.; Constantinou, P.; Gastaldi-Ménager, C.; Rachas, A.; De Roquefeuil, L.; Maura, G.;

Caillol, H.; Tajahmady, A.; Coste, J.; et al. Value of a national administrative database to guide public
decisions: From the système national d’information interrégimes de l’Assurance Maladie (SNIIRAM) to the
système national des donneés de santé (SNDS) in France. J. Epidemiol. Community Health 2017, 65S, 149–167.
[CrossRef] [PubMed]

19. Van Cauteren, D.; De Valk, H.; Vaux, S.; Le Strat, Y.; Vaillant, V. Burden of acute gastroenteritis and
healthcare-seeking behaviour in France: A population-based study. Epidemiol. Infect. 2012, 140, 697–705.
[CrossRef] [PubMed]

20. Wood, S.N. Generalized Additive Models: An Introduction with R; Chapman and Hall: Boca Raton, FL, USA, 2006.
21. Buckeridge, D.L.; Okhmatovskaia, A.; Tu, S.; O’Connor, M.; Nyulas, C.; Musen, M.A. Predicting outbreak

detection in public health surveillance: Quantitative analysis to enable evidence-based method selection.
Annu. Symp. Proc. 2008, 15, 76–80.

22. French Ministry of Health. French Database on Public Drinking Water Quality; French Ministry of Health: Paris,
France, 2011.

23. Kulldorff, M. SaTScanTM v8.0: Software for the Spatial and Space-Time Scan Statistics; Information Management
Services, Inc.: Calverton, MD, USA, 2006.

24. Okhmatovskaia, A.; Verma, A.D.; Barbeau, B.; Carriere, A.; Pasquet, R.; Buckeridge, D.L. A simulation model
of waterborne gastro-intestinal disease outbreaks: Description and initial evaluation. Annu. Symp. Proc.
2010, 2010, 557–561.

25. Morrison, K.; Charland, K.; Okhmatovskaia, A.; Buckeridge, D. A Framework for Detecting and Classifying
Outbreaks of Gastrointestinal Disease. Online J. Public Health Inform. 2013, 5. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/sim.5595
http://www.ncbi.nlm.nih.gov/pubmed/22941770
https://www.insee.fr
http://dx.doi.org/10.1016/j.respe.2017.05.004
http://www.ncbi.nlm.nih.gov/pubmed/28756037
http://dx.doi.org/10.1017/S0950268811000999
http://www.ncbi.nlm.nih.gov/pubmed/21676346
http://dx.doi.org/10.5210/ojphi.v5i1.4417
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area and Period 
	Reference Health Data 
	Simulation Study 
	Simulation of Baseline Data 
	The Simulation Process of Waterborne Disease Outbreaks 
	Detection of Simulated Waterborne Disease Outbreaks 
	Data Analysis 
	Evaluation Method 
	Factors Associated with WBDO Detection 


	Results 
	Description of Simulated WBDO 
	Sensitivity and Positive Predictive Value of the Detection Method 
	Factors Associated with WBDO Detection 

	Discussion 
	Simulation Process 
	Algorithm Performance for WBDO Detection 
	Factors Influencing Detection 
	International Comparison 

	Conclusions 
	References

