

# Modelling non-ideal bio-physical-chemical effects on high-solids anaerobic digestion of the organic fraction of municipal solid waste

Vicente Pastor-Poquet, Stefano Papirio, Jean-Philippe Steyer, Eric Trably, Renaud Escudié, Giovanni Esposito

# ▶ To cite this version:

Vicente Pastor-Poquet, Stefano Papirio, Jean-Philippe Steyer, Eric Trably, Renaud Escudié, et al.. Modelling non-ideal bio-physical-chemical effects on high-solids anaerobic digestion of the organic fraction of municipal solid waste. Journal of Environmental Management, 2019, 238, pp.408-419. 10.1016/j.jenvman.2019.03.014. hal-02623438

# HAL Id: hal-02623438 https://hal.inrae.fr/hal-02623438

Submitted on 22 Oct 2021

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.



Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Version of Record: https://www.sciencedirect.com/science/article/pii/S0301479719303044 Manuscript\_35640a0995da478b355afd9ee49a5edf

| 1  | Modelling Non-Ideal Bio-Physical-Chemical Effects on High-Solids                                                                       |
|----|----------------------------------------------------------------------------------------------------------------------------------------|
| 2  | Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste                                                                   |
| 3  |                                                                                                                                        |
| 4  | Vicente Pastor-Poquet <sup>a,b,*</sup> , Stefano Papirio <sup>c</sup> , Jean-Philippe Steyer <sup>b</sup> , Eric Trably <sup>b</sup> , |
| 5  | Renaud Escudié <sup>b</sup> , and Giovanni Esposito <sup>a</sup>                                                                       |
| 6  |                                                                                                                                        |
| 7  | <sup>a</sup> Department of Civil and Mechanical Engineering, University of Cassino and Southern                                        |
| 8  | Lazio, via Di Biasio 43, 03043 Cassino (FR), Italy                                                                                     |
| 9  | * Corresponding author. E-mail: vicente.pastor.poquet@gmail.com                                                                        |
| 10 | <sup>b</sup> LBE, Univ Montpellier, INRA, 102 avenue des Etangs, 11100, Narbonne, France                                               |
| 11 | <sup>c</sup> Department of Civil, Architectural and Environmental Engineering, University of                                           |
| 12 | Napoli Federico II, via Claudio 21, 80125 Napoli, Italy                                                                                |
| 13 |                                                                                                                                        |
| 14 |                                                                                                                                        |
| 15 | ABSTRACT                                                                                                                               |
| 16 | This study evaluates the main effects of including 'non-ideal' bio-physical-chemical                                                   |
| 17 | corrections in high-solids anaerobic digestion (HS-AD) of the organic fraction of                                                      |
| 18 | municipal solid waste (OFMSW), at total solid (TS) between 10 and 40 %. As a novel                                                     |
| 19 | approach, a simple 'non-ideal' module, accounting for the effects of ionic strength $(I)$                                              |
| 20 | on the main acid-base equilibriums, was coupled to a HS-AD model, to jointly evaluate                                                  |

- 21 the effects of 'non-ideality' and the TS content dynamics on the HS-AD bio-physical-
- 22 chemistry. 'Non-ideality' influenced the pH, concentration of inhibitors (i.e. NH<sub>3</sub>), and
- 23 liquid-gas transfer (i.e.  $CO_2$ ), particularly at higher TS (i.e.  $\geq 20$  %). Meanwhile, fitting
- 24 the experimental data for batch assays at 15 % TS showed that HS-AD of OFMSW

| 25 | might be operated at $I \ge 0.5$ M. Therefore, all HS-AD simulations should account for                   |
|----|-----------------------------------------------------------------------------------------------------------|
| 26 | 'non-ideal' corrections, when assessing the main inhibitory mechanisms (i.e. $NH_3$                       |
| 27 | buildup and acidification) potentially occurring in HS-AD of OFMSW.                                       |
| 28 |                                                                                                           |
| 29 | Keywords: High-Solids Anaerobic Digestion Model; Non-Ideal Bio-Physical-Chemical                          |
| 30 | Corrections; Ionic Strength; Total Solids Dynamics; Ammonia Inhibition.                                   |
| 31 |                                                                                                           |
| 32 |                                                                                                           |
| 33 | 1 INTRODUCTION                                                                                            |
| 34 | Anaerobic digestion (AD) models enhance our understanding about the biogas                                |
| 35 | production dynamics and/or inhibitory mechanisms, while revealing potential                               |
| 36 | opportunities for bioprocess optimization (Lauwers et al., 2013; Steyer et al., 2006). The                |
| 37 | Anaerobic Digestion Model No.1 (ADM1) is a structured model reproducing the main                          |
| 38 | bio-physical-chemical mechanisms in AD (Batstone et al., 2002). Biochemical                               |
| 39 | mechanisms include the disintegration, hydrolysis, acidogenesis, acetogenesis and                         |
| 40 | methanogenesis of organic substrates, expressed in chemical oxygen demand (COD)                           |
| 41 | units. Physical-chemical mechanisms include the liquid-gas transfer of $CH_4$ , $CO_2$ and                |
| 42 | H <sub>2</sub> , and the ionic equilibriums of volatile fatty acids (VFA; i.e. acetic, propionic, butyric |
| 43 | and valeric), inorganic nitrogen (i.e. NH <sub>3</sub> ), and inorganic carbon (i.e. CO <sub>2</sub> ).   |
| 44 |                                                                                                           |
| 45 | High-solids anaerobic digestion (HS-AD) is operated at total solid (TS) content $\geq 10$ %,              |
| 46 | in contrast to 'wet' AD (i.e. TS < 10 %) (Pastor-Poquet et al., 2019a). In HS-AD of the                   |
| 47 | organic fraction of municipal solid waste (OFMSW), a 30 - 80 % volatile solid (VS)                        |
| 48 | removal occurs due to the biogas production, modifying the reactor content mass                           |

49 (M<sub>Global</sub>) and/or volume (V<sub>Global</sub>), but also the reactor content specific weight (ρ<sub>Global</sub>)
50 (Kayhanian & Tchobanoglous, 1996; Pastor-Poquet et al., 2018).

51

52 To account for the mass removal in HS-AD simulations, a HS-AD model based on 53 ADM1 was developed (Pastor-Poquet et al., 2018). The main difference between the 54 HS-AD model and the continuously-stirred tank reactor (CSTR) implementation of ADM1 (Batstone et al., 2002) lies on the simulation of the M<sub>Global</sub>, V<sub>Global</sub>, TS, VS, and 55 56  $\rho_{\text{Global}}$  dynamics by using an extended set of mass balances for homogenized HS-AD 57 reactors. For example, apart from the mass balance of soluble ("S") and particulate 58 ("X") substances in ADM1, the HS-AD model includes the mass balance of reactor 59 mass (M<sub>Global</sub>), solvent (M<sub>Solvent</sub>), and inert (M<sub>Inerts</sub>) contents, allowing the dynamic calculation of TS and VS. On the other hand, apparent concentrations (i.e. kg  $COD/m^3$ 60 61 Solvent) were used in the bio-physical-chemical framework of the HS-AD model, to 62 account for the TS concentration effect on HS-AD solutes (i.e. VFA), and in contrast to ADM1 that uses global concentrations (i.e.  $kg COD/m^3$  Total). 63

64

An important limitation of the physical-chemical framework of ADM1 is the absence of 65 66 corrections for the 'non-ideal' solution effects on AD (Batstone et al., 2012; Solon et al., 2015; Tait et al., 2012). In solution, a global species concentration (S<sub>T,i</sub>) includes the 67 corresponding dissociated  $(S_i^{Zi})$  and un-dissociated  $(S_i^{Zi=0})$  species concentrations, with 68 their associated ion charge (Zi). Thus, the 'ideal' dissociated/un-dissociated species can 69 70 be obtained from  $S_{T,i}$  once knowing the mass balance, the 'ideal' equilibrium constant 71 (K<sub>a,i</sub>), and the solution pH. For example, the total ammonia/inorganic nitrogen (TAN, 72  $S_{in}$ ) in AD is mainly dissociated into ammonium ion (NH<sub>4</sub><sup>+</sup>,  $S_{nh4+}$ ) and free ammonia

73 (NH<sub>3</sub>,  $S_{nh3}$ ), as a function of the equilibrium constant for inorganic nitrogen ( $K_{a,in}$ ) and

- 74 the proton concentration  $(H^+, S_{h+})$  [Equation 1]. Using the inorganic nitrogen mass
- balance [Equation 2] and the 'ideal' ammonia equilibrium [Equation 3], S<sub>nh4+</sub> and S<sub>nh3</sub>
- 76 can be approximated for a given  $pH S_{h+}$  concentration.

77

$$NH_4^+ \stackrel{K_{a,in}}{\longleftrightarrow} NH_3 + H^+ \tag{1}$$

$$S_{in} = S_{nh_4} + S_{nh_3} \tag{2}$$

$$K_{a,in} = \frac{S_{nh_3} \cdot S_{h^+}}{S_{nh_4^+}}$$
(3)

78

79 Ionic strength (I) estimates the level of ionic interactions of an aqueous solution, and can be approximated from S<sub>i</sub><sup>Zi</sup> and Z<sub>i</sub> [Equation 4] (Parkhurst & Appelo, 1999; Solon et 80 al., 2015). Whether a solution is not infinitely diluted (i.e.  $\Sigma S_i^{Zi} \neq 0$ ), the hypothesis of 81 'ideality' (i.e.  $I \sim 0$ ) is not further valid, and all the 'non-ideal' equilibriums involved in 82 83 the solution must be expressed in terms of activities, instead of molal concentrations 84 (Batstone et al., 2012; Tait et al., 2012). The activity of a solute (a<sub>i</sub>) is the product of the molal concentration ( $S_i^{Zi}$ , kmol/kg Solvent) by the coefficient of activity ( $\gamma_i$ ) [Equation 85 86 5]. 'Non-ideality' corrections are required for AD solutions when  $I \ge 0.2$  M, being potentially important in HS-AD due to the high organic concentration used (Batstone et 87 88 al., 2015; Solon et al., 2015; Tait et al., 2012).

89

$$I = \frac{1}{2} \sum S_i^{Z_i} \cdot Z_i^2 \tag{4}$$

$$a_i = \gamma_i \cdot S_i^{Z_i} \tag{5}$$

91 For an 'ideal' solution  $\gamma_i = 1$ , whereas for a 'non-ideal' solution  $\gamma_i < 1$  for dissociate 92 species (i.e.  $Z_i \neq 0$ ) and  $\gamma_i > 1$  for un-dissociated species (i.e.  $Z_i = 0$ ). Thus,  $\gamma_i$  is mainly a 93 function of I and, for a moderately concentrated solution (i.e.  $I \le 0.2$  M), the Davies 94 equation [Equation 6] is commonly used for assessing the activity of ionic species 95 (Allison et al., 1991; Parkhurst & Appelo, 1999). However, when I > 0.2 M,  $\gamma_i$  tends to 96 unity with increasing *I* by using the Davies equation (Solon, 2016; Tait et al., 2012). 97 Therefore, the WATEQ Debye-Hückel equation [Equation 7] is recommended for  $0.2 \leq$ 98  $I \le 1.0$  M, as  $\gamma_i$  progressively tends to zero with increasing I (Parkhurst & Appelo, 1999; 99 Solon et al., 2015).

100

$$log_{10}(\gamma_i) = -A \cdot Z_i^{\ 2} \cdot \left(\frac{\sqrt{I}}{1+\sqrt{I}} - 0.3 \cdot I\right)$$
<sup>(6)</sup>

$$log_{10}(\gamma_i) = -\frac{A \cdot Z_i^2 \cdot \sqrt{I}}{1 + B \cdot a_i^0 \cdot \sqrt{I}} + b_i \cdot I$$
<sup>(7)</sup>

101

102 The liquid-gas transfer, ionic speciation, ion pairing and precipitation are the most 103 important physical-chemical mechanisms affecting and being affected by 'non-ideality' 104 in AD (Batstone et al., 2015; Flores-Alsina et al., 2015). In particular, the ionic 105 speciation determines the medium pH, as well as the concentration of soluble inhibitors 106 (i.e. NH<sub>3</sub>), being two of the most important parameters influencing the biogas 107 production in ADM1 (Batstone et al., 2002; Rosén & Jeppsson, 2006; Xu et al., 2015). 108 Therefore, failing to include 'non-ideal' corrections in ADM1-based models might 109 result in an artificially high NH<sub>3</sub> concentration, subsequently influencing the parameter 110 calibration related to NH<sub>3</sub> inhibition (Hafner & Bisogni, 2009; Nielsen et al., 2008; 111 Patón et al., 2018).

113 With all the above, the 'non-ideal' approach may be particularly important to assess the 114 main inhibitory mechanisms in HS-AD of OFMSW, since HS-AD is easily subjected to 115 reactor inhibition by high levels of NH<sub>3</sub>, as a consequence of the high protein content of 116 OFMSW and the reduced free water available in the process (García-Bernet et al., 2011; 117 Kayhanian, 1999). For example, HS-AD of OFMSW can be operated at NH<sub>3</sub> content up 118 to 2.7 g N/kg (i.e. 0.19 mol N/kg), whereas NH<sub>3</sub> concentrations  $\geq$  1.0 g N/kg (i.e. 0.07 119 mol N/kg) are often reported inhibitory for methanogens (Pastor-Poquet et al., 2019a, 120 b). Thus, the NH<sub>3</sub> build-up in HS-AD may lead to VFA accumulation and eventual 121 reactor failure by acidification (i.e.  $pH \le 6.0$ ). On the other hand, acidification might be 122 also the result of substrate overload due to the imbalance between acidogenic-123 methanogenic growth and/or the elevated organic content of HS-AD (Pastor-Poquet et 124 al., 2018; Staley et al., 2011). Noteworthy, the release of inorganic carbon (i.e. 125  $CO_2/HCO_3$ ) by acetoclastic methanogens is one of the main pH buffering agents in AD, 126 potentially counteracting reactor acidification (Steyer et al., 2006). Therefore, the risk of 127 acidification might be also affected by the 'non-ideal' effect on the CO<sub>2</sub> liquid-gas 128 transfer (Patón et al., 2018). 129 130 This study evaluates for the first time the main effects of including 'non-ideal' bio-

131 physical-chemical corrections in HS-AD simulations using OFMSW as substrate, at TS

132 contents from 10 to 40 %. With this aim, a relatively simple 'non-ideal' calculation

133 module, based on the Visual MINTEQ (Allison et al., 1991) and Phreeqc (Parkhurst &

134 Appelo, 1999) physical-chemical engines, was developed to assess the potential effects

135 of a high I (e.g. > 0.2 M) upon the main ionic equilibriums of HS-AD, while speeding-

| 136 | up model simulations. Coupling the proposed 'non-ideal' module with the HS-AD                                   |
|-----|-----------------------------------------------------------------------------------------------------------------|
| 137 | model (Pastor-Poquet et al., 2018) permitted to explore some of the main inhibitory                             |
| 138 | mechanisms (i.e. NH <sub>3</sub> buildup and acidification) in HS-AD of OFMSW, particularly at                  |
| 139 | relatively high TS contents (i.e. $\geq 20$ %).                                                                 |
| 140 |                                                                                                                 |
| 141 |                                                                                                                 |
| 142 | 2 METHODOLOGY                                                                                                   |
| 143 | 2.1 Activity Coefficients and Modified Equilibrium Constants                                                    |
| 144 | In this study, the Extended Debye-Hückel (EDH) equation [Equation 8] was used to                                |
| 145 | approximate the activity coefficients ( $\gamma_i$ ) in HS-AD. EDH is a particular case of the                  |
| 146 | WATEQ Debye-Hückel equation [Equation 7], whose parameters (A, B and $a_i^0$ ) are                              |
| 147 | known for the main ionic species usually measured in AD (e.g. CH <sub>3</sub> COO <sup>-</sup> ,                |
| 148 | $CH_3CH_2COO^-$ , $NH_4^+$ and $Na^+$ ) (Ball & Nordstrom, 1991; Stumm & Morgan, 1996).                         |
| 149 | Importantly, the activity coefficients for non-charged species ( $\gamma_0$ ) in solution (i.e. NH <sub>3</sub> |
| 150 | and CO <sub>2</sub> ) were also calculated as a function of <i>I</i> [Equation 9], using $b_i = 0.1$ (Parkhurst |
| 151 | & Appelo, 1999).                                                                                                |

$$log_{10}(\gamma_i) = -\frac{A \cdot Z_i^2 \cdot \sqrt{I}}{1 + B \cdot a_i^0 \cdot \sqrt{I}}$$

$$log_{10}(\gamma_0) = -b_i \cdot I$$
(8)
(9)

154 To include 'non-ideal' effects in AD, the 'ideal' dissociation/equilibrium constants

 $(K_{a,i})$  were corrected in terms of activities  $(a_i)$  to obtain the modified equilibrium

156 constants (K<sub>a,i</sub>') (Nielsen et al., 2008; Tait et al., 2012). For example, K<sub>a,in</sub> expressed in

157 activity terms [Equation 10] can be reorganized to obtain the modified equilibrium

- 158 constant for inorganic nitrogen ( $K_{a,in}$ ) [Equation 11]. Importantly, the proton activity
- 159  $(a_{h+})$  must be used for pH calculations [Equation 12] under 'non-ideal' conditions
- 160 (Allison et al., 1991; Parkhurst & Appelo, 1999). Therefore, since the 'non-ideal' set of
- 161 equations (i.e. Equations 2, 8, 9, 11 and 12) is implicit in  $S_{h+}$ , the calculation of pH, *I*,
- and  $K_{a,i}$  must be solved iteratively, fulfilling both equilibriums and mass balances in an
- 163 ionic solution.
- 164

$$K_{a,in} = \frac{a_{nh_3} \cdot a_{h^+}}{a_{nh_4}^+} = \frac{\gamma_{nh_3} \cdot S_{nh_3} \cdot \gamma_{h^+} \cdot S_{h^+}}{\gamma_{nh_4}^+} = \frac{\gamma_{nh_3} \cdot \gamma_{h^+}}{\gamma_{nh_4}^+} \cdot \frac{S_{nh_3} \cdot S_{h^+}}{S_{nh_4}^+}$$
(10)

$$K_{a,in}' = K_{a,in} \cdot \frac{\gamma_{nh4^+}}{\gamma_{nh_3} \cdot \gamma_{h^+}} = \frac{S_{nh_3} \cdot S_{h^+}}{S_{nh_4^+}}$$
(11)

$$pH = -log_{10}(a_{h^+}) = -log_{10}(\gamma_{h^+} \cdot S_{h^+})$$
(12)

166 For this study, the main global species used were acetate  $(S_{ac})$ , propionate  $(S_{pro})$ ,

167 butyrate (S<sub>bu</sub>), valerate (S<sub>va</sub>), inorganic carbon (S<sub>ic</sub>), inorganic nitrogen (S<sub>in</sub>), and mono-

- 168 valent inorganic cations  $(S_{cat})$  and anions  $(S_{an})$ , as originally proposed in ADM1
- 169 (Batstone et al., 2002). The schematic representation of the iterative module for
- 170 including the 'non-ideality' of an AD solution is shown in Figure 1. All the required

171 equilibrium constants for an 'ideal' solution  $(K_{a,i})$  and their temperature dependence

- using the van't Hoff equation were extracted from Batstone et al. (2002) and Lide
- 173 (2004).

174

To keep the physical-chemical module as simple as possible, the proposed calculation procedure did not consider ion-pairing or precipitation. Noteworthy, ion-pairing and precipitation are based on further ionic equilibriums, whereas the due kinetic rates of 178 nucleation and crystal growth phenomena must be adequately accounted also for

179 precipitation (Huber et al., 2017; Vaneeckhaute et al., 2018). Further information about

180 those mechanisms and some potential strategies for their implementation in ADM1-

181 based models can be found elsewhere (Flores-Alsina et al., 2015; Lizarralde et al., 2015;

182 Mbamba et al., 2015; Parkhurst & Appelo, 1999; Vaneeckhaute et al., 2018), as also

183 mentioned in section 3.1.3.

184

The gaseous species used in this study were  $CH_4$ ,  $H_2$ ,  $CO_2$ , and  $NH_3$ . The addition of the NH<sub>3</sub> liquid-gas transfer in the HS-AD model was shown elsewhere (Pastor-Poquet et al., 2018). The Henry's constant (K<sub>H,i</sub>) of each gaseous species was modified by the introduction of  $\gamma_0$ , obtaining the modified Henry's constant (K<sub>H,i</sub>') [Equation 13]. The K<sub>H,i</sub> reference values and their dependence with temperature via the van't Hoff equation were extracted from Batstone et al. (2002) and Lide (2004).

191

$$K_{H,i}'\left(\frac{kmol}{m^3 \cdot bar}\right) = \frac{K_{H,i}\left(\frac{kmol}{m^3 \cdot bar}\right)}{\gamma_0} = \frac{S_{g,i}\left(\frac{kmol}{m^3}\right)}{P_i\left(bar\right)}$$
(13)

192

193

### 194 **2.2 Model Implementation Verification**

#### 195 **2.2.1 Model Comparison**

196 The 'non-ideal' calculation module [Figure 1] was used to upgrade the CSTR

197 implementation of ADM1 as suggested by Rosén and Jeppsson (2006), and the HS-AD

- 198 model proposed by Pastor-Poquet et al. (2018). Four different models were compared:
- 199 standard ADM1 (ADM1); ADM1 using 'non-ideal' conditions (ADM1 Non-Ideal); the
- 200 HS-AD model (HS-AD Model); and the HS-AD model using 'non-ideal' conditions



simultaneously the influence of the varying reactor content mass/volume, the effect of

225 the apparent concentrations, and the solution 'non-ideality' in HS-AD simulations. The 226 biochemical rates used for model verification are reported in Table 1. All the model 227 parameters were as in Rosén and Jeppsson (2006) for mesophilic (35°C) AD. 228 Continuous influent conditions were used at 10, 20 and 30 % TS [Supplementary 229 Information], together with a  $Q_{Influent}$  of 170 m<sup>3</sup>/d, a  $V_{Global}$  of 3400 m<sup>3</sup>, and a reactor design volume ( $V_{Reactor}$ ) of 3700 m<sup>3</sup>. With these specifications, all the simulations were 230 231 performed at an HRT of 20 d, while the OLR was proportionally increased for higher 232 TS influents. All the influent conditions simulated an OFMSW inflow with a relatively 233 high content of proteins (X<sub>pr</sub>) at different dilutions, permitting to assess differently the 234 NH<sub>3</sub> inhibition on acetate uptake, particularly when reaching steady-state HS-AD.

235

#### 236 2.2.2 'Non-Ideal' Calculations

237 pH calculations were performed as shown in Rosén and Jeppsson (2006) and Volcke et

al. (2005). In order to implement 'non-ideal' conditions, the K<sub>a,i</sub> of all the ionic species

in ADM1 (i.e.  $S_{in}$ ,  $S_{ic}$ ,  $S_{ac}$ ) were modified at each time-step, as shown in section 2.1. For

240 'non-ideal' simulations,  $S_{cat}$  and  $S_{an}$  were entirely associated to Na<sup>+</sup> and Cl<sup>-</sup>,

respectively. Importantly, apparent concentrations (i.e. kmol/m<sup>3</sup> Solvent) were used in

242 the pH calculations – as well as in all the bio-physical-chemical dynamics – of the HS-

AD model, in contrast to the CSTR implementation of ADM1 that used global

- 244 concentrations (i.e. kmol/m<sup>3</sup> Total).
- 245

In some HS-AD model simulations, the Phreeqc engine (Charlton & Parkhurst, 2011;

247 Parkhurst & Appelo, 1999) was used for pH, I and  $\gamma_i$  calculations, as an alternative to

the proposed 'non-ideal' module [Figure 1]. In these cases, precipitation was not used,

though ion pairing is one of the main features of Phreeqc. It must be mentioned that the proposed module for assessing 'non-ideality' in HS-AD simulations [Figure 1] is a simplification of more complex physical-chemical engines (i.e. Visual MINTEQ and Phreeqc). Nonetheless, the proposed 'non-ideal' module – instead of Phreeqc – served to compare 'ideal' and 'non-ideal' HS-AD simulations, using the same pH calculation routine in both cases, by only modifying the equilibrium constants ( $K_{a,i}$ ) at each simulation time-step in the 'non-ideal' implementation.

256

257 To illustrate the existing link between 'non-ideality' and the main NH<sub>3</sub> inhibition 258 parameters in structured HS-AD models, the NH<sub>3</sub> half-inhibition constant for 259 acetoclastic methanogens (K<sub>i,Snh3,Xac</sub>) was slightly modified in some cases. Thus, simulations using the original K<sub>i,Snh3,Xac</sub> for mesophilic (35°C) conditions (i.e. 0.0018 260 kmol  $N/m^3$ ) (Batstone et al., 2002) were compared with simulations using slightly 261 262 different K<sub>i.Snh3,Xac</sub> (i.e. 0.0008 and 0.0028 kmol N/m<sup>3</sup>). To compare the different values 263 for the soluble acetate concentration (Sac) under 'ideal' (Sac.Ideal) and 'non-ideal' (Sac.Non-264 Ideal) conditions at the same influent TS, the relative acetate difference was used 265 [Equation 14]. To compare the different values for the NH<sub>3</sub> concentration (S<sub>nh3</sub>) under 'ideal'  $(S_{nh3,Ideal})$  and 'non-ideal'  $(S_{nh3,Non-Ideal})$  conditions, the relative NH<sub>3</sub> difference 266 267 was used [Equation 15]. The Henry's constant for  $CO_2$  ( $K_{H,co2}$ ) reduction between 268 'ideal' (K<sub>H,co2,Ideal</sub>) and 'non-ideal' (K<sub>H,co2,Non-Ideal</sub>) conditions was also expressed as 269 relative difference [Equation 16].

Acetate Difference (%) = 
$$\frac{(S_{ac,Non-Ideal} - S_{ac,Ideal})}{S_{ac,Ideal}} \cdot 100$$
 (14)

$$NH_{3} Difference (\%) = \frac{(S_{nh3,Non-Ideal} - S_{nh3,Ideal})}{S_{nh3,Ideal}} \cdot 100$$
(15)

$$K_{H,co2} Difference (\%) = \frac{(K_{H,co2,Non-Ideal} - K_{H,co2,Ideal})}{K_{H,co2,Ideal}} \cdot 100$$
(16)

272

### 273 **2.3 Experimental Data and Model Calibration**

274 A HS-AD batch experiment fed with OFMSW and using an inoculum-to-substrate ratio 275 (ISR) = 1.0 g VS/g VS at thermophilic (55°C) conditions was used for model 276 calibration. The batch experiment consisted of a sacrifice test with 15 replicates starting 277 at 15 % TS, where one replicate was opened – 'sacrificed' – periodically, and the main 278 physical-chemical analyses (e.g. TS, VFA) were performed. Experimental data included 279 the cumulative methane production, biogas composition (i.e. CH<sub>4</sub> and CO<sub>2</sub>), TS and VS, TAN, VFA, pH, and mono-valent ions (i.e. Na<sup>+</sup>, K<sup>+</sup> and Cl<sup>-</sup>). The biogas production and 280 281 composition was the average  $\pm$  standard deviation of all (remaining) replicates, 282 including that being subsequently emptied. The rest of analyses were performed in 283 triplicate for the punctually-emptied replicate. Manual agitation was only performed 284 while sampling the reactors. Further information about the experimental setup and the 285 physical-chemical analyses used can be found Pastor-Poquet et al. (2019a). 286 287 For calibration, the 'non-ideal' CSTR implementation of ADM1 (ADM1 Non-Ideal) 288 and the HS-AD model (HS-AD Model Non-Ideal) were compared, using the 289 biochemical rates reported in Table 1. Noteworthy, these rates were slightly different 290 than those used in the original ADM1 implementation (Batstone et al., 2002), since a

- 291 new population for valerate degraders  $(X_{c5})$  was included, while the composite  $(X_c)$
- disintegration was disregarded, as shown by Pastor-Poquet et al. (2018). As an example,

293 a reversible (non-competitive) NH<sub>3</sub> inhibition function [Equation 17] was also used for 294 propionate and valerate uptakes in model calibration [Table 1], to account for the 295 potential methanogenic and/or acetogenic NH<sub>3</sub> inhibition observed in the experimental 296 dataset (Pastor-Poquet et al., 2018). The initial conditions were recalculated based on 297 the experimental data available. The biochemical parameters for thermophilic (55°C) 298 conditions were extracted from Batstone et al. (2002). Meanwhile, some parameters 299 were also modified aiming to fit adequately the experimental data [Table 2]. Parameter 300 calibration and all the initial biomass concentrations (e.g.  $X_{ac}$ ) were approximated by 301 trial-and-error. The detailed methodology used for obtaining the initial conditions and 302 for model calibration were described elsewhere (Pastor-Poquet et al., 2018).

$$I_{nh3} = \frac{K_{i,Snh3}}{K_{i,Snh3} + S_{nh3,App}}$$
(17)

304

305 It must be stated that both the initial conditions and/or the biochemical model 306 parameterization are tightly related to the model structure (Dochain & Vanrolleghem, 307 2001; Donoso-Bravo et al., 2011; Poggio et al., 2016). Thus, in order to minimize the 308 differences between the CSTR implementation of ADM1 and the HS-AD model, the 309 same set of initial conditions [Supplementary Information] and thermophilic (55°C) 310 parameters [Table 2] were used in both cases. The adjustment/fitting of the model 311 implementations regarding the experimental data was evaluated by the weighted sum of 312 squares, calculated as shown by Flotats et al. (2003). The weighted sum of squares 313 included the cumulative methane production (V<sub>ch4</sub> Cum.), gas composition (CH<sub>4</sub> + 314 CO<sub>2</sub>), pH, TAN (S<sub>in</sub>), and VFA (S<sub>ac</sub>, S<sub>pro</sub>, S<sub>bu</sub> & S<sub>va</sub>). 315

#### 317 **3 RESULTS AND DISCUSSION**

#### 318 **3.1 Verification of the 'Non-Ideal' Model Implementation**

#### 319 **3.1.1 Effects of 'Non-Ideality' on Standard ADM1**

320 The main difference between the 'ideal' ADM1 simulations using different influent TS

321 was the S<sub>in</sub> and S<sub>ac</sub> accumulation, but also the reduction of the acetoclastic methanogens

322 concentration  $(X_{ac})$  along higher operating TS [Table 3]. These results are related to the

323 higher OLR used at higher influent TS, since the protein content (i.e. 0.22 kg COD/kg

324 COD), as well as the anaerobic biodegradability (i.e. 0.35 kg COD/kg COD) were set

325 equal for all the influent conditions. Meanwhile, the  $S_{ac}$  accumulation at higher influent

326 TS [Figure 2a] was also related to the NH<sub>3</sub> half-inhibition constant for acetoclastic

327 methanogens used in all simulations (i.e.  $K_{i,Snh3,Xac} = 0.0018$  kmol N/m<sup>3</sup>), since an

328 increasing  $S_{nh3}$  exacerbates inhibition [Table 1]. Thus, the  $X_{ac}/X_{biomass}$  ratio was

329 observed to decrease from 20.6 to 16.6 % at 10 and 30 % influent TS, respectively

330 [Figure 2b]. Importantly, this last phenomenon might imply a greater risk of

331 methanogenic overloading at increasing OLR in HS-AD simulations under 'ideal'

332 conditions, since a proportionally lower  $X_{ac}$  is available to counteract the  $S_{ac}$  buildup.

333

334 The CSTR implementation of ADM1 using 'non-ideal' conditions (ADM1 Non-Ideal)

showed an increasing *I* alongside the higher influent TS used, from 0.166 M at 10 % TS

up to 0.390 M at 30 % TS [Table 3]. These results suggest that the bio-physical-

337 chemistry in HS-AD of OFMSW might be considerably 'non-ideal' (i.e.  $I \ge 0.2$  M),

being the solution 'non-ideality' exacerbated at higher operating TS contents and/or by

the occurrence of inhibitory mechanisms (i.e. NH<sub>3</sub> build-up). Therefore, an adequate

'non-ideal' methodology seems to be required to account for ionic speciation in HS-AD simulations (Batstone et al., 2015; Tait et al., 2012), though the *I* range for HS-AD of OFMSW should be better assessed by experimental data, as shown in section 3.3. The 'non-ideal' ADM1 implementation affected practically all the simulated dynamics (e.g.  $S_{ic}$ ,  $S_{ac}$  and  $X_{ac}$ ), in comparison to the 'ideal' ADM1 implementation [Table 3]. Particularly,  $S_{nh3}$  decreased by 3 - 45 % when using the 'non-ideal' in contrast to the 'ideal' methodology at each operating TS (i.e. 10 - 30 %), substantially mitigating the acetoclastic inhibition and  $S_{ac}$  accumulation [Figure 2a]. The potential alleviation of NH<sub>3</sub> inhibition by using 'non-ideal' conditions was also suggested by Hafner and Bisogni (2009) for AD digesters using cow/swine manure as substrate. In this study, the implementation of 'non-ideal' ADM1 calculations also showed an 8 to 20 % increase in

352 the  $X_{ac}/X_{biomass}$  ratio at higher TS (i.e. 20 - 30 %) compared to the 'ideal'

353 implementation [Figure 2b]. Thus, 'non-ideal' conditions potentially allow a higher

354 operating OLR when simulating HS-AD of OFMSW, since the reduced  $S_{nh3}$  leads to a

355 relatively higher X<sub>ac</sub> to counteract substrate overloading and S<sub>ac</sub> accumulation.

356

340

341

342

343

344

345

346

347

348

349

350

351

357 It must be noted that, due to the inherent structure of both the biochemical (i.e. Monod

equation) and physical-chemical (i.e. charge balance) framework in ADM1, AD

359 simulations are highly non-linear (Donoso-Bravo et al., 2011; Solon, 2016; Volcke et

al., 2005). In other words, an increase in the influent conditions (i.e. OLR) of an

361 ADM1-based model might not lead to a proportional increase in the output dynamics

362 (e.g.  $S_{ac}$  and  $S_{nh3}$ ) at steady-state. For example, the  $S_{ac}$  accumulation was observed to

363 increase exponentially alongside the  $S_{nh3}$  build-up both with the 'ideal' and 'non-ideal'

364 implementations of ADM1 [Figure 2c]. This last effect is related to the Monod kinetics, 365 as well as the reversible inhibition function used for acetoclastic methanogenesis in 366 ADM1 [Table 1]. Therefore, the implementation of 'non-ideal' conditions may be 367 crucial in HS-AD simulations, since minimal changes in S<sub>nh3</sub> – associated to the 'non-368 ideal' physical-chemistry - might lead to considerable differences in the anaerobic 369 kinetic rates and/or inhibition potential using structured HS-AD models. 370 371 Finally, K<sub>H,i</sub> for gaseous species (i.e. CH<sub>4</sub> and CO<sub>2</sub>) decreased linearly alongside 372 increasing I by using 'non-ideal' conditions in HS-AD. For example,  $K_{H,co2}$  showed a 373 8.6 % reduction at an I of 0.39 M using ADM1 Non-Ideal [Equation 16], corresponding 374 to a 30 % influent TS [Table 3 and Figure 2d]. Similarly, a linear relationship was also 375 obtained for the  $K_{H,co2}$  reduction at increasing TS contents from 10 to 40 %:  $K_{H,co2}$ Difference (%) =  $-0.242 \cdot TS$  (%) -1.343,  $r^2 = 1.000$  – data not shown. The K<sub>H,i</sub> 376 377 reduction with increasing TS strongly influences the liquid-gas transfer in HS-AD 378 simulations. For example, the K<sub>H.co2</sub> reduction exacerbates the CO<sub>2</sub> volatilization in HS-379 AD, potentially reducing the available inorganic carbon content ( $S_{ic}$  HCO<sub>3</sub>), as an 380 important source of buffering capacity and resistance against organic overloading 381 (Patón et al., 2018; Poggio et al., 2016; Steyer et al., 2006). Therefore, 'non-ideal' 382 conditions are also needed to evaluate the liquid-gas transfer (i.e. CO<sub>2</sub>) in HS-AD 383 simulations, as a potential trigger for reactor acidification.

384

#### 385 **3.1.2. 'Non-Ideal' Implementation of the HS-AD Model**

386 The main difference between the CSTR implementation of ADM1 and the HS-AD

387 model lies on the simulation of  $M_{Global}$ ,  $V_{Global}$ , TS, VS, and  $\rho_{Global}$  dynamics by the HS-

388 AD model (Pastor-Poquet et al., 2018). Moreover, Q<sub>Effluent</sub> had to be reduced compared 389 to Q<sub>Influent</sub> when using the HS-AD model, as mentioned in section 2.2.1. Therefore, all 390 simulations using the HS-AD model resulted in noticeable differences in the values of 391 these operational variables (i.e. TS, VS and Q<sub>Effluent</sub>) at steady-state [Table 3], in 392 comparison to the corresponding influent conditions. On the other hand, the use of apparent concentrations (i.e. Sac, App, kg COD/m<sup>3</sup> Solvent) increased relatively the 393 soluble global species concentrations (i.e. S<sub>ac</sub>, kg COD/m<sup>3</sup> Total) at higher operating TS 394 395 [Table 3], due to the lower amount of free water in HS-AD (Pastor-Poquet et al., 2018). 396 397 The previous conclusions about the NH<sub>3</sub> inhibition alleviation and the increasing liquid-398 gas transfer (i.e. CO<sub>2</sub>) using ADM1 Non-Ideal – section 3.1.1 – are also valid for HS-399 AD Model Non-Ideal. In particular, S<sub>ac</sub> was from 48 to 93 % lower for 'non-ideal' than 400 'ideal' HS-AD model simulations [Table 3 and Figure 2a]. However, it must be 401 highlighted that 'non-ideal' conditions were further exacerbated using the HS-AD 402 model, likely due to the inclusion of apparent concentrations in the bio-physical-403 chemical framework. Thus, HS-AD Model Non-Ideal showed a 5 - 32 % increase on I 404 compared to ADM1 Non-Ideal [Table 3]. Meanwhile, the K<sub>H,co2</sub> reduction [Equation 16] 405 at influent TS contents from 10 to 40 % showed a more pronounced slope than that obtained with ADM1:  $K_{H,co2}$  Difference (%) = -0.400 · TS (%) + 0.565,  $r^2 = 0.991 - 0.000 r^2$ 406 407 data not shown. 408

409 Interestingly, when using HS-AD Model Non-Ideal, some seemingly contradictory

410 results were observed regarding the NH<sub>3</sub> inhibition between the 'ideal' and 'non-ideal'

411 simulations at steady-state: At 30 % influent TS, the apparent NH<sub>3</sub> concentration

412  $(S_{nh3,App})$  was 0.00867 and 0.00868 kmol N/m<sup>3</sup> Solvent (i.e. 0.12 % difference), while 413  $S_{ac}$  was 19.5 and 10.0 kg COD/m<sup>3</sup> Total, for the 'ideal' and 'non-ideal' HS-AD model 414 implementations, respectively [Table 3]. In other words, the steady-state  $S_{ac}$  was 415 substantially lower at an equivalent  $S_{nh3,App}$ . Meanwhile, the steady-state  $S_{ac}$  vs.  $S_{nh3}$  still 416 fulfilled the Monod inhibition framework [Figure 2c].

417

418 To emphasize these last results, the relative differences in the acetate [Equation 14] and

419 NH<sub>3</sub> [Equation 15] concentrations were used. Thus, S<sub>ac,Non-Ideal</sub> was lower than S<sub>ac,Ideal</sub> –

420 the acetate difference was negative – at any influent TS [Table 3 and Figure 3a].

421 Nevertheless, the NH<sub>3</sub> difference between  $S_{nh3,Non-Ideal}$  and  $S_{nh3,Ideal}$  at 30 % TS was

422 positive, in contrast to 10 and 20 % TS influent conditions [Table 3 and Figure 3b].

423 Similar 'contradictory' results were also observed at higher influent TS contents (i.e. 35

424 - 40 % TS), where  $S_{ac}$  was lower (i.e. 26 - 35 %), while  $S_{nh3}$  was higher (i.e. 1 - 3 %),

425 for the 'non-ideal' in contrast to the 'ideal' HS-AD model implementation [Figure 3].

426

427 Summarizing, results above seemed to contradict the expected trend for acetoclastic 428 inhibition in HS-AD simulations at steady-state: a higher  $S_{nh3}$  concentration should lead 429 to a higher S<sub>ac</sub> accumulation. However, these seemingly contradictory results on NH<sub>3</sub> 430 inhibition were only related to the direct comparison of two strongly non-linear model 431 implementations (i.e. 'ideal' vs. 'non-ideal'). More in particular, during the initial 40 432 days of HS-AD model simulations using a 30 % influent TS, the X<sub>ac</sub> growth was 433 promoted by the 'non-ideal' in contrast to the 'ideal' model implementation, due to a lower operating  $S_{nh3,App}$ , as further discussed in section 3.1.3. 434

436 All the above simulations were performed using  $K_{i,Snh3,Xac} = 0.0018$  kmol N/m<sup>3</sup>. 437 Importantly, when shifting K<sub>i.Snh3,Xac</sub> towards lower/higher values in HS-AD Model 438 Non-Ideal, the TS threshold where  $S_{ac,Ideal} > S_{ac,Non-Ideal}$  for  $S_{nh3,Ideal} < S_{nh3,Non-Ideal}$ 439 ('inversion' threshold) also shifted [Figure 3]. For example, using  $K_{i,Snh3,Xac} = 0.0008$ 440 kmol  $N/m^3$ , the 'inversion' threshold occurred at around 20 % influent TS, while using  $K_{i,Snh3,Xac} = 0.0028$  kmol N/m<sup>3</sup>, the 'inversion' threshold occurred between 35 and 40 % 441 442 TS. Similar acetoclastic inhibition results were also obtained between the 'ideal' and 443 'non-ideal' ADM1 implementations, though the 'inversion' thresholds shifted towards 444 slightly higher operating TS regarding the HS-AD model [Figure 3]. For example, using  $K_{i,Sph3,Xac} = 0.0018$  kmol N/m<sup>3</sup>, the 'inversion' threshold using ADM1 was 40 % influent 445 446 TS, instead of 30 % influent TS. All these results indicate that 'non-ideality' is tightly 447 related to the NH<sub>3</sub> inhibition parameters, but also to the overall HS-AD model structure. 448

#### 449 **3.1.3** The Effects of 'Non-Ideality' during the Initial Days of HS-AD Simulations

450 During the initial 20 days of HS-AD simulations using 30 % influent TS, X<sub>ac</sub> was 451 observed to increase considerably faster under 'non-ideal' than 'ideal' conditions 452 [Figure 4a], explaining the lower S<sub>ac</sub> buildup under 'non-ideal' conditions [Figure 4b]. 453 pH was equivalent during the initial 10 days of 'ideal' and 'non-ideal' simulations, 454 though pH for 'non-ideal' simulations was up to 0.27 units higher from day 10 [Figure 4c and Table 3]. Meanwhile, a lower S<sub>nh3,App</sub> was observed along the initial 40 days of 455 456 'non-ideal' simulations [Figure 4d], despite the apparent TAN (Sin.App) was equivalent 457 in both the 'ideal' and 'non-ideal' model implementations [Figure 4e]. Therefore, the 458 'non-ideal' bio-physical-chemistry of HS-AD at 30 % influent TS led to a lower 459  $S_{nh3,App}$ , mitigating the NH<sub>3</sub> inhibition and promoting the  $X_{ac}$  growth, as previously

```
observed for 10 and 20 % influent TS. Nonetheless, the steady-state results [Table 3]
prevented observing the overall effect of 'non-ideality' in HS-AD simulations.
```

463 With all the above, the 'inversion' threshold on the NH<sub>3</sub> concentration at steady-state 464 [Figure 3b] is the consequence of comparing two strongly non-linear model 465 implementations (i.e. 'ideal' vs. 'non-ideal') at steady-state, being non-linearity 466 associated to the complexity of the biochemical and physical-chemical framework of 467 ADM1-based models, as mentioned before. Importantly, the occurrence of the NH<sub>3</sub> 468 'inversion' threshold further stresses the fact that 'ideal' ADM1-based models should 469 not be applied to HS-AD (i.e.  $TS \ge 10$  %), since the equation non-linearities might lead 470 to important differences in both the dynamics and the steady state results (i.e. pH,  $X_{ac}$ , 471  $S_{nh3}$ ,  $S_{ac}$ ) of HS-AD simulations. The 'inversion' threshold on the NH<sub>3</sub> inhibition at 472 steady-state was also observed when using slightly different initial conditions (i.e.  $X_{pr,0}$ , 473  $S_{in,0}$ ,  $S_{ac,0}$ ,  $S_{cat,0}$ ,  $X_{su,0}$  and/or  $X_{aa,0}$  – data not shown), since steady-state AD simulations should not depend on the initial conditions used (Donoso-Bravo et al., 2011). Thus, all 474 475 the above results indicate that a high I (i.e.  $\geq 0.2$  M) strongly influenced the bio-476 physical-chemistry of HS-AD simulations, particularly the NH<sub>3</sub> inhibition dynamics during the initial days of reactor operation at high TS contents (i.e.  $\geq 20 - 30$  %). 477 478



480 engines for 'non-ideal' characterizations are Visual MINTEQ (Allison et al., 1991) and

481 Phreeqc (Parkhurst & Appelo, 1999) software, including the direct ADM1

482 implementation in Phreeqc (C code) described by Huber et al. (2017), the generic

483 nutrient recovery model of Vaneeckhaute et al. (2018), but also the physical-chemical

484 module developed by Flores-Alsina et al. (2015) and Solon et al. (2015) for plant-wide 485 wastewater treatment. Indeed, the high organic content in HS-AD might strongly 486 determine the precipitation, ion-pairing and ion-surface interactions (Batstone et al., 487 2012; Huber et al., 2017), requiring even further complexity of the HS-AD bio-488 physical-chemical framework than for 'wet' AD applications (i.e. TS < 10 %). On the 489 other hand, more simple 'non-ideal' modules for AD solutions have been also used by 490 Patón et al. (2018) and Nielsen et al. (2008). In this line, the model complexity depends 491 on the model objectives and experimental data available, being always recommended to 492 keep the model as simple as possible, though well suited for addressing the envisaged 493 objectives (Eberl et al., 2006).

494

495 To validate the 'non-ideal' module proposed in this study [Figure 1], 'non-ideal' 496 simulations of the HS-AD model were also performed coupling the Phreeqc engine 497 (Charlton & Parkhurst, 2011). In spite of the higher complexity of Phreeqc, both 'non-498 ideal' modules yielded practically the same HS-AD dynamics (i.e. Sac, Sin, Xac) using 30 499 % influent TS [Figure 3], being the 2 - 6 % higher *I* the most noticeable difference when 500 Phreeqc was used as 'non-ideal' module [Figure 3f]. The Phreeqc engine coupling to 501 the HS-AD model also yielded closely-matching results to the proposed 'non-ideal' 502 module under all the HS-AD simulations presented in section 3.1.2 – data not shown. 503 Importantly, due to the reduced complexity of the proposed 'non-ideal' module [Figure 504 1] and/or the coupling of an 'external' software, the simulation speed increased 505 considerably (i.e. 7 - 8 times faster) compared to when using the Phreeqc engine as 506 'non-ideal' module.

# 508 3.2 HS-AD Calibration under 'Non-Ideal' Conditions

| 509 | The calibration in this study was not aimed to be exhaustive due to the great number of                                               |
|-----|---------------------------------------------------------------------------------------------------------------------------------------|
| 510 | parameters (i.e. > 15) and initial conditions (i.e. > 10) involved in an ADM1-based                                                   |
| 511 | model, as well as the reduced number of experimental data available (Dochain &                                                        |
| 512 | Vanrolleghem, 2001; Donoso-Bravo et al., 2011; Poggio et al., 2016). Instead, the                                                     |
| 513 | calibration aimed to assess the operative levels of $I$ in HS-AD of OFMSW. Moreover,                                                  |
| 514 | real data calibration could also serve to evaluate the influence of the model complexity                                              |
| 515 | (i.e. mass balances) regarding the need for 'non-ideal' calculations in HS-AD.                                                        |
| 516 |                                                                                                                                       |
| 517 | For the calibration of ADM1 Non-Ideal and HS-AD Model Non-Ideal, the same initial                                                     |
| 518 | conditions and biochemical parameters [Table 2] were used, yielding a similar degree of                                               |
| 519 | adjustment regarding the experimental data (i.e. weighted sum of squares = $2.2 - 2.5$ )                                              |
| 520 | [Supplementary Information]. Nonetheless, HS-AD Model Non-Ideal outperformed                                                          |
| 521 | ADM1 Non-Ideal in terms of simulating the TS, VS, and $M_{Global}$ dynamics due to the                                                |
| 522 | use of a more extended set of mass balances. Moreover, HS-AD Model Non-Ideal                                                          |
| 523 | adjustment improved considerably towards the end of the experiment, in contrast to the                                                |
| 524 | ADM1 Non-Ideal simulations [Figure 5]. For example, the experimental matching in                                                      |
| 525 | $S_{\text{in}},S_{\text{pro}},S_{\text{va}},\text{and gas composition improved from day 15 - 20 onwards, as M_{\text{Global}} and/or$ |
| 526 | $V_{Global}$ reduction by methanogenesis occurred in the system. In this line, HS-AD Model                                            |
| 527 | Non-Ideal predicted 1.6 g of $M_{Global}$ were removed, equivalent to a 4.4 % of the initial                                          |
| 528 | reactor content, during 92 days of batch operation.                                                                                   |
|     |                                                                                                                                       |

529

530 Both ADM1 Non-Ideal and HS-AD Model Non-Ideal simulations showed  $I \ge 0.5$  M

531 from day 50 [Figure 5d], associated to the accumulation of S<sub>in</sub> and VFA, with *I* being

532 around 5 - 10 % higher in HS-AD Model, due to the use of apparent concentrations. 533 These results confirm that I might be considerably higher than 0.2 M in HS-AD of OFMSW, strongly suggesting the implementation of 'non-ideal' conditions at high TS 534 535 contents (i.e.  $\geq 10$  %) to improve the simulations of pH, biochemical inhibition (i.e. 536 NH<sub>3</sub>), VFA accumulation (i.e. acetate), and liquid-gas transfer (i.e. CO<sub>2</sub>). Furthermore, 537 taking into account the high *I* observed (i.e.  $\ge 0.5$  M), the Davies equation [Equation 6] 538 might not be appropriated for HS-AD simulations due to the increasing errors in  $\gamma_i$  at  $I \ge$ 539 0.2 M. For example, a 20 to 25 % higher  $\gamma_{NH4+}$  is obtained at I of 0.5 and 0.6 M, 540 respectively, by using the Davies instead of the EDH equation [Equation 8]. 541 542 With all the above, the influence of 'non-ideality' on the bio-physical-chemistry of HS-543 AD simulations strongly depends on the model configuration used. Therefore, the HS-544 AD model (Pastor-Poquet et al., 2018) may be well suited to assess 'non-ideal' effects 545 in HS-AD using OFMSW as a substrate, and particularly the TS concentration effect on 546 the soluble species by using apparent concentrations. Noteworthy, the implementation 547 of apparent concentrations (i.e. kmol/kg Solvent) is in line with the fact that the bio-548 physical-chemistry of HS-AD occurs predominantly in water. Thus, using apparent 549 concentrations might enhance the predictive capabilities of the 'non-ideal' calculation 550 procedure, while influencing both the kinetic rates and inhibition of anaerobic 551 microorganisms in HS-AD simulations (Pastor-Poquet et al., 2018). On the other hand, 552 an adequate mass balance implementation in HS-AD models is needed when using 553 relatively long simulations (i.e.  $\geq$  20 days), as the effect of reactor mass/volume removal 554 by methanogenesis becomes gradually more important to capture all the bio-physical-555 chemical mechanisms in HS-AD.

| 557 | To end up, further calibration/optimization alongside a thorough sensitivity analysis is       |
|-----|------------------------------------------------------------------------------------------------|
| 558 | needed for the main biochemical parameters of the HS-AD model, in order to draw                |
| 559 | adequate conclusions about some of the inhibitory mechanisms (i.e. NH <sub>3</sub> buildup and |
| 560 | acidification) potentially occurring in HS-AD of OFMSW. In this line, the faster HS-           |
| 561 | AD model resolution obtained when coupling the proposed 'non-ideal' module might be            |
| 562 | particularly suited to speed up the calibration process, where a great number of               |
| 563 | simulations are usually required to match appropriately the experimental data (Dochain         |
| 564 | & Vanrolleghem, 2001; Donoso-Bravo et al., 2011; Flotats et al., 2006). Alongside,             |
| 565 | further bio-physical-chemical mechanisms as precipitation, ion pairing and ion-surface         |
| 566 | interactions should be also evaluated in future model implementations, to adequately           |
| 567 | address the inherent complexity of HS-AD using OFMSW as substrate.                             |
| 568 |                                                                                                |
| 569 |                                                                                                |

## 570 4 CONCLUSIONS

571 HS-AD of OFMSW might be operated at  $I \ge 0.5$  M. Therefore, the bio-physical-

572 chemistry of all HS-AD simulations needs to account for the 'non-ideal' effects on the

573 pH, soluble inhibitors (i.e. NH<sub>3</sub>), and liquid-gas transfer (i.e. CO<sub>2</sub>), particularly at higher

574 TS contents (i.e.  $\ge 20$  %). In this study, coupling a HS-AD model to a simplified 'non-

575 ideal' module yielded adequate simulations regarding the NH<sub>3</sub> inhibition in HS-AD,

576 both in batch and continuous mode. Using an appropriate set of parameters, the HS-AD

577 model using 'non-ideal' conditions might bring further insights about the main

578 inhibitory mechanisms in HS-AD of OFMSW.

| 580 | Acknowledgements                                                                             |
|-----|----------------------------------------------------------------------------------------------|
| 581 | This project has received funding from the European Union's Horizon 2020 research            |
| 582 | and innovation programme under the Marie Sklodowska-Curie grant agreement No.                |
| 583 | 643071.                                                                                      |
| 584 |                                                                                              |
|     |                                                                                              |
| 585 |                                                                                              |
|     |                                                                                              |
| 586 | REFERENCES                                                                                   |
| 587 |                                                                                              |
| 588 | Allison, J.D., Brown, D.S., Novo-Gradac, K.J. 1991. MINTEQA2/PRODEFA2, a                     |
| 589 | geochemical assessment model for environmental systems: Version 3.0 users's                  |
| 590 | manual. U.S. Environmental Protection Agency (EPA).                                          |
| 591 | Ball, J.W., Nordstrom, D.K. 1991. User's manual for WATEQ4F, with revised                    |
| 592 | thremodynamic data base and test cases for calculating speciation of major, trace            |
| 593 | and redox elements in natural waters. U.S. Geological Survey.                                |
| 594 | Batstone, D.J., Amerlinck, Y., Ekama, G., Goel, R., Grau, P., Johnson, B., Volcke,           |
| 595 | E. 2012. Towards a generalized physicochemical framework. <i>Water Sci.</i>                  |
| 596 | <i>Technol.</i> , <b>66</b> (6), 1147-1161.                                                  |
| 597 | Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S.V., Pavlostathis, S.G., Rozzi, A., |
| 598 | Vavilin, V.A. 2002. The IWA Anaerobic Digestion Model No. 1 (ADM1).                          |
| 599 | Water Sci. Technol., <b>45</b> (10), 65-73.                                                  |
| 600 | Batstone, D.J., Puyol, D., Flores-Alsina, X., Rodríguez, J. 2015. Mathematical               |
| 601 | modelling of anaerobic digestion processes: Applications and future needs. <i>Rev.</i>       |
| 602 | Environ. Sci. Bio., 14(4), 595-613.                                                          |
| 603 | Charlton, S.R., Parkhurst, D.L. 2011. Modules based on the geochemical model                 |
| 604 | PHREEQC for use in scripting and programming languages. Comput. Geosci.,                     |
| 605 | <b>37</b> (10), 1653-1663.                                                                   |
| 606 | Dochain, D., Vanrolleghem, P. 2001. Dynamical Modelling and Estimation in                    |
| 607 | Wastewater Treatment Processes. IWA Publishing, London, UK.                                  |
| 608 | Donoso-Bravo, A., Mailier, J., Martin, C., Rodríguez, J., Aceves-Lara, C.A., Vande           |
| 609 | Wouwer, A. 2011. Model selection, identification and validation in anaerobic                 |
| 610 | digestion: A review. Water Res., 45(17), 5347-5364.                                          |
| 611 | Eberl, H.J., Morgenroth, E., Noguera, D.R., Picioreanu, C., Rittmann, B.E., van              |
| 612 | Loosdrecht, M.C., Wanner, O. 2006. Mathematical Modeling of Biofilms. IWA                    |
| 613 | Publishing, London, UK.                                                                      |
| 614 | EPA. 2001. Method 1684. Total, fixed and volatile solids in water, solids, and biosolids.    |
| 615 | U.S. Environmental Protection Agency (EPA).                                                  |
| 616 | Flores-Alsina, X., Kazadi Mbamba, C., Solon, K., Vrecko, D., Tait, S., Batstone, D.J., .     |
| 617 | Gernaey, K.V. 2015. A plant-wide aqueous phase chemistry module                              |
| 618 | describing pH variations and ion speciation/pairing in wastewater treatment                  |
| 619 | process models. <i>Water Res.</i> , <b>85</b> , 255-265.                                     |
| 620 | Flotats, X., Ahring, B.K., Angelidaki, I. 2003. Parameter identification of thermophilic     |
| 621 | anaerobic degradation of valerate. Appl. Biochem. Biotechnol., 109(1-3), 47-62.              |
| 622 | Flotats, X., Palatsi, J., Ahring, B.K., Angelidaki, I. 2006. Identifiability study of the    |
| 623 | proteins degradation model, based on ADM1, using simultaneous batch                          |
| 624 | experiments. Water Sci. Technol., 54(4), 31-39.                                              |
|     |                                                                                              |

625 García-Bernet, D., Buffière, P., Latrille, E., Steyer, J.-P., Escudié, R. 2011. Water 626 distribution in biowastes and digestates of dry anaerobic digestion technology. 627 Chem. Eng. J., 172(2-3), 924-928. 628 Hafner, S.D., Bisogni, J.J. 2009. Modeling of ammonia speciation in anaerobic 629 digesters. Water Res., 43(17), 4105-4114. 630 Huber, P., Neyret, C., Fourest, E. 2017. Implementation of the anaerobic digestion 631 model (ADM1) in the PHREEQC chemistry engine. Water Sci. Technol., 76(5-632 6), 1090-1103. 633 Kayhanian, M. 1999. Ammonia inhibition in high-solids biogasification: an overview 634 and practical solutions. *Environ. Technol.*, **20**(4), 355-365. 635 Kayhanian, M., Tchobanoglous, G. 1996. Develogment of a mathematical model for the 636 simulation of the biodegradation of organic substrates in a high-solids anaerobic digestion. J. Chem. Tech. Biotechnol., 66, 312-322. 637 Lauwers, J., Appels, L., Thompson, I.P., Degrève, J., Van Impe, J.F., Dewil, R. 2013. 638 639 Mathematical modelling of anaerobic digestion of biomass and waste: Power 640 and limitations. Prog. Energy Combust. Sci., 39, 383-402. 641 Lide, D.R. 2004. Hanbook of chemistry and physics. 84th ed. CRC Press. 642 Lizarralde, I., Fernández-Arévalo, T., Brouckaert, C., Vanrolleghem, P., Ikumi, D.S., 643 Ekama, G.A., ... Grau, P. 2015. A new general methodology for incorporating 644 physico-chemical transformations into multi-phase wastewater treatment process 645 models. Water Res., 74, 239-256. Mbamba, C.K., Tait, S., Flores-Alsina, X., Batstone, D.J. 2015. A systematic study of 646 647 multiple minerals precipitation modelling in wastewater treatment. Water Res., 648 85, 359-370. 649 Nielsen, A.M., Spanjers, H., Volcke, E.I. 2008. Calculating pH in pig manure taking 650 into account ionic strength. Water Sci. Technol., 57(11), 1785-90. 651 Parkhurst, D.L., Appelo, C.A.J. 1999. User's guide to PHREEQC (version 2) - A 652 computed program for speciation, batch-reaction, one-dimentional transport and 653 inverse geochemical calculations. U.S. Geological Survey. 654 Pastor-Poquet, V., Papirio, S., Steyer, J.-P., Trably, E., Escudié, R., Esposito, G. 2018. 655 High-solids anaerobic digestion model for homogenized reactors. Water Res., 656 142, 501-511. 657 Pastor-Poquet, V., Papirio, S., Trably, E., Rintala, J., Escudié, R., Esposito, G. 2019a. 658 High-Solids Anaerobic Digestion requires a tradeoff between Total Solids, 659 Inoculum-to-Substrate Ratio and Ammonia Inhibition. Int. J. Environ. Sci. 660 Technol.. 661 Pastor-Poquet, V., Papirio, S., Trably, E., Rintala, J., Escudié, R., Esposito, G. 2019b. 662 Semi-continuous Mono-digestion of OFMSW and Co-digestion of OFMSW 663 with Beech Sawdust: Assessment of the Maximum Operational Total Solid 664 Content. J. Environ. Manage., 231, 1293-1302. Patón, M., González-Cabaleiro, R., Rodríguez, J. 2018. Activity corrections are required 665 for accurate anaerobic digestion modelling. Water Sci. Technol., 77(7-8), 2057-666 667 2067. Poggio, D., Walker, M., Nimmo, W., Ma, L., Pourkashanian, M. 2016. Modelling the 668 669 anaerobic digestion of solid organic waste - Substrate characterisation method 670 for ADM1 using a combined biochemical and kinetic parameter estimation 671 approach. Waste Manage., 53, 40-54.

672 Rosén, C., Jeppsson, U. 2006. Aspects on ADM1 implementation within the BSM2 673 framework. Division of Industrial Electrical Engineering and Automation, 674 Faculty of Engineering, Lund University, Sweden. 675 Solon, K. 2016. Physico-Chemical Modelling (PCM) - A literature review. Division of 676 Industrial Electrical Engineering and Automation, Faculty of Engineering, Lund 677 University, Sweden. 678 Solon, K., Flores-Alsina, X., Mbamba, C.K., Volcke, E.I., Tait, S., Batstone, D., ... 679 Jeppsson, U. 2015. Effects of ionic strength and ion pairing on (plant-wide) 680 modelling of anaerobic digestion. Water Res., 70, 235-245. Staley, B.F., de Los Reyes III, F.L., Barlaz, M.A. 2011. Effect of spatial differences in 681 682 microbial activity, pH, and substrate levels on methanogenesis initiation in 683 refuse. Appl. Environ. Microbiol., 77(7), 2381-2391. 684 Steyer, J.P., Bernard, O., Batstone, D.J., Angelidaki, I. 2006. Lessons learnt from 15 685 years of ICA in anaerobic digesters. Water Sci. Technol., 53(4-5), 25-33. 686 Stumm, W., Morgan, J.J. 1996. Aquatic Chemistry. Chemical Equilibria and Rates in 687 Natural Waters. 3rd ed. John Wiley & Sons, USA. 688 Tait, S., Solon, K., Volcke, E., Batstone, D. 2012. A unified approach to modelling 689 wastewater chemistry model corrections. 3rd Wastewater Treatment Modelling 690 Seminar (WWTmod2012), Mont-Sainte-Anne, Quebec, Canada. International 691 Water Association. 692 Vaneeckhaute, C., Claeys, F.H.A., Tack, F.M.G., Meers, E., Belia, E., Vanrolleghem, 693 P.A. 2018. Development, implementation, and validation of a generic nutrient 694 recovery model (NRM) library. Environ. Model. Software, 99, 170-209. 695 Volcke, E., Van Hulle, S., Deksissa, T., Zaher, U., Vanrolleghem, P. 2005. Calculation 696 of pH and concentration of equilibrium components during dynamic simulation 697 by means of a charge balance. Universiteit Gent, Belgium. 698 Xu, F., Li, Y., Wang, Z.-W. 2015. Mathematical modeling of solid-state anaerobic 699 digestion. Prog. Energy Combust. Sci., 51, 49-66. 700

| 701 | TABLE CAPTIONS                                                                                |
|-----|-----------------------------------------------------------------------------------------------|
| 702 |                                                                                               |
| 703 | <b>Table 1</b> : Biochemical rates used for model implementation verification and model       |
| 704 | calibration.                                                                                  |
| 705 |                                                                                               |
| 706 | <b>Table 2</b> : Biochemical parameters modified for model calibration at thermophilic (55°C) |
| 707 | conditions.                                                                                   |
| 708 |                                                                                               |
| 709 | <b>Table 3</b> : Summary of steady-state results (i.e. day 365) for model implementation      |
| 710 | verification at different influent total solid (TS) contents.                                 |
| 711 |                                                                                               |
|     |                                                                                               |

# 713 FIGURE CAPTIONS

714

Figure 1: Schematic representation of the 'ideal' or 'non-ideal' physical-chemical
 implementation used for all ADM1-based models in this study.

717

**Figure 2**: Summary of results for model implementation verification as a function of influent total solids (TS). Comparison between standard ADM1, ADM1 Non-Ideal, HS-AD Model and HS-AD Model Non-Ideal outputs: a) Total acetate concentration ( $S_{ac}$ ) *vs.* initial TS; b) total acetoclastic methanogens to biomass ratio ( $X_{ac}/X_{biomass}$ ) *vs.* initial TS; c) total acetate concentration ( $S_{ac}$ ) *vs.* total NH<sub>3</sub> concentration ( $S_{nh3}$ ); and d) Henry's constant difference for CO<sub>2</sub> ( $K_{H,co2}$ ) *vs.* ionic strength.

724

Figure 3: Contour plots for the relative difference between the 'ideal' and 'non-ideal'
implementations of both ADM1 and the HS-AD model at different influent total solid
(TS) contents: a) Acetate (S<sub>ac</sub>) difference [Equation 14]; and b) NH<sub>3</sub> (S<sub>nh3</sub>) difference
[Equation 15].

Figure 4: Effect of 'non-ideality' during the initial 40 days of HS-AD model
simulations at 30 % influent TS. Comparison between 'ideal' and 'non-ideal'
conditions, including the Phreeqc engine: a) Acetoclastic methanogens concentration

733  $(X_{ac})$ ; b) total acetate concentration  $(S_{ac})$ ; c) pH; d) apparent NH<sub>3</sub> concentration

734  $(S_{nh3,App})$ ; e) total ammonia nitrogen concentration  $(S_{in,App})$ ; and f) ionic strength (I).

735

736Figure 5: Model calibration results. Comparison between ADM1 Non-Ideal and HS-737AD Model Non-Ideal: a) Total ammonia nitrogen (TAN); b) total propionate ( $S_{pro}$ ) and738valerate ( $S_{va}$ ) concentrations; c) gas composition; and d) ionic strength.



**Figure 1**: Schematic representation of the 'ideal' or 'non-ideal' physical-chemical implementation used for all ADM1-based models in this study.

<u>NOTE</u>: *t* refers to the simulation time-step. *Tol* refers to tolerance (in this study  $Tol = 10^{-6}$ ). *I* is the ionic strength; while  $S_{T,i}$  is the global concentration;  $K_{a,i}$  is the dissociation equilibrium constant; and  $\gamma_i$  is the activity coefficient of soluble species.



**Figure 2**: Summary of results for model implementation verification as a function of influent total solids (TS). Comparison between standard ADM1, ADM1 Non-Ideal, HS-AD Model and HS-AD Model Non-Ideal outputs: a) Total acetate concentration ( $S_{ac}$ ) vs. initial TS; b) total acetoclastic methanogens to biomass ratio ( $X_{ac}/X_{biomass}$ ) vs. initial TS; c) total acetate concentration ( $S_{ac}$ ) vs. total NH<sub>3</sub> concentration ( $S_{nh3}$ ); and d) Henry's constant difference for CO<sub>2</sub> ( $K_{H,co2}$ ) vs. ionic strength.

<u>NOTE</u>: The global (i.e. kg COD/m<sup>3</sup> Total) and apparent (i.e. kg COD/m<sup>3</sup> Solvent) concentrations express exactly the same HS-AD results, as they are interrelated by TS, and the specific weight of reactor content ( $\rho_{Global}$ ) and aqueous solvent ( $\rho_{Solvent} = 1000 \text{ kg/m}^3$ ). The NH<sub>3</sub> half-inhibition constant for acetoclastic methanogens (K<sub>i,Snh3,Xac</sub>) was 0.0018 kmol N/m<sup>3</sup>.



**Figure 3**: Contour plots for the relative difference between the 'ideal' and 'non-ideal' implementations of both ADM1 and the HS-AD model at different influent total solid (TS) contents: a) Acetate ( $S_{ac}$ ) difference [Equation 14]; and b) NH<sub>3</sub> ( $S_{nh3}$ ) difference [Equation 15].

<u>NOTE</u>: Values in parentheses show the  $NH_3$  half-inhibition constants used for acetoclastic methanogens ( $K_{i,Snh3,Xac}$ , kmol N/m<sup>3</sup>). Positive values over the 'inversion' threshold in panel b represent the influent TS at which the steady-state  $NH_3$  concentration is higher for the 'non-ideal' than for the 'ideal' model implementation.



**Figure 4**: Effect of 'non-ideality' during the initial 40 days of HS-AD model simulations at 30 % influent TS. Comparison between 'ideal' and 'non-ideal' conditions, including the Phreeqc engine: a) Acetoclastic methanogens concentration  $(X_{ac})$ ; b) total acetate concentration  $(S_{ac})$ ; c) pH; d) apparent NH<sub>3</sub> concentration  $(S_{nh3,App})$ ; e) total ammonia nitrogen concentration  $(S_{in,App})$ ; and f) ionic strength (*I*).

NOTE: The NH<sub>3</sub> half-inhibition constant for acetoclastic methanogens (K<sub>i,Snh3,Xac</sub>) was 0.0018 kmol N/m<sup>3</sup>.



**Figure 5**: Model calibration results. Comparison between ADM1 Non-Ideal and HS-AD Model Non-Ideal: a) Total ammonia nitrogen (TAN); b) total propionate ( $S_{pro}$ ) and valerate ( $S_{va}$ ) concentrations; c) gas composition; and d) ionic strength.

|                                | Rate $(r_j, kg \text{ COD } m^{-3} d^{-1})$                                                                                                                                                                    |                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Process –                      | Verification                                                                                                                                                                                                   | Calibration                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| Disintegration                 | $k_{dis} \cdot X_c$                                                                                                                                                                                            | -                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
| Hydrolysis of<br>Carbohydrates | $k_{h,ch} \cdot X_{ch}$                                                                                                                                                                                        | $k_{h,ch} \cdot X_{ch}$                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| Hydrolysis of Proteins         | $k_{h,pr} \cdot X_{pr}$                                                                                                                                                                                        | $k_{h,pr} \cdot X_{pr}$                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| Hydrolysis of Lipids           | $k_{h,li} \cdot X_{li}$                                                                                                                                                                                        | $k_{h,li}{\cdot}X_{li}$                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| Sugars Uptake                  | $k_{m,su} \!\!\cdot \! S_{su,App} \! / \! (K_{S,Xsu} \!\!+ \!\! S_{su,App}) \!\!\cdot \! X_{su} \!\cdot \! I_{pH} \!\cdot \! I_{in}$                                                                           | $k_{m,su} {\cdot} S_{su,App} / (K_{S,Xsu} {+} S_{su,App}) {\cdot} X_{su} {\cdot} I_{pH} {\cdot} I_{in}$                                                                                                                               |  |  |  |  |  |  |  |
| Aminoacids Uptake              | $k_{m,aa} \cdot S_{aa,App} / (K_{S,Xaa} + S_{aa,App}) \cdot X_{aa} \cdot I_{pH} \cdot I_{in}$                                                                                                                  | $k_{m,aa} \cdot S_{aa,App} / (K_{S,Xaa} + S_{aa,App}) \cdot X_{aa} \cdot I_{pH} \cdot I_{in}$                                                                                                                                         |  |  |  |  |  |  |  |
| LCFA Uptake                    | $k_{m,fa} \cdot S_{fa} / (K_{S,Xfa} + S_{fa}) \cdot X_{fa} \cdot I_{pH} \cdot I_{in} \cdot I_{h2}$                                                                                                             | $k_{m,fa} \!\cdot\! S_{fa} \!/ \! (K_{S,Xfa} \!+\! S_{fa}) \!\cdot\! X_{fa} \!\cdot\! I_{pH} \!\cdot\! I_{in} \!\cdot\! I_{h2}$                                                                                                       |  |  |  |  |  |  |  |
| Valerate Uptake                | $\begin{array}{l} k_{m,c4} \cdot S_{va,App} / (K_{S,Xc4} + S_{va,App}) \cdot X_{c4} \cdot \\ S_{va,App} / (1 + S_{bu,App} + 10^{-6}) \cdot I_{pH} \cdot I_{in} \cdot I_{h2} \end{array}$                       | $\begin{array}{c} k_{m,c5} \cdot \mathbf{S}_{va,App} / (\mathbf{K}_{S,Xc5} + \mathbf{S}_{va,App}) \cdot \mathbf{X}_{c5} \cdot \mathbf{I}_{pH} \cdot \mathbf{I}_{in} \cdot \\ \mathbf{I}_{h2} \cdot \mathbf{I}_{nh3} \end{array}$      |  |  |  |  |  |  |  |
| Butyrate Uptake                | $\begin{array}{l} k_{m,c4} \cdot S_{bu,App} / (K_{S,Xc4} + S_{bu,App}) \cdot X_{c4} \cdot \\ S_{bu,App} / (1 + S_{bu,App} + 10^{-6}) \cdot I_{pH} \cdot I_{hr} \cdot I_{h2} \end{array}$                       | $\frac{k_{m,c4} \cdot S_{bu,App}}{I_{in} \cdot I_{h2}} \cdot X_{c4} \cdot I_{pH} \cdot X_{c4} \cdot I_{pH} \cdot I_{in} \cdot I_{h2}$                                                                                                 |  |  |  |  |  |  |  |
| Propionate Uptake              | $\begin{array}{c} k_{m,pro} \cdot \mathbf{S}_{pro,App} / (\mathbf{K}_{S,Xpro} + \mathbf{S}_{pro,App}) \cdot \mathbf{X}_{pro} \cdot \mathbf{I}_{pH} \cdot \\ \mathbf{I}_{in} \cdot \mathbf{I}_{h2} \end{array}$ | $\begin{array}{c} k_{m,pro} \cdot \mathbf{S}_{pro,App} / (\mathbf{K}_{S,Xpro} + \mathbf{S}_{pro,App}) \cdot \mathbf{X}_{pro} \cdot \mathbf{I}_{pH} \cdot \\ \mathbf{I}_{in} \cdot \mathbf{I}_{h2} \cdot \mathbf{I}_{nh3} \end{array}$ |  |  |  |  |  |  |  |
| Acetate Uptake                 | $\begin{array}{c} k_{m,ac} \cdot S_{acApp} / (K_{S,Xac} + S_{ac,App}) \cdot X_{ac} \cdot I_{pH} \cdot \\ I_{in} \cdot I_{nh3} \end{array}$                                                                     | $\begin{array}{c} k_{m,ac} \cdot S_{ac,App} / (K_{S,Xac} + S_{ac,App}) \cdot X_{ac} \cdot I_{pH} \cdot \\ I_{in} \cdot I_{nh3} \end{array}$                                                                                           |  |  |  |  |  |  |  |
| Hydrogen Uptake                | $\begin{array}{c} k_{m,h2} \cdot S_{h2,App} / (K_{S,Xh2} + S_{h2,App}) \cdot X_{h2} \cdot \\ I_{pH} \cdot I_{in} \end{array}$                                                                                  | $k_{m,h2} \cdot S_{h2,App} / (K_{S,Xh2} + S_{h2,App}) \cdot X_{h2} \cdot I_{pH} \cdot I_{in}$                                                                                                                                         |  |  |  |  |  |  |  |
| Sugar Degraders<br>Decay       | $\mathbf{k}_{d} \cdot \mathbf{X}_{su}$                                                                                                                                                                         | $k_d \cdot X_{su}$                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| Aminoacids Degraders<br>Decay  | $k_d \cdot X_{aa}$                                                                                                                                                                                             | $k_d \cdot X_{aa}$                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| LCFA Degraders<br>Decay        | $k_d {\cdot} X_{fa}$                                                                                                                                                                                           | $k_d{\cdot}X_{fa}$                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| Valerate Degraders<br>Decay    | -                                                                                                                                                                                                              | $k_d \cdot X_{c5}$                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| Butyrate Degraders<br>Decay    | $k_d {\cdot} X_{c4}$                                                                                                                                                                                           | $k_d \cdot X_{c4}$                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| Propionate Degraders<br>Decay  | $k_d \cdot X_{pro}$                                                                                                                                                                                            | $k_d \cdot X_{pro}$                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
| Acetate Degraders<br>Decay     | $k_d \cdot X_{ac}$                                                                                                                                                                                             | $\mathbf{k}_{\mathrm{d}} \cdot \mathbf{X}_{\mathrm{ac}}$                                                                                                                                                                              |  |  |  |  |  |  |  |
| Hydrogen Degraders<br>Decay    | $k_d {\cdot}  X_{h2}$                                                                                                                                                                                          | $k_d \cdot X_{h2}$                                                                                                                                                                                                                    |  |  |  |  |  |  |  |

**Table 1**: Biochemical rates used for model implementation verification and model calibration.

 $\begin{array}{ll} \mbox{with} & I_{in} = S_{in,App} / (K_{i,Sin,App} + S_{in,App}) \\ & I_{h2} = K_{i,Sh2} / (K_{i,Sh2} + S_{h2,App}) \\ & I_{pH} = K_{pH} ^N N_{pH} / (K_{pH} ^N N_{pH} + S_{h+} ^N N_{pH}) \\ & I_{nh3} = K_{i,Snh3} / (K_{i,Snh3} + S_{nh3,App}) \end{array}$ 

| Parameter                    | ADM1 | This Study | Units                  |
|------------------------------|------|------------|------------------------|
| k <sub>h,ch</sub>            | 10   | 0.05       | d <sup>-1</sup>        |
| k <sub>h,pr</sub>            | 10   | 0.05       | $d^{-1}$               |
| $\mathbf{k}_{\mathrm{h,li}}$ | 10   | 0.07       | $d^{-1}$               |
| k <sub>m,su</sub>            | 70   | 35         | $d^{-1}$               |
| $\mathbf{k}_{m,fa}$          | 10   | 4          | $d^{-1}$               |
| k <sub>m,c5</sub>            | 30   | 8          | $d^{-1}$               |
| k <sub>m,c4</sub>            | 30   | 8          | $d^{-1}$               |
| k <sub>m,pro</sub>           | 20   | 10         | $d^{-1}$               |
| K <sub>i,Snh3,Xc5</sub>      | -    | 0.006      | kmol N m <sup>-3</sup> |
| K <sub>i,Snh3,Xpro</sub>     | -    | 0.006      | kmol N m <sup>-3</sup> |
| $pH_{LL,ac}$                 | 6    | 5.6        |                        |
| pH <sub>UL,ac</sub>          | 7    | 6.6        |                        |
| $f_{bu,su}$                  | 0.13 | 0.37       |                        |
| $f_{pro,su}$                 | 0.27 | 0.11       |                        |
| $f_{ac,su}$                  | 0.41 | 0.40       |                        |
| f <sub>h2,su</sub>           | 0.19 | 0.12       |                        |
| N <sub>i,subs</sub>          | -    | 0.001      | kmol N m <sup>-3</sup> |

**Table 2**: Biochemical parameters modified for model calibration at thermophilic (55°C) conditions.

|                            | ADM1 + Ideal Conditions ADM1 + Non-Ideal Conditions |         |          |          |         | HS-AD Model + Ideal Conditions |           |          |             |            | HS-AD Model + Non-Ideal Conditions |           |         |          |           |                        |                        |          |                                 |                        |      |     |      |     |    |     |   |
|----------------------------|-----------------------------------------------------|---------|----------|----------|---------|--------------------------------|-----------|----------|-------------|------------|------------------------------------|-----------|---------|----------|-----------|------------------------|------------------------|----------|---------------------------------|------------------------|------|-----|------|-----|----|-----|---|
| Variable                   | 109/ TS                                             | 2004 TS | 200/ TS  | 100/ TS  | 2004 TS | 200/ TS                        | 10        | %TS      | 20          | %TS        | 309                                | %TS       | 10      | %TS      | 20        | %TS                    | 30%                    | %TS      | Units                           |                        |      |     |      |     |    |     |   |
|                            | 107015                                              | 207013  | 30 70 13 | 10 /01 3 | 20 /013 | 30 /013                        | Global    | Apparent | Global      | Apparent   | Global                             | Apparent  | Global  | Apparent | Global    | Apparent               | Global                 | Apparent |                                 |                        |      |     |      |     |    |     |   |
| TS                         | 10.0                                                | 20.0    | 30.0     | 10.0     | 20.0    | 30.0                           | 8.3       |          | 8.3         |            | 8.3                                |           | 17.2    |          | 17.2 26.5 |                        | 17.2 26.5              |          | 8.3                             |                        | 17.1 |     | 20   | 6.4 | %  |     |   |
| $TS_{\text{Recalc}}$       | 9.1                                                 | 18.4    | 27.5     | 9.1      | 18.5    | 27.8                           | 7.4       |          | 7.4         |            | 7.4                                |           | 7.4     |          | 15.5      |                        | 7.4                    |          | 2                               | 23.8 7.4               |      | 7.4 | 15.6 |     | 23 | 3.9 | % |
| $Q_{\text{Effluent}}$      | 170                                                 | 170     | 170      | 170      | 170     | 170                            | 168       |          | 166         |            | 168 166 164 168 166                |           | 164 168 |          | 166       |                        | 1                      | 63       | $m^3 d^{-1}$                    |                        |      |     |      |     |    |     |   |
| $V_{\mathrm{Global}}$      | 3400                                                | 3400    | 3400     | 3400     | 3400    | 3400                           | 34        | 3400     |             | 3400 3400  |                                    | 3.        | 399     | 3400     |           | 3400                   |                        | 3399     |                                 | m <sup>3</sup>         |      |     |      |     |    |     |   |
| $\rho_{Global}$            | 1050                                                | 1080    | 1100     | 1050     | 1080    | 1100                           | 1         | 1044     |             | 069        | 1086                               |           | 1044    |          | 1         | 069                    | 10                     | )86      | kg m <sup>-3</sup>              |                        |      |     |      |     |    |     |   |
| OLR                        | 4.7                                                 | 9.2     | 13.8     | 4.7      | 9.2     | 13.8                           | 2         | 4.7      |             | 9.2        | 13.8 4.7                           |           | 9       | 9.2      | 13.8      |                        | kg COD $m^{-3} d^{-1}$ |          |                                 |                        |      |     |      |     |    |     |   |
| HRT                        | 20.0                                                | 20.0    | 20.0     | 20.0     | 20.0    | 20.0                           | 2         | 20.0     |             | 20.0       | 2                                  | 20.0 20.0 |         | 2        | 20.0      | 20.0                   |                        | d        |                                 |                        |      |     |      |     |    |     |   |
| $Q_{\rm g}$                | 3224                                                | 6043    | 8426     | 3212     | 6307    | 9189                           | 3229      |          | 5879        |            | 8203                               |           | 3218    |          | 6314      |                        | 8816                   |          | Nm <sup>3</sup> d <sup>-1</sup> |                        |      |     |      |     |    |     |   |
| $%CH_4$                    | 57.3                                                | 55.6    | 53.1     | 57.7     | 57.6    | 56.7                           | 57.3      |          | 54.3        |            | 51.8                               |           | 57.6    |          | 57.4      |                        | 54.9                   |          | %                               |                        |      |     |      |     |    |     |   |
| $%CO_2$                    | 37.5                                                | 39.5    | 42.1     | 37.1     | 37.5    | 38.5                           | 37.6      |          | 40.7        |            | 43.4                               |           | 3       | 7.2      | 37.7      |                        | 40.4                   |          | %                               |                        |      |     |      |     |    |     |   |
| pH                         | 7.42                                                | 7.49    | 7.33     | 7.31     | 7.50    | 7.55                           | 7         | .44      | 7.44        |            | 7.22                               |           | 7.33    |          | 7.55      |                        | 7.49                   |          |                                 |                        |      |     |      |     |    |     |   |
| Ι                          | -                                                   | -       | -        | 0.166    | 0.278   | 0.390                          |           |          | 0.176 0.321 |            | - 0.176                            |           | 0.321   |          | 0.512     |                        | kmol m <sup>-3</sup>   |          |                                 |                        |      |     |      |     |    |     |   |
| $\mathbf{S}_{\mathrm{ac}}$ | 0.165                                               | 4.570   | 15.128   | 0.086    | 0.327   | 3.618                          | 0.182     | 0.190    | 7.371       | 8.328      | 19.490                             | 24.426    | 0.088   | 0.092    | 0.537     | 0.606                  | 10.002                 | 12.516   | kg COD m <sup>-3</sup>          |                        |      |     |      |     |    |     |   |
| $\mathbf{S}_{\mathrm{in}}$ | 0.129                                               | 0.246   | 0.365    | 0.129    | 0.245   | 0.363                          | 0.130     | 0.136    | 0.253       | 0.286      | 0.381                              | 0.477     | 0.130   | 0.136    | 0.252     | 0.285                  | 0.379                  | 0.475    | kmole N m <sup>-3</sup>         |                        |      |     |      |     |    |     |   |
| $\mathbf{S}_{nh3}$         | 0.00362                                             | 0.00820 | 0.00839  | 0.00196  | 0.00527 | 0.00810                        | 0.00387   | 0.00404  | 0.00755     | 0.00853    | 0.00692                            | 0.00867   | 0.00207 | 0.00216  | 0.00588   | 0.00663                | 0.00693                | 0.00868  | kmole N m <sup>-3</sup>         |                        |      |     |      |     |    |     |   |
| $\mathbf{S}_{\mathrm{ic}}$ | 0.153                                               | 0.199   | 0.154    | 0.158    | 0.267   | 0.330                          | 0.154     | 0.161    | 0.162       | 0.183      | 0.102                              | 0.128     | 0.160   | 0.167    | 0.269     | 0.304                  | 0.246                  | 0.308    | kmole C m-3                     |                        |      |     |      |     |    |     |   |
| $S_{\rm co2}$              | 0.01100                                             | 0.01216 | 0.01347  | 0.01048  | 0.01089 | 0.01140                        | 0.01055   | 0.01102  | 0.01107     | 0.01250    | 0.01104                            | 0.01384   | 0.01002 | 0.01047  | 0.00960   | 0.01084                | 0.00924                | 0.01156  | kmole C m-3                     |                        |      |     |      |     |    |     |   |
| $X_{ac}$                   | 0.78                                                | 1.36    | 1.73     | 0.78     | 1.52    | 2.14                           | 0         | .78      | 1.29        |            | 1.65                               |           | 0.79    |          | 1.54      |                        | 0.79 1.54 1.5          |          | .99                             | kg COD m <sup>-3</sup> |      |     |      |     |    |     |   |
| $\mathbf{X}_{biomass}$     | 3.77                                                | 7.21    | 10.42    | 3.77     | 7.36    | 10.85                          | 3.81 7.25 |          | 10          | 10.58 3.81 |                                    | 7.50      |         | 10.94    |           | kg COD m <sup>-3</sup> |                        |          |                                 |                        |      |     |      |     |    |     |   |

Table 3: Summary of steady-state results (i.e. day 365) for model implementation verification at different influent total solid (TS) contents.

<u>NOTE</u>: Both the ADM1 and the HS-AD model results are shown for 'ideal' and 'non-ideal' conditions. The NH<sub>3</sub> half-inhibition constant for acetoclastic methanogens ( $K_{i,Snh3,Xac}$ ) was 0.0018 kmol N/m<sup>3</sup>. The global and apparent concentrations are interrelated by the TS, and the specific weight of reactor content ( $\rho_{Global}$ ) and aqueous solvent ( $\rho_{Solvent} = 1000 \text{ kg m}^{-3}$ ).

