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High-solids anaerobic digestion (HS-AD) of the organic fraction of municipal solid waste (OFMSW) is operated at a total solid (TS) content ≥ 10 % to enhance the waste treatment economy, though it might be associated to free ammonia (NH3) inhibition.

This study aimed to calibrate and cross-validate a HS-AD model for homogenized reactors in order to assess the effects of high NH3 levels in HS-AD of OFMSW, but also to evaluate the suitability of the reversible non-competitive inhibition function to reproduce the effect of NH3 on the main acetogenic and methanogenic populations. The practical identifiability of structural/biochemical parameters (i.e. 35) and initial conditions (i.e. 32) was evaluated using batch experiments at different TS and/or

INTRODUCTION

High-solids anaerobic digestion (HS-AD) of the organic fraction of municipal solid waste (OFMSW) is operated at total solids (TS) ≥ 10 % to minimize the reactor volume, the water addition and the digestate dewatering (Pastor-Poquet et al., 2019a). HS-AD can also lead up to 80 % TS removal, easing the digestate post-treatment. However, HS-AD of OFMSW is usually associated to free ammonia (NH3) inhibition, resulting in volatile fatty acids (VFA) accumulation. NH3 affects both acetoclastic and hydrogenotrophic methanogens but also the rest of VFA degraders (acetogens) in anaerobic digestion (AD), being the inhibition related to the operative parameters (i.e. temperature and pH) and the biomass acclimation [START_REF] Rajagopal | A critical review on inhibition of anaerobic digestion process by excess ammonia[END_REF].

Adding lignocellulosic materials to OFMSW permits to minimize the buildup of total ammonia nitrogen (TAN), while their low hydrolysis rates permit to increase the TS content and to counteract the VFA accumulation in HS-AD [START_REF] Capson-Tojo | Dry anaerobic digestion of food waste and cardboard at different substrate loads, solid contents and co-digestion proportions[END_REF]Pastor-Poquet et al., 2019a). However, including lignocellulosic waste in OFMSW depends on the season or the local waste management strategy. Whether or not a lignocellulosic co-substrate is used, understanding the effects of NH3 inhibition is crucial to optimize HS-AD of OFMSW.

A HS-AD model was recently developed for homogenized reactors to evaluate the NH3 inhibition in HS-AD of OFMSW [START_REF] Pastor-Poquet | High-solids anaerobic digestion model for homogenized reactors[END_REF], 2019b). This structured model, based on the Anaerobic Digestion Model No. 1 (ADM1) [START_REF] Batstone | The IWA Anaerobic Digestion Model No. 1 (ADM1)[END_REF], gathers the main bio-physical-chemical mechanisms in HS-AD. In the HS-AD model, apparent (i.e. kmol/kg H2O) instead of global (i.e. kmol/kg) concentrations determine the effect of TS upon solutes, as a consequence of the low water content within HS-AD.

Meanwhile, an extended set of mass balances allows the simulation of the organic mass removal from the biogas production. A liquid solution 'non-ideality' subroutine was subsequently included in the model as a function of the ionic strength (I), since 'nonideality' determines the pH, CO2 liquid-gas transfer and NH3 inhibition in HS-AD (Pastor-Poquet et al., 2019b). As a preliminary assumption, the HS-AD model included a reversible non-competitive inhibition function by NH3 (Inh3) [Equation 1] in the biochemical rates of acetogenic and methanogenic populations, a mathematical resource commonly used in structured AD models [START_REF] Astals | Characterising and modelling free ammonia and ammonium inhibition in anaerobic systems[END_REF].
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Simulating the NH3 inhibition at high TS with the HS-AD model requires an adequate set of input parameters, θ, to be estimated by calibration [START_REF] Pastor-Poquet | High-solids anaerobic digestion model for homogenized reactors[END_REF], 2019b). θ includes both the structural/biochemical parameters, θP, and the initial and influent conditions, θB: θ = (θP, θB). Nonetheless, calibration of structured AD models is not trivial due to the equation complexity and large number of θ involved [START_REF] Dochain | Dynamical Modelling and Estimation in Wastewater Treatment Processes[END_REF][START_REF] Donoso-Bravo | Model selection, identification and validation in anaerobic digestion: A review[END_REF].

To calibrate a mathematical model, θ must be structurally and practically identifiable, instead of correlated. The θ structural identifiability is theoretically assessed, assuming noise-free experimental data and error-free model structure. Noteworthy, nearly all θ in ADM1 are (locally) structurally identifiable [START_REF] Nimmegeers | Identifiability of large-scale non-linear dynamic network models applied to the ADM1-case study[END_REF]. This is a prerequisite to assess the θ practical identifiability and calibrate the HS-AD model using 'imperfect' experimental data. Unfortunately, the reduced number of experimental data often available and/or the presence of experimental errors yield non-identifiable parameters; i.e. parameters that cannot be uniquely estimated. These are known as practical identifiability issues.

Calibration usually consists of minimizing an objective function, J(θ), that condenses the 'goodness of fitting' between the experimental data, y, and the model outputs, y sim (θ), being these a function of N input parameters, θ [START_REF] Dochain | Dynamical Modelling and Estimation in Wastewater Treatment Processes[END_REF][START_REF] Flotats | Identifying anaerobic digestion models using simultaneous batch experiments[END_REF]. Several J(θ) can be used to calibrate AD models as the weighted sum of squares or any user-defined alternative [START_REF] Donoso-Bravo | Model selection, identification and validation in anaerobic digestion: A review[END_REF][START_REF] Ratto | Sensitivity analysis in model calibration: GSA-GLUE approach[END_REF]. Assuming the existence of a global minimum (optimum) for an objective function, J(θopt), this value is reached using the optimal set of input parameters, θopt.

Practical identifiability issues commonly translate into J(θ) showing many local optimums and/or flat valleys, where the precise value of θ cannot be easily determined [START_REF] Guisasola | The influence of experimental data quality and quantity on parameter estimation accuracy: Andrews inhibition model as a case study[END_REF][START_REF] Rodriguez-Fernandez | Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems[END_REF]. Thus, only practical identification of a reduced θ subset (i.e. N' < N) is often possible for ADM1-based models [START_REF] Nimmegeers | Identifiability of large-scale non-linear dynamic network models applied to the ADM1-case study[END_REF]. This is called model over-parameterization, where the modification of two individual θ, θi (with i = 1, …, N), can lead to a similar model output. Particularly, when using batch experiments -highly dependent on the initial conditions -to calibrate AD models, different sets of experimental conditions, including different inoculum-to-substrate ratios (ISR), are required to reduce the θ correlation [START_REF] Donoso-Bravo | Model selection, identification and validation in anaerobic digestion: A review[END_REF][START_REF] Flotats | Identifying anaerobic digestion models using simultaneous batch experiments[END_REF].

Two main approaches can be used to calibrate complex models: the Bayesian and the frequentist. The frequentist approach searches for optimal θ values, θopt, whereas the Bayesian approach considers θopt as probabilistic distributions conditioned on the experimental data, p(θopt|y), instead of single values [START_REF] Ratto | Sensitivity analysis in model calibration: GSA-GLUE approach[END_REF][START_REF] Rodriguez-Fernandez | Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems[END_REF][START_REF] Saltelli | Sensitivity analysis practices: Strategies for model-based inference[END_REF]. In both approaches, when facing overparameterization, it must be assessed which θi significantly influence y sim (θ) (sensitivity analysis) and need to be adequately calibrated.

ADM1-based models contain several θP (i.e. ≥ 35) and θB (i.e. ≥ 24). θP might be obtained from literature, though a different model structure -from where these θP were obtained -potentially influences the optimal θP values/distributions (Pastor-Poquet et al., 2019b). On the other hand, θB might not be easily determined due to the lack of experimental data or the difficulties to translate the data into adequate model units [START_REF] Donoso-Bravo | Model selection, identification and validation in anaerobic digestion: A review[END_REF][START_REF] Flotats | Parameter identification of thermophilic anaerobic degradation of valerate[END_REF].

Parameter inference based on the Bayes' theorem [Equation 2] is particularly suited to calibrate structured AD models since it can deal with complex J(θ) showing several optima or flat geometries, where frequentist inference might not be well suited [START_REF] Kennedy | Bayesian calibration of computer models[END_REF][START_REF] Toni | Simulation-based model selection for dynamical systems in systems and population biology[END_REF]. In Bayesian inference, the prior parameter distribution, p(θ), is sampled to obtain the posterior parameter distribution, p(θ|y), conditioned on the experimental data, y, and the likelihood function, p(y|θ), while p(y) can be considered as a normalizing constant. Importantly, any user-defined J(θ) arising from p(y|θ) can be used in 'informal' statistical approaches [Equation 3], as variance-based global sensitivity analysis (GSA) and approximate Bayesian computation (ABC) [START_REF] Donoso-Bravo | Model selection, identification and validation in anaerobic digestion: A review[END_REF][START_REF] Nott | Generalized likelihood uncertainty estimation (GLUE) and approximate Bayesian computation: What's the connection?[END_REF].
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Variance-based GSA provides an appropriate assessment about the potentiality of θi to influence the model outputs and the correlations existing with the rest of θ, θj (with j = 1, …, N and i ≠ j) [START_REF] Kennedy | GEM-SA: The gaussian emulation machine for sensitivity analysis[END_REF][START_REF] Oakley | Probabilistic sensitivity of complex models: A Bayesian approach[END_REF]. Similarly, ABC permits also to highlight practical identifiability issues yielding simultaneously the most likely p(θ|y) [START_REF] Beaumont | Adaptive approximate Bayesian computation[END_REF][START_REF] Filippi | On optimality of kernels for approximate Bayesian computation using sequential Monte Carlo[END_REF][START_REF] Toni | Simulation-based model selection for dynamical systems in systems and population biology[END_REF].

As main disadvantage, Bayesian inference is often computationally intensive.

The mathematical performance of the HS-AD model was previously verified, though the model was only validated for a single HS-AD batch experiment due to the elevated number of θ requiring calibration (i.e. > 30) [START_REF] Pastor-Poquet | High-solids anaerobic digestion model for homogenized reactors[END_REF], 2019b). Instead, this study aimed to fully calibrate and cross-validate the HS-AD model to simulate the effect of high NH3 levels in HS-AD of OFMSW, while testing the non-competitive NH3 inhibition function [Equation 1] on the main acetogenic/methanogenic populations. In particular, this study assessed the practical identifiability of 35 θP and 32 θB, by using nine HS-AD batch digesters at different TS and/or ISR as a source of experimental data.

Identifiability was assessed by variance-based GSA and ABC permitting to approximate also p(θ|y). Importantly, the proposed methodology can be easily readapted to account for further HS-AD datasets (e.g. batch, continuous) and/or model configurations.

METHODOLOGY

Experimental Data

To calibrate and cross-validate the HS-AD model, while further evaluating the effects of increasing the initial TS content on HS-AD simulations, four different batch experiments were used at thermophilic (55ºC) conditions from 10 to 30 % TS [Table 1].

The laboratory-scale reactor design volume (VReactor) was either 160 or 280 mL for the different experiments. In all experiments, centrifuged inoculum was used to increase simultaneously the initial TS and ISR. These small-scale digesters were manually shaken when the biogas production was measured. The batch experiments are described next, whereas a thorough description of these experiments and the bio-physicalchemical analyses performed was reported elsewhere (Pastor-Poquet et al., 2019a).

Experiment 1 consisted of a sacrifice test for mono-digestion of OFMSW using ISR = 1.00 g VS/g VS. In this experiment, the main physical-chemical dynamics (i.e. biogas production and composition, TS, VS, VFA, TAN, and mono-valent ions) were evaluated at different operational times. In Experiments 2 to 4, the biogas production and composition were measured at different experimental times, whereas the rest of physical-chemical analyses (i.e. TS, VS, VFA, TAN and ions) were only performed before starting and after ending each experiment. Non-sacrifice experiments included mono-digestion of OFMSW using ISR = 1.50 g VS/g VS (Experiment 2) and ISR = 0.50 g VS/g VS (Experiment 3), but also co-digestion of OFMSW and beech sawdust using ISR = 0.16 g VS/g VS (Experiment 4).

Within Experiments 2 and 4, different initial TS contents -dilutions -were evaluated, though all the initial batch conditions contained exactly the same amount of substrate and centrifuged inoculum. Briefly: 1) the inoculum was centrifuged; 2) the same amount of substrate and inoculum was added to each bottle; 3) distilled water was added to reach the different TS contents; and 4) each bottle was manually homogenized.

This strategy was aimed to use the mass balances among the different initial TS conditions, as explained in Section 2.3.1, since soluble materials were partially removed when centrifuging the inoculum. In total, nine different HS-AD batch conditions were assessed at different TS, ISR and/or co-digestion ratios, subsequently named as "Batch

No. 1 to 9" [Table 1].

HS-AD Model

The HS-AD model included the main biochemical rates of [START_REF] Pastor-Poquet | High-solids anaerobic digestion model for homogenized reactors[END_REF], though some minor modifications were also implemented [ 1]. Importantly, the hydrolysis of both Xch,fast and Xch,slow pooled into soluble sugars (Ssu).

Model Calibration and Validation

A common set of biochemical parameters was used for all HS-AD simulations at different ISR and/or TS. All biochemical parameters for thermophilic (55ºC) AD were extracted from [START_REF] Batstone | The IWA Anaerobic Digestion Model No. 1 (ADM1)[END_REF], though some of those needed to be calibrated (i.e.

θP) to improve the model fitting. The initial conditions of the batch experiments were predefined according to the experimental data available, as described by [START_REF] Pastor-Poquet | High-solids anaerobic digestion model for homogenized reactors[END_REF] and also mentioned next. Moreover, different ranges of initial biomass concentrations were used (i.e. θB) to assess the potential interrelationship of θB with θP in batch experiments.

Initial Conditions

The initial conditions used for each batch simulation are shown in Table 3. Since the same amount of substrate and inoculum was used along different initial TS contents in Experiment 2, but also in Experiment 4, mass balances were used to reduce the number of 'unknown' initial conditions [ 1] were evaluated.

Biochemical Parameters, Biomass Concentrations and Calibration Ranges

The modified biochemical parameters (θP) and modified biomass concentrations (θB) in this study, including their initial values and potential variability ranges, are shown in Table 4. In total, 35 θP and 32 θB were evaluated. θP related to the hydrolysis, sugar fractioning (fsu), maximum growth rate (km) and half-saturation constant (KS), but also the pH, NH3 and H2 inhibition constants (Ki), since all these θP are simultaneously associated to the substrate under study, are correlated among themselves, and strongly regulate the biogas production/composition from solid substrates [START_REF] Batstone | The IWA Anaerobic Digestion Model No. 1 (ADM1)[END_REF][START_REF] Garcia-Gen | Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes[END_REF]. On the other hand, θB included all the initial biomass concentrations in the HS-AD simulations (i.e. Xsu, Xaa, Xfa, Xc5, Xbu, Xpro, Xac and Xh2), as these concentrations might not only strongly influence the biogas production during the initial days of batch experiments, but might also be potentially interrelated among themselves and/or to the previous θP.

The sugars uptake yields butyrate (fbu,su), propionate (fpro,su), acetate (fac,su) and hydrogen (fh2,su) as COD fractions in ADM1. Therefore, a maximum of three fractions can be selected simultaneously to fulfill the COD balance: fbu,su + fpro,su + fac,su + fh2,su = 1. In this study, fbu,su, fac,su and fh2,su were selected, while fpro,su was recalculated: fpro,su = 1fbu,su -fac,su -fh2,su. Importantly, further structural parameters and initial conditions need to be induced in the HS-AD model as, for example, the amino-acid (AA, Saa)

fractioning and the biomass yield coefficients (Yb), though these were not assessed here aiming to reduce the problem under study. In either case, the proposed methodology for calibration/validation can easily include any further θ.

Variability ranges for structural parameters are suggested in ADM1 [START_REF] Batstone | The IWA Anaerobic Digestion Model No. 1 (ADM1)[END_REF]. However, considerably wider ranges were assessed in this study to emphasize the absence of prior knowledge about the optimal values. For simplicity, all θP were allowed to vary by 90 % from their initial values, θP,0: (1 -0.9) • θP,0 ≤ θP ≤ (1 + 0.9) • θP,0; uniform p(θP) [Table 4]. As the only exception, the lower pH threshold for acetoclastic methanogens (pHLL,ac) was bounded between a pH value where methanogenesis potentially collapses (i.e. ≤ 5.0) and the upper pH threshold for acetoclastic methanogens (pHUL,ac, i.e. 7.0), to maintain the suitability of the Hill function to simulate the pH inhibition [Table 2].

Different methods are available to approximate the initial conditions (i.e. biomass concentrations) in batch simulations as, for example, simulating a continuous reactor fed with exactly the same substrate until reaching steady state, and then use these steady conditions to initialize the batch simulations [START_REF] Dochain | Dynamical Modelling and Estimation in Wastewater Treatment Processes[END_REF][START_REF] Donoso-Bravo | Model selection, identification and validation in anaerobic digestion: A review[END_REF]. However, since the inoculum was centrifuged right before setting the batch experiments in this study, absence of prior knowledge about the initial biomass concentrations was preferred. To explore homogeneously different orders of magnitude in the biomass concentrations (often 0 < θB < 1 kmol COD/m 3 ), the logarithm-transformed θB were allowed to vary by 50 % from their initial values, θB,0: (1 4].

+ 0.5) • log10 (θB,0) ≤ log10 (θB) ≤ (1 -0.5) • log10 (θB,0); uniform p(log10 (θB)) [Table

Objective Function

The weighted sum of squares between all the available experimental and the corresponding simulated values was used as objective function, J(θ) [Equation 4]. J(θ)

was adapted from [START_REF] Flotats | Parameter identification of thermophilic anaerobic degradation of valerate[END_REF] to assess the model 'goodness of fitting', being: θ the structural parameters and/or initial conditions implemented in the HS-AD model; R the number of batch simulations; D the number of experimental datasets; texp the experimental time of each batch experiment; , , the experimental measurements;

, , (θ) the simulated values; and , the weighting coefficients -calculated as a function of the average experimental data, , [Equation 5]. With this approach, J(θ)

was lower-bounded by the -preliminarily unknown -global minimum:

J(θ) ≥ J(θopt). = , , , -, , ! "#$ % & ' %( ) %( (4) 
, = 1 ∑ , , , -, - ! "#$ % & (5) 
Noteworthy, only 6 out of 9 experimental conditions were used to calculate J(θ) in this study: Batch No. 1, 3, 5, 6, 7 and 9 [ Additionally, the proposed configuration included the most informative dataset (i.e.

Batch No. 1) to increase the complexity of J(θ) and remove identifiability issues related to the lack of bio-physical-chemical dynamics in the overall dataset, as further discussed in Section 3.1.3.

Global Sensitivity Analysis

GSA was aimed to highlight the most influential θ to be calibrated with the available set of experimental data. For GSA, multiple θ combinations were used to evaluate J(θ)

[Equation 4]. Latin-hypercube sampling (LHS) served to explore the global θ space (Solon et al., 2015). Subsequently, J(θ) arrays and their corresponding θ were assessed by the GSA engine of [START_REF] Kennedy | Bayesian calibration of computer models[END_REF] and [START_REF] Oakley | Probabilistic sensitivity of complex models: A Bayesian approach[END_REF].

The GSA engine calculates the individual (IE) and global (GE) effects of θi upon the global model output (e.g. p(y|θ), J(θ)) variance. On the other hand, the GSA engine provides also all the double correlations between θi and θj (i.e. A maximum θ subset of N' = 30 and/or 400 simulations of J(θ) can be evaluated simultaneously with the GSA engine [START_REF] Kennedy | GEM-SA: The gaussian emulation machine for sensitivity analysis[END_REF]. Therefore, to assess θ interactions when N > 30, a combination strategy was followed. Firstly, 30 θi were randomly selected and evaluated by GSA (i.e. GSA No. 1). From these θ, only those showing the smallest IE (e.g. < 1 %) were disregarded as non-identifiable, removed from the initial θ subset, and not used for further GSA. Importantly, these nonidentifiable θi were fixed at their initial values [Table 4] for all subsequent model simulations, since non-identifiability implies that these θ can be fixed at any value within p(θ) [START_REF] Dochain | Dynamical Modelling and Estimation in Wastewater Treatment Processes[END_REF][START_REF] Guisasola | The influence of experimental data quality and quantity on parameter estimation accuracy: Andrews inhibition model as a case study[END_REF]. Then, θP and/or θB non-previously-assessed by GSA were combined with the non-removed θ subset, and a new GSA was performed (i.e. GSA No. 2). The GSA methodology was repeated until the last remaining θ subset was considered as 'potentially identifiable', θ'.

In total, seven GSA with different θ combinations were progressively performed [Table 5]. In this study, the only criterion for non-identifiability was assumed as IE ≤ 0.20 %, which also coincided with a relatively low GE (i.e. < 4.5), though this conservative criterion could be modified as mentioned in Section 3.1.1. To enhance the GSA representativeness in presence of a high number of θ (i.e. 20 ≤ N' ≤ 30) and/or wide variability ranges (i.e. ± 50 %), each GSA was conducted in triplicate and the results averaged. Finally, all J(θ) arrays used for GSA were searched for the minimum observed value, Jmin(θ) (i.e. ≥ J(θopt)), to be subsequently used in ABC.

Approximate Bayesian Computation

The θ' posterior distribution, p(θ'|y), was assessed by ABC [START_REF] Toni | Simulation-based model selection for dynamical systems in systems and population biology[END_REF]. In short, multiple simulations were carried at different θ' combinations sampled by LHS, whereas relatively high J(θ') values were discarded by a progressively stringent criterion based in a tolerance coefficient, ɛ (i.e. > 1.0). In other words, only J(θ') -Jmin(θ') ≤ ɛ were accepted for posterior evaluation: p(θ'|J(θ') -Jmin(θ') ≤ ɛ). With this approach, θ' identifiability was further assessed by the convergence in the confidence range.

In this study, ɛ was successively reduced from 2.50 to 1.05 (i.e. 2.50, 1.80, 1.30, 1.10 and 1.05). Within each explored J(θ') -Jmin(θ') ≤ ɛ range, 400 simulations were used. θ'

were allowed to vary within the same range used for GSA [Table 4]. Meanwhile, the 5 to 95 % interquartile range of each θ' was used as confidence range, but also as a criterion for identifiability/convergence. The posterior mean, median, mode, Kurtosis, Skewness and correlation matrix were also evaluated, as described in [START_REF] Martin | An Integrated Monte Carlo Methodology for the calibration of water quality models[END_REF].

Cross-Validation

Cross-validation assesses the model 'goodness of fitting' in experiments not used for calibration [START_REF] Bennett | Characterising performance of environmental models[END_REF]. In this study, the θ' posterior mean was considered as θopt. Thus, θopt were used to simulate all batch experiments, including the three experimental conditions selected for cross-validation: Batch No. 2, 4 and 8 [Table 1].

RESULTS AND DISCUSSION

3.1 GSA -Selecting the Most Influencing Input Parameters for Calibration

Preliminary Identifiability Assessment

GSA results are summarized in Table 5. GSA was started with 30 θP and progressively led to only 14 θ': 13 θP (i.e. Kh,pr, Kh,ch,slow, km,fa, km,c5, km,c4, km,pro, km,ac, km,h2, kd, pHLL,ac, fbu,su, fac,su, fh2,su) and 1 θB (i.e. Xac,Batch7). In this study, only the θi showing IE ≤ 0.20 % were fixed at their initial values [Table 4] to enhance the capabilities of GSA and ABC for calibrating structured AD models, as mentioned in Section 2.3.4. The overall J(θ)

variance explained by the GSA engine was around 70 % in all cases, confirming the validity of this methodology to assess the most influential θ in the HS-AD model [START_REF] Oakley | Probabilistic sensitivity of complex models: A Bayesian approach[END_REF].

IE provides a relative measure of the θi practical identifiability, while a high θi correlation -high difference between IE and GE -suggests that θi cannot be independently calibrated with the available set of experimental data [START_REF] Saltelli | Sensitivity analysis practices: Strategies for model-based inference[END_REF]. As an example, GSA No. 1 showed that 40.7 % out of 72.4 % of the global J(θ)

variance was explained by adding up the IE of 30 θP [ 5].

In this study, θi were disregarded by a single and low-demanding criterion (i.e. IE ≤ 0.20 %) [Table 5], since any chosen criterion for 'potential identifiability' would influence the GSA results when N ≥ 30. Meanwhile, GSA also depends on N' (i.e. ≤ 30)

and/or the particular combination of θP and θB used. Thus, using a more demanding identifiability criterion (e.g. IE ≤ 0.50 % instead of 0.20 %) might have led to discard θi during preliminary GSA runs, which would be subsequently characterized as 'potentially identifiable'. For example, GSA No. 1 showed an IE = 0.22 % for km,c5, whereas GSA No. 7 eventually showed an IE = 0.67 % [ With all the above, a second assessment for identifiability can be useful when using variance-based GSA for structured AD models. ABC is a well-suited tool in this regard, yielding also p(θ|y), in contrast to GSA. Importantly, both methodologies should yield equivalent results regarding the θi identifiability, though ABC is much computationally intensive than GSA, as explained in Section 3.2.1.

Importance of the p(θ) for Model Calibration

It must be noted that any p(θ) could be used to calibrate AD models, provided that θ do not contradict biochemical laws (e.g. θP ≥ 0 and θB ≥ 0) or disrupt mathematical resources (e.g. pHUL,ac > pHLL,ac) and the overall p(θ) range is as densely and homogeneously sampled as possible. On the other hand, the p(θ) distribution used (e.g.

uniform, log-transformed uniform, normal) can be also crucial to determine p(θ|y) and the overall θ estimation.

In this study, using triplicates permitted to enhance the GSA representativeness (overall sampling) in presence of large N and p(θ) ranges. Meanwhile, a uniform distribution with mostly a 90 % modification was predefined for θP, whereas a log-transformed uniform distribution with a 50 % modification was allowed for θB [Table 4], as mentioned in Section 2.3.2. These specific p(θ) ranges were considered sufficiently wide for the objectives of this study, and were based mainly on experience and visual analysis of the overall model results. Particularly, the order of magnitude of many θP are relatively well characterized in literature according to their corresponding bio-physicalchemical meaning. Nonetheless, the order of magnitude of θB is highly unknown, particularly after the inoculum centrifugation used in this study. Thus, using a uniform p(θ) permitted to emphasize the precision over punctual θP values within the p(θP) range, whereas the precision over the 'unknown' order of magnitude in the θB range was emphasized by using a log-transformed uniform distribution p(log10 (θB)).

With all the above, using a different p(θ) range or distribution might alter the results of variance-based GSA and the overall calibration of structured AD models. For example, using considerably narrower p(θP) ranges in GSA No. 1 (i.e. (1 -0.3) • θP,0 ≤ θP ≤ (1 + 0.3) • θP,0; uniform p(θP)) resulted in some θP -which were highlighted as 'potentially identifiable' in this study -being disregarded as non-identifiable (e.g. Kh,pr and km,c4), likely because part of their 'optimal' or 'sub-optimal' θP values were left outside the p(θP) range [Supplementary Information]. On the other hand, using wider ranges (i.e. the order of magnitude of km,c5 and km,c4 was disregarded, while the order of magnitude of Kh,ch,slow and KS,Xh2 has was highlighted as highly important for the HS-AD model calibration. Therefore, for the correct calibration of structured AD models, both the p(θ)

range and distribution should be set accordingly to all the prior information available for these θ, minimizing the p(θ) range explored alongside the number of simulations required for the objectives of the study.

Importance of the Available Data for Model Calibration

Provided the θ are structurally identifiable, practical identifiability relates to the quantity as well as the quality (i.e. experimental errors and/or the sampling frequency) of the experimental data available [START_REF] Donoso-Bravo | Model selection, identification and validation in anaerobic digestion: A review[END_REF][START_REF] Guisasola | The influence of experimental data quality and quantity on parameter estimation accuracy: Andrews inhibition model as a case study[END_REF][START_REF] Nimmegeers | Identifiability of large-scale non-linear dynamic network models applied to the ADM1-case study[END_REF][START_REF] Rodriguez-Fernandez | Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems[END_REF]. Particularly, a reduced number of experimental data associated to some model dynamics usually prevents practical identifiability of the θ involved in these specific dynamics. For example, Yb might not be identifiable in AD models provided that the biomass concentration dynamics were measured [START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF].

In this study, the hydrolysis constant of readily-biodegradable carbohydrates (Kh,ch,fast)

and lipids (Kh,li), but also the maximum growth rate of sugar (km,su) and amino acid (km,aa) degraders, showed a reduced influence in J(θ) by GSA. These results suggest that either insufficient experimental data was available to calibrate Kh,ch,fast, Kh,li, km,su and km,aa, or that the biogas production in the HS-AD batch experiments [Table 1] was mostly influenced by the VFA uptake -as the main limiting step. In the same line, due to the Monod properties, km and KS might be correlated when using batch experiments for calibration [START_REF] Dochain | Dynamical Modelling and Estimation in Wastewater Treatment Processes[END_REF][START_REF] Flotats | Identifying anaerobic digestion models using simultaneous batch experiments[END_REF][START_REF] Guisasola | The influence of experimental data quality and quantity on parameter estimation accuracy: Andrews inhibition model as a case study[END_REF]. Nevertheless, GSA showed negligible influence for all KS in this study, likely due to using different batch experiments (i.e. ISR and TS) and/or a reduced number of experimental data to obtain J(θ) [Equation 4].

The liquid-gas transfer coefficient (kLa) was also disregarded during the initial steps of GSA (i.e. IE = 0.07 % and GE = 0.39) [Table 5]. The kLa coefficient is related to the homogenization and mixing strategy, as well as other operational parameters in AD (e.g. temperature and pH) [START_REF] Batstone | The IWA Anaerobic Digestion Model No. 1 (ADM1)[END_REF]. In this study, all the HS-AD digesters were manually shaken. However, increasing the TS content can hamper the liquid-gas transfer mechanisms in HS-AD (Pastor-Poquet et al., 2019a). Therefore, a calibration strategy should be specifically envisaged to correctly calibrate kLa (e.g. using different stirring velocities/devices for mixing), since the presence of several θ in HS-AD models can prevent identifiability of kLa with the reduced number of experimental data usually available.

Importantly, both the NH3 and H2 inhibition parameters [Table 2] were shown as nonidentifiable in this study, despite the strong influence of these parameters to regulate the biogas production in an ADM1-based model, as mentioned in Section 2.3.2. These results were associated to the reduced TAN and VFA dynamics in the experimental data, since only one single sacrifice experiment was available for calibration/validation. Therefore, despite using different initial conditions (i.e. ISR and/or TS) for model calibration, the NH3 inhibition parameters in HS-AD of OFMSW cannot be assessed by using traditional batch experiments, where only the biogas production and composition are (usually) dynamically evaluated.

The above results condense the importance of an adequate sampling to enhance identifiability in AD models, but also to test hypotheses regarding the effects of inhibitory substances in HS-AD. Particularly, an extensive sampling for VFA, pH and TAN at different operational times during batch experiments is required to identify crucial parameters regarding the NH3 inhibition in HS-AD of OFMSW. Therefore, sacrifice experiments and/or any sampling technique for batch setups -allowing the thorough characterization of the reactor content variables in dynamic mode -should be recommended to calibrate structured HS-AD models using batch experiments. On the other hand, including (semi-)continuous datasets when available might also alleviate these identifiability issues during calibration [START_REF] Bennett | Characterising performance of environmental models[END_REF][START_REF] Nimmegeers | Identifiability of large-scale non-linear dynamic network models applied to the ADM1-case study[END_REF].

The Importance of Initial Conditions for Model Calibration

Interestingly, all θB except Xac,Batch7 were shown as non-identifiable in this study [Table 5]. The reason presumably lies on the high km of all microorganisms 'shading' the effect of their initial concentration. For example, Xpro was associated to a maximum growth rate (km,pro) around 10 d -1 [Table 4]. Thus, Xpro doubles within 1 h (i.e.

./0 ! 1 2 = ./0 ! •!4

(5 = 0.6 ℎ), whereas the HS-AD batch experiments lasted considerably longer than 20 days [Table 1].

Xac and Xh2 are important variables to avoid batch acidification during the initial 0 -10 days of HS-AD simulations, due to the rapid changes occurring in the bio-physicalchemistry during these days and the influence of these two microbial populations to define the buffering capacity [START_REF] Batstone | The IWA Anaerobic Digestion Model No. 1 (ADM1)[END_REF][START_REF] Capson-Tojo | Dry anaerobic digestion of food waste and cardboard at different substrate loads, solid contents and co-digestion proportions[END_REF].

Nonetheless, these biomass concentrations were also rapidly disregarded by GSA in this study [Tables 3 and4], except the 'potential identifiability' of Xac,Batch7 suggested by GSA No. 7 which was likely explained by the influence of the order of magnitude of this particular biomass content to regulate the risk of acidification of the most extreme HS-AD condition in Experiment 7 (i.e. Batch No. 9, TS = 30 %) [Table 1].

With all the above, it is likely that only the initial biomass magnitude -not a precise value -was needed to calibrate the HS-AD model based on batch experiments. In other words, approximate biomass concentrations serve mainly to avoid acidification in HS-AD batch simulations, since these might not influence significantly the model calibration. The θ influence on J(θ) in this study was further assessed by ABC.

Parameter Optimization

Second Identifiability Assessment

Figure 1 shows p(θ'|y) using an ɛ = 1.05. The main statistics for these p(θ'|y) are summarized in Table 6, including the confidence ranges (i.e. 5 -95 % interquartile range), since a reliable assessment of the θ confidence range is as important as the value of θopt themselves [START_REF] Guisasola | The influence of experimental data quality and quantity on parameter estimation accuracy: Andrews inhibition model as a case study[END_REF]. The correlation matrix is included as Supplementary Information. Figure 2 shows the 5 -95 % interquartile range vs. ɛ, since reducing progressively ɛ permitted to assess the convergence of the θ' posterior as second identifiability assessment.

Parameter identifiability is roughly associated to the 'sharpness' of the posterior distribution, p(θ|y) [START_REF] Martin | An Integrated Monte Carlo Methodology for the calibration of water quality models[END_REF][START_REF] Toni | Simulation-based model selection for dynamical systems in systems and population biology[END_REF]. In this line, Kh,pr, Kh,ch,slow, km,fa, km,c5, km,c4, km,ac, pHLL,ac and fbu,su showed relatively well-defined bellshaped distributions by ABC, suggesting an adequate identifiability [Figure 1].

Meanwhile, km,pro, km,h2, kd, Xac,Batch7, fac,su and fh2,su showed a more uniform-like distribution, suggesting a poorer identifiability. The substantial reduction observed in the interquartile range for Kh,pr,Kh,ch,slow,km,fa,km,c5,km,c4,km,ac,pHLL,ac and fbu,su (i.e. 60 -80 %) corroborated their adequate identifiability in this study, in contrast to km,pro, km,h2, kd, Xac,Batch7, fac,su and fh2,su that showed a much constant interquartile range (i.e. ≤ 50 % reduction) [Figure 2]. The poor practical identifiability of these last θ' is explained by their high correlation with the rest of θ'. For example, the fac,su•fbu,su correlation was -0.82, while km,pro•kd was 0.72 -data not shown. As suggested in Section 3.1.4, Xac,Batch7

served mainly to counteract the potential acidification in Batch No. 9, since the poor reduction in the interquartile range (i.e. 23 %) alongside the high correlation with other θ' (i.e. pHLL,ac•Xac,Batch7 = 0.24) indicated that only an approximate biomass content is needed to calibrate structured HS-AD models based on batch experiments.

As expected, ABC supported the identifiability assessment previously performed by GSA. In particular, θ' showing IE < 1.5 % in GSA No. 7 (i.e. km,pro, km,h2, and fac,su)

[Table 5] were associated to a poor identifiability. However, some parameters showing an IE ≥ 1.5 % in GSA No. 7 (i.e. kd, Xac,Batch7 and fh2,su) were also indicated as nonidentifiable by ABC in contrast to GSA, suggesting that ABC was a more sensitive methodology for parameter identifiability in this study. With all the above, a more restrictive IE threshold (i.e. 0.50 % instead of 0.20 %) could have been used in further GSA rounds, once fixing poorly-identifiable parameters to any value within the prior, as mentioned in Section 3.1.1.

ABC is computationally intensive due to the high level of J(θ') -Jmin(θ') ≤ ɛ rejection, particularly when using highly-demanding ɛ [START_REF] Filippi | On optimality of kernels for approximate Bayesian computation using sequential Monte Carlo[END_REF][START_REF] Toni | Simulation-based model selection for dynamical systems in systems and population biology[END_REF].

For example, the acceptance ratio was 0.129 when using ɛ = 1.80, meaning that only 1 out of 8 simulations was accepted for posterior evaluation, whereas the acceptance ratio was 0.004 when using ɛ = 1.10 -data not shown. Thus, ABC is not recommended to assess identifiability in complex models with a large number of θ (i.e. N ≥ 30). Different upgrades have been proposed to increase the ABC efficiency [START_REF] Beaumont | Adaptive approximate Bayesian computation[END_REF][START_REF] Filippi | On optimality of kernels for approximate Bayesian computation using sequential Monte Carlo[END_REF][START_REF] Toni | Simulation-based model selection for dynamical systems in systems and population biology[END_REF], though the evaluation of these upgrades for calibrating structured AD models was out of the scope of this study. Conversely, the GSA engine relies upon a Bayesian emulator to speed up the analysis of model outputs [START_REF] Kennedy | Bayesian calibration of computer models[END_REF][START_REF] Oakley | Probabilistic sensitivity of complex models: A Bayesian approach[END_REF]. Therefore, GSA can be an adequate tool to reduce the global computation required for parameter optimization, by preliminarily reducing the number of θ' to be further assessed by ABC as shown in this study.

Batch Simulations

Using the θ' mean as θopt [Table 6] led to a good approximation of both the methane production [Figure 3] and the rest of variables at the end of all batch experiments [Figure 4] used either for calibration (i.e. Batch No. 1, 3, 5, 6, 7 and 9) or crossvalidation (i.e. Batch No. 2, 4 and 8) [Table 1]. Therefore, the θ' mean might be a good approximation of θopt, particularly for those θ' where practical identifiability was likely (i.e. Kh,pr,Kh,ch,slow,km,fa,km,c5,km,c4,km,ac,pHLL,ac and fbu,su). Importantly, the HS-AD model was able to capture particularly well the TS and TAN contents, but also VS (data 1] to explain the VFA accumulation in HS-AD simulations, as discussed in next section.

Main Effects of Increasing the TS Content in HS-AD of OFMSW

In this study, calibration/cross-validation served to further test the hypotheses used for model construction (e.g. mass balances), particularly regarding the TS and VS simulation. Noteworthy, the correct simulation of TS is crucial in HS-AD, as TS determines the apparent concentration of soluble compounds subsequently affecting all the HS-AD bio-physical-chemical dynamics (Pastor-Poquet et al., 2019b). For example, TS = 20 % supposes approximately 20 % higher apparent concentrations (i.e. kmol/kg H2O) regarding the corresponding global concentrations (i.e. kmol/kg).

The HS-AD model was also calibrated/validated to assess the effects of increasing TS upon the NH3 inhibition in HS-AD. Specifically, a high solute content -potentially associated to a high TS -exacerbates the solution 'non-ideality', affecting all the HS-AD dynamics (e.g. pH, NH3 concentration, CO2 transfer) (Pastor-Poquet et al., 2019b).

More in detail, 'non-ideality' can lower Snh3, serving as a potential source of NH3 inhibition abatement in HS-AD of OFMSW. In this study, I ranged from 0.22 to 0.93 M [Figure 4c], emphasizing the need for an adequate 'non-ideal' bio-physical-chemical approach [START_REF] Hafner | Modeling of ammonia speciation in anaerobic digesters[END_REF]Solon et al., 2015). Importantly, despite the high I observed, Snh3 reached up to 0.13 mol N/kg in this study [Figure 4d] -equivalent to 0.16 mol N/kg H2O (i.e. 2.3 g N/L). These Snh3 were considerably high, since reactors operated at Snh3 ≥ 1.0 g N/L usually show an inefficient VFA conversion [START_REF] Rajagopal | A critical review on inhibition of anaerobic digestion process by excess ammonia[END_REF].

The inefficient VFA conversion in HS-AD experiments was not well simulated by the reversible NH3 inhibition function, as mentioned in Section 3.2.2. To understand the poor VFA simulation, it is necessary to consider the relatively flat inhibition described by Equation 1 but also the COD fluxes in the HS-AD model. Briefly, Inh3 is 0.50 when Snh3,App = Ki,Snh3, whereas Inh3 is 0.33 when Snh3,App = 2•Ki,Snh3 [Equation 1]. In other words, a non-competitive reversible inhibition by NH3 might be far too 'blunt' to describe the actual effect of NH3 upon the anaerobic biomass [START_REF] Astals | Characterising and modelling free ammonia and ammonium inhibition in anaerobic systems[END_REF]. On the other hand, due to the COD fractioning used in this study, approximately 54 % of the COD from Ssu [Table 6] and 26 % of the COD from Saa flowed through the butyrate pathway, whereas up to 80 % of the COD either from Ssu, Saa and/or long-chain fatty acids (Sfa) flowed through the acetate pathway [START_REF] Batstone | The IWA Anaerobic Digestion Model No. 1 (ADM1)[END_REF]. Meanwhile, a considerable proportion of the initially biodegradable COD (i.e. 75 -85 %) was assigned to Xch + Ssu + Xpr + Saa [Table 3]. et al., 2019b). In this scheme, the relatively simple calibration/validation methodology presented in this study can serve to test the θ practical identifiability and confidence ranges in presence of any set of experimental data and/or HS-AD model structure.

CONCLUSIONS

Nine different batch conditions were used to calibrate and cross-validate the HS-AD model. For parameter optimization, variance-based GSA in tandem with ABC served to evaluate the practical identifiability of 35 θP and 32 θB. Among all these, mostly 8 θP were correctly identified with the available data, as corroborated by the convergence of p(θ|y). The study also showed that HS-AD may be operated at Snh3 ≥ 2.3 g N/L and I ≥ 0.9 M, whereas a reversible non-competitive NH3 inhibition function was not able to explain the VFA accumulation in HS-AD of OFMSW. Therefore, further datasets about the VFA, pH and TAN dynamics are required to enhance the θ practical identifiability, whereas further model configurations should be tested to enhance the simulation of NH3 inhibition in HS-AD.
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 01 θP,0 ≤ θP ≤ 3 • θP,0; uniform p(θP)), the results were not substantially different; i.e. only the km,c5 identifiability was additionally disregarded by GSA No. 1. However, using a log-transformed uniform distribution (i.e. (1 + 0.5) • log10 (θP,0) ≤ log10 (θP) ≤ (1 -0.5) • log10 (θP,0); uniform p(log10 (θP))) relatively altered the results of GSA No. 1; i.e.

  not shown), in all mono-and co-digestion experiments, confirming the suitability of the hypotheses used for the model development[START_REF] Pastor-Poquet | High-solids anaerobic digestion model for homogenized reactors[END_REF]. Some disagreements were also observed between the simulations and the experimental results. Particularly, the implementation of a reversible NH3 inhibition function [Equation 1] in all the VFA and H2 degrading populations [Table 2] was unable to capture the VFA accumulation at the end of HS-AD experiments [Figure 4]. As the most noticeable example, calibration failed to represent the Sbu accumulation in Batch No. 6 [Figure 4e], yielding also a slight miss-adjustment in the methane production [Figure 3c]. More in general, Sac and Sbu at the end of all experiments were poorly represented [Figure4], despite the butyrate (km,c4) and acetate (km,ac) growth rates were adequately identified and the NH3 inhibition upon the acetate uptake is a relatively wellestablished strategy in structured AD models[START_REF] Batstone | The IWA Anaerobic Digestion Model No. 1 (ADM1)[END_REF]. Two main reasons might explain the VFA disagreement between the model simulations and the experimental data available. The first reason relates to the relatively low amount of experimental data hampering calibration, as mentioned in Section 3.1.3. In this line, the NH3 half-inhibition parameters in the VFA and/or H2 uptakes (Ki,nh3) were disregarded as unimportant by GSA to represent the experimental data [Table 5], mainly because only Batch No. 1 contained the VFA, pH and TAN dynamics. The second reason relates to the poor suitability of the reversible non-competitive NH3 inhibition function [Equation

  With all the above, the 'blunt' definition of the NH3 inhibition function, alongside the high COD flowing through the butyrate and acetate pathways, presumably favored the Xbu and Xac growth even at considerably high Snh3 (i.e. up to 2.3 g N/L) during simulations. Summarizing, the high substrate content counterbalanced the effect of the NH3 inhibition, preventing the correct simulation of Sbu and Sac accumulation at the end of the HS-AD experiments. Therefore, the reversible non-competitive NH3 inhibition function [Equation 1] in the VFA and/or H2 uptakes [Table 2] requires further testing to represent the VFA accumulation observed in HS-AD of OFMSW. To this particular aim, using extensive data regarding the VFA, pH and TAN dynamics in HS-AD simulations is strongly recommended. To end up, the HS-AD model (Pastor-Poquet et al., 2018) is a suitable platform to understand the inner mechanisms of HS-AD, whereas further model developments and/or model configurations (i.e. inhibition functions) should be also tested to enhance our understanding about the VFA accumulation within HS-AD of OFMSW. Similarly, additional experimental data is needed to thoroughly understand the role of NH3 inhibition in HS-AD simulations. Specifically, extensive data regarding the main species driving 'non-ideality' (i.e. VFA, pH, TAN) and/or further bio-physical-chemical mechanisms (i.e. precipitation) in HS-AD seem to be crucial, due to the outstanding importance of 'non-ideality' for the biochemical parameter optimization (Pastor-Poquet
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	]. Firstly, a reversible

Table 1

 1 

	]. To use mass balances, the anaerobic
	biodegradability (BD) of each substrate-inoculum mixture in Experiment 2 and
	Experiment 4 was assumed constant, whereas the soluble (S) and particulate (X)
	components were assumed proportional, among the different TS contents. With these
	assumptions, mass balances permitted to extrapolate the molar and chemical oxygen
	demand (COD) concentrations as a function of the initial reactor content mass (MGlobal),
	reactor content specific weight (ρGlobal) and reactor content volume (VGlobal). For
	example, the concentration of acetoclastic methanogens (Xac) in Batch No. 3 was
	approximated from Batch No. 2 as: Xac,Batch3 = Xac,Batch2•VGlobal,Batch2/VGlobal,Batch3.

were used among different TS in Experiments 2 and 4, only the initial conditions of Batch No. 1, 2, 6 and 7 [Table

  Table 1]. Meanwhile, 3 out of 9 experimental conditions were used for cross-validation: Batch No. 2, 4 and 8 [Table1]. Other experimental combinations could be used for calibration/cross-validation as, for TS ≤ 30 %) were used for cross-validation. This strategy also aimed to enhance the number of experimental data used for calibration and to ensure the most diverse operative conditions where θ might be representative.

	example, Batch No. 2, 4, 5, 7 and 8 for calibration and Batch No. 1, 3, 6 and 9 for cross-
	validation. However, the configuration used in this study permitted to include the most
	extreme HS-AD conditions for model calibration (i.e. TS ≤ 10 %, TS ≥ 30 %), while
	intermediate conditions (i.e. 10 ≤

  the model output. Meanwhile, GE comprises IE, the double correlations θi • θj and all the rest of multiple correlations for a single θi. Therefore, GE itself should not be used to assess the identifiability. Instead, the overall correlation of θi with θ can be inferred by the relative difference between IE and GE -though IE and GE are expressed in different units, as interactions can be repeated in the GE of two or more θi[START_REF] Oakley | Probabilistic sensitivity of complex models: A Bayesian approach[END_REF][START_REF] Saltelli | Sensitivity analysis practices: Strategies for model-based inference[END_REF]. Summarizing, both a low IE and a large IE to GE difference mean poor identifiability for a single θi, though a priori no

θi • θj, being i ≠ j). Both IE and θi • θj are expressed as a percentage of the global variance explained. Thus, θi showing a relatively low IE are associated to poor practical identifiability, since these θi influence minimally fixed threshold -neither for IE, nor for GE minus IE -permits to distinguish whether θi should be considered as non-identifiable.

Table 5 ]

 5 , while the remaining 31.7 % variance was explained by correlations among these. For example, km,c4 explained individually around 4.4 % of the global variance (i.e. IE), though showing GE up to 17.9. This meant that the correlation of km,c4 with other θ was high, and any improvement in J(θ) obtained by solely modifying km,c4 could be partially or totally compensated by the modification of a correlated θi. In this line, the km,c4•fbu,bu correlation in GSA No. 1 explained up to 2.8 % of the global variance (data not shown), due to the influence of fbu,su in J(θ) (i.e. IE = 2.0 % and GE = 24.4) [Table

  Table5]. To enhance identifiability, a strategy to reduce the gap between IE and GE for each θi is required[START_REF] Kennedy | GEM-SA: The gaussian emulation machine for sensitivity analysis[END_REF]. However, reducing the IE to GE gap in this study would require to readapt the criterion used for 'potential identifiability'. One strategy might consist on fixing those θi showing, for example, IE ≤ 0.30 % in GSA No. 7 (i.e.

fac,su), and then perform further rounds of GSA (i.e. GSA No. 8) until IE ~ GE for all θi.
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 6 Calibration of potentially-identifiable input parameters (θ'): Prior and posterior distributions

Table 1 .

 1 Batch experiments and initial conditions used for HS-AD model calibration and cross-validation

	Substrate	Exp. No.	Batch No.	ISR (g VS/g VS)	Initial TS (%)	No. Replicates	Design Volume (mL)	Exp. Time (days)	Calibration or Validation
		1		1.00	15.0	15	280	92	C
					10.8	3			V
	OFMSW	2		1.50	13.4 16.4	3 3	160	100	C V
					19.6	3			C
		3		0.50	28.3	2	280	99	C
	OFMSW + Sawdust	4		0.16	10.0 15.0 30.2	3 2 1	280	284	C V C

Table 2 .

 2 Biochemical rates used for the HS-AD model in this study

	Process		Rate (rj, kgCOD m -3 d -1 )
	Hydrolysis of Fast Biodegradable Carbohydrates	kh,ch,fast•Xch,fast
	Hydrolysis of Slow Biodegradable Carbohydrates	kh,ch,slow•Xch,slow
	Hydrolysis of Proteins	kh,pr•Xpr
	Hydrolysis of Lipids	kh,li•Xli
	Sugars Uptake		km,su•Ssu,App/(KS,Xsu+Ssu,App)•Xsu•IpH•Iin
	Aminoacids Uptake	km,aa•Saa,App/(KS,Xaa+Saa,App)•Xaa•IpH•Iin
	LCFA Uptake		km,fa•Sfa/(KS,Xfa+Sfa)•Xfa•IpH•Iin•Ih2
	Valerate Uptake	km,c5•Sva,App/(KS,Xc5+Sva,App)•Xc5•IpH•Iin•Ih2•Inh3
	Butyrate Uptake	km,c4•Sbu,App/(KS,Xc4+Sbu,App)•Xc4•IpH•Iin•Ih2•Inh3
	Propionate Uptake	km,pro•Spro,App/(KS,Xpro+Spro,App)•Xpro•IpH•Iin•Ih2•Inh3
	Acetate Uptake	km,ac•Sac,App/(KS,Xac+Sac,App)•Xac•IpH•Iin•Inh3
	Hydrogen Uptake	km,h2•Sh2,App/(KS,Xh2+Sh2,App)•Xh2•IpH•Iin•Inh3
	Sugar Degraders Decay	kd•Xsu
	Aminoacids Degraders Decay	kd•Xaa
	LCFA Degraders Decay	kd•Xfa
	Valerate Degraders Decay	kd•Xc5
	Butyrate Degraders Decay	kd•Xc4
	Propionate Degraders Decay	kd•Xpro
	Acetate Degraders Decay	kd•Xac
	Hydrogen Degraders Decay	kd•Xh2
	with	Iin = Sin,App/(Ki,Sin + Sin,App)
		Ih2 = Ki,Sh2/(Ki,Sh2 + Sh2,App)
		IpH = KpH^NpH/(KpH^NpH + Sh+^NpH)
		Inh3 = Ki,Snh3/(Ki,Snh3 + Snh3,App)

Table 5 .

 5 Global sensitivity analysis (GSA) of input parameters (θ): Individual (IE) and global (GE) effects upon the objective function, J(θ), variance

		GSA No.1			GSA No.2			GSA No.3			GSA No.4			GSA No.5			GSA No.6			GSA No.7	
	θ	IE (%)	GE	θ	IE (%)	GE	θ	IE (%)	GE	θ	IE (%)	GE	θ	IE (%)	GE	θ	IE (%)	GE	θ	IE (%)	GE
	Kh,ch,fast	0.08	0.63	Kh,pr	1.75	5.23	Kh,pr	2.75	8.62	Kh,pr	2.21	7.33	Kh,pr	1.01	5.42	Kh,pr	2.00	10.44	Kh,pr	1.97	7.72
	Kh,pr	2.01	7.56	Kh,li	0.25	0.69	Kh,li	0.26	2.54	Kh,li	0.11	2.85	Kh,ch,slow	4.28	14.61	Kh,ch,slow	4.07	14.47	Kh,ch,slow	4.43	17.86
	Kh,li	0.29	2.07	Kh,ch,slow	5.87	16.21	Kh,ch,slow	5.83	14.32	Kh,ch,slow	5.22	16.59	km,fa	0.46	4.14	km,fa	1.15	5.66	km,fa	1.11	8.95
	Kh,ch,slow	6.45	17.27	km,aa	0.07	0.43	km,fa	1.21	7.25	km,fa	0.56	4.81	km,c5	0.22	1.63	km,c5	1.59	8.34	km,c5	0.67	5.72
	km,su	0.16	3.82	km,fa	0.81	5.97	km,c5	0.80	3.12	km,c5	0.73	3.31	km,c4	1.38	11.18	km,c4	1.50	13.79	km,c4	2.39	15.94
	km,aa	0.53	2.43	km,c5	0.33	1.49	km,c4	2.23	17.17	km,c4	2.47	19.12	km,pro	1.77	8.66	km,pro	1.23	11.37	km,pro	0.72	9.24
	km,fa	0.91	4.34	km,c4	2.12	12.96	km,pro	0.51	8.59	km,pro	0.75	10.21	km,ac	3.56	12.26	km,ac	5.11	17.49	km,ac	4.13	17.22
	km,c5	0.22	3.64	km,pro	0.44	10.49	km,ac	7.18	17.17	km,ac	4.67	11.62	km,h2	3.72	13.46	km,h2	4.13	15.65	km,h2	1.46	12.35
	km,c4	4.39	17.87	km,ac	3.16	10.71	km,h2	4.07	10.68	km,h2	3.57	11.84	kd	5.16	15.78	kd	3.37	9.47	kd	4.43	13.37
	km,pro	0.62	8.62	km,h2	2.60	8.32	kd	3.67	9.00	kd	3.22	8.23	KS,Xh2	0.13	1.09	pHLL,ac	10.24	24.61	pHLL,ac	11.69	29.21
	km,ac	4.88	16.35	kd	2.86	7.83	KS,Xh2	0.40	1.76	KS,Xh2	0.22	0.91	pHLL,ac	11.04	25.72	fbu,su	3.34	26.74	fbu,su	1.89	24.59
	km,h2	1.60	11.78	KS,Xh2	0.71	2.03	pHLL,ac	11.09	22.10	pHLL,ac	9.69	18.95	Ki,Snh3,Xh2	0.21	3.16	fac,su	0.96	13.49	fac,su	0.22	9.58
	kd	1.65	5.26	pHLL,ac																	

Table 6 .

 6 Calibration of potentially-identifiable input parameters (θ'): Prior and posterior distributions

	Parameter	Units	Initial Value	Initial Evaluation Range Minimum Maximum	Mean	Median	Posterior Parameter Distribution Mode 5% Percentile 95% Percentile	Skewness	Kurtosis
	Kh,pr	d -1	0.050	0.005	0.095	0.048	0.048	0.044	0.040	0.057	0.217	2.83
	Kh,ch,slow	d -1	0.0120	0.0012	0.0228	0.0109	0.0108	0.0102	0.0084	0.0137	0.171	2.74
	km,fa	d -1	10.0	1.0	19.0	7.3	6.8	6.6	4.6	12.0	1.663	6.93
	km,c5	d -1	8.0	0.8	15.2	10.4	10.3	8.6	7.2	13.4	0.084	2.75
	km,c4	d -1	13.0	1.3	24.7	19.6	19.5	20.2	15.8	23.6	0.001	2.52
	km,pro	d -1	10.0	1.0	19.0	12.2	12.2	13.0	7.1	16.7	-0.148	2.66
	km,ac	d -1	16.0	1.6	30.4	24.2	24.5	23.2	18.7	29.4	-0.242	2.32
	km,h2	d -1	20.0	2.0	38.0	26.0	25.5	25.1	17.0	36.1	0.077	2.19
	kd	d -1	0.040	0.004	0.076	0.040	0.040	0.045	0.020	0.059	-0.155	2.83
	pHLLac		5.8	5.0	6.9	5.4	5.4	5.2	5.0	5.9	0.589	2.73
	Xac,Batch7	kg COD m -3	-2.523	-3.784	-1.261	-2.648	-2.713	-2.853	-3.574	-1.543	0.303	2.39
	fbu,su	kg COD kg COD -1	0.50	0.05	0.95	0.54	0.54	0.49	0.38	0.72	0.161	2.67
	fac,su	kg COD kg COD -1	0.29	0.03	0.55	0.28	0.29	0.23	0.12	0.43	-0.180	2.73
	fh2,su	kg COD kg COD -1	0.10	0.01	0.19	0.09	0.09	0.09	0.02	0.17	0.060	2.31
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