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ABSTRACT  15 

High-solids anaerobic digestion (HS-AD) of the organic fraction of municipal solid 16 

waste (OFMSW) is operated at a total solid (TS) content ≥ 10 % to enhance the waste 17 

treatment economy, though it might be associated to free ammonia (NH3) inhibition. 18 

This study aimed to calibrate and cross-validate a HS-AD model for homogenized 19 

reactors in order to assess the effects of high NH3 levels in HS-AD of OFMSW, but also 20 

to evaluate the suitability of the reversible non-competitive inhibition function to 21 

reproduce the effect of NH3 on the main acetogenic and methanogenic populations. The 22 

practical identifiability of structural/biochemical parameters (i.e. 35) and initial 23 

conditions (i.e. 32) was evaluated using batch experiments at different TS and/or 24 
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inoculum-to-substrate ratios. Variance-based global sensitivity analysis and 25 

approximate Bayesian computation were used for parameter optimization. The 26 

experimental data in this study permitted to estimate up to 8 biochemical parameters, 27 

whereas the rest of parameters and biomass contents were poorly identifiable. The study 28 

also showed the relatively high levels of NH3 (i.e. up to 2.3 g N/L) and ionic strength 29 

(i.e. up to 0.9 M) when increasing TS in HS-AD of OFMSW. However, the NH3 non-30 

competitive function was unable to capture the acetogenic/methanogenic inhibition. 31 

Therefore, the calibration emphasized the need for target-oriented experimental data to 32 

enhance the practical identifiability and the predictive capabilities of structured HS-AD 33 

models, but also the need for further testing the NH3 inhibition function used in these 34 

simulations. 35 

 36 

Keywords:  High-solids Anaerobic Digestion Model; Ammonia Inhibition; Ionic 37 

Strength; Global Sensitivity Analysis; Approximate Bayesian Computation. 38 

39 
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1 INTRODUCTION 40 

High-solids anaerobic digestion (HS-AD) of the organic fraction of municipal solid 41 

waste (OFMSW) is operated at total solids (TS) ≥ 10 % to minimize the reactor volume, 42 

the water addition and the digestate dewatering (Pastor-Poquet et al., 2019a). HS-AD 43 

can also lead up to 80 % TS removal, easing the digestate post-treatment. However, HS-44 

AD of OFMSW is usually associated to free ammonia (NH3) inhibition, resulting in 45 

volatile fatty acids (VFA) accumulation. NH3 affects both acetoclastic and 46 

hydrogenotrophic methanogens but also the rest of VFA degraders (acetogens) in 47 

anaerobic digestion (AD), being the inhibition related to the operative parameters (i.e. 48 

temperature and pH) and the biomass acclimation (Rajagopal et al., 2013).  49 

 50 

Adding lignocellulosic materials to OFMSW permits to minimize the buildup of total 51 

ammonia nitrogen (TAN), while their low hydrolysis rates permit to increase the TS 52 

content and to counteract the VFA accumulation in HS-AD (Capson-Tojo et al., 2017; 53 

Pastor-Poquet et al., 2019a). However, including lignocellulosic waste in OFMSW 54 

depends on the season or the local waste management strategy. Whether or not a 55 

lignocellulosic co-substrate is used, understanding the effects of NH3 inhibition is 56 

crucial to optimize HS-AD of OFMSW. 57 

 58 

A HS-AD model was recently developed for homogenized reactors to evaluate the NH3 59 

inhibition in HS-AD of OFMSW (Pastor-Poquet et al., 2018, 2019b). This structured 60 

model, based on the Anaerobic Digestion Model No. 1 (ADM1) (Batstone et al., 2002), 61 

gathers the main bio-physical-chemical mechanisms in HS-AD. In the HS-AD model, 62 

apparent (i.e. kmol/kg H2O) instead of global (i.e. kmol/kg) concentrations determine 63 
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the effect of TS upon solutes, as a consequence of the low water content within HS-AD. 64 

Meanwhile, an extended set of mass balances allows the simulation of the organic mass 65 

removal from the biogas production. A liquid solution ‘non-ideality’ subroutine was 66 

subsequently included in the model as a function of the ionic strength (I), since ‘non-67 

ideality’ determines the pH, CO2 liquid-gas transfer and NH3 inhibition in HS-AD 68 

(Pastor-Poquet et al., 2019b). As a preliminary assumption, the HS-AD model included 69 

a reversible non-competitive inhibition function by NH3 (Inh3) [Equation 1] in the 70 

biochemical rates of acetogenic and methanogenic populations, a mathematical resource 71 

commonly used in structured AD models (Astals et al., 2018). 72 

 73 

 ���� = ��,	���
��,	��� + ����,�



 
(1) 

 74 

Simulating the NH3 inhibition at high TS with the HS-AD model requires an adequate 75 

set of input parameters, θ, to be estimated by calibration (Pastor-Poquet et al., 2018, 76 

2019b). θ includes both the structural/biochemical parameters, θP, and the initial and 77 

influent conditions, θB: θ = (θP, θB). Nonetheless, calibration of structured AD models is 78 

not trivial due to the equation complexity and large number of θ involved (Dochain & 79 

Vanrolleghem, 2001; Donoso-Bravo et al., 2011). 80 

 81 

To calibrate a mathematical model, θ must be structurally and practically identifiable, 82 

instead of correlated. The θ structural identifiability is theoretically assessed, assuming 83 

noise-free experimental data and error-free model structure. Noteworthy, nearly all θ in 84 

ADM1 are (locally) structurally identifiable (Nimmegeers et al., 2017). This is a 85 

prerequisite to assess the θ practical identifiability and calibrate the HS-AD model using 86 
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‘imperfect’ experimental data. Unfortunately, the reduced number of experimental data 87 

often available and/or the presence of experimental errors yield non-identifiable 88 

parameters; i.e. parameters that cannot be uniquely estimated. These are known as 89 

practical identifiability issues. 90 

 91 

Calibration usually consists of minimizing an objective function, J(θ), that condenses 92 

the ‘goodness of fitting’ between the experimental data, y, and the model outputs, ysim(θ), 93 

being these a function of N input parameters, θ (Dochain & Vanrolleghem, 2001; 94 

Flotats et al., 2010). Several J(θ) can be used to calibrate AD models as the weighted 95 

sum of squares or any user-defined alternative (Donoso-Bravo et al., 2011; Ratto et al., 96 

2001). Assuming the existence of a global minimum (optimum) for an objective 97 

function, J(θopt), this value is reached using the optimal set of input parameters, θopt. 98 

 99 

Practical identifiability issues commonly translate into J(θ) showing many local 100 

optimums and/or flat valleys, where the precise value of θ cannot be easily determined 101 

(Guisasola et al., 2006; Rodriguez-Fernandez et al., 2006). Thus, only practical 102 

identification of a reduced θ subset (i.e. N' < N) is often possible for ADM1-based 103 

models (Nimmegeers et al., 2017). This is called model over-parameterization, where 104 

the modification of two individual θ, θi (with i = 1, …, N), can lead to a similar model 105 

output. Particularly, when using batch experiments – highly dependent on the initial 106 

conditions – to calibrate AD models, different sets of experimental conditions, including 107 

different inoculum-to-substrate ratios (ISR), are required to reduce the θ correlation 108 

(Donoso-Bravo et al., 2011; Flotats et al., 2010). 109 

 110 
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Two main approaches can be used to calibrate complex models: the Bayesian and the 111 

frequentist. The frequentist approach searches for optimal θ values, θopt, whereas the 112 

Bayesian approach considers θopt as probabilistic distributions conditioned on the 113 

experimental data, p(θopt|y), instead of single values (Ratto et al., 2001; Rodriguez-114 

Fernandez et al., 2006; Saltelli et al., 2006). In both approaches, when facing over-115 

parameterization, it must be assessed which θi significantly influence ysim(θ) (sensitivity 116 

analysis) and need to be adequately calibrated. 117 

 118 

ADM1-based models contain several θP (i.e. ≥ 35) and θB (i.e. ≥ 24). θP might be 119 

obtained from literature, though a different model structure – from where these θP were 120 

obtained – potentially influences the optimal θP values/distributions (Pastor-Poquet et 121 

al., 2019b). On the other hand, θB might not be easily determined due to the lack of 122 

experimental data or the difficulties to translate the data into adequate model units 123 

(Donoso-Bravo et al., 2011; Flotats et al., 2003). 124 

 125 

Parameter inference based on the Bayes’ theorem [Equation 2] is particularly suited to 126 

calibrate structured AD models since it can deal with complex J(θ) showing several 127 

optima or flat geometries, where frequentist inference might not be well suited  128 

(Kennedy & O'Hagan, 2001; Toni & Stumpf, 2010). In Bayesian inference, the prior 129 

parameter distribution, p(θ), is sampled to obtain the posterior parameter distribution, 130 

p(θ|y), conditioned on the experimental data, y, and the likelihood function, p(y|θ), 131 

while p(y) can be considered as a normalizing constant. Importantly, any user-defined 132 

J(θ) arising from p(y|θ) can be used in ‘informal’ statistical approaches [Equation 3], as 133 
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variance-based global sensitivity analysis (GSA) and approximate Bayesian 134 

computation (ABC) (Donoso-Bravo et al., 2011; Nott et al., 2012). 135 

 ���|�� = ���|������
����  (2) 

 ���� = �����|��� (3) 

 136 

Variance-based GSA provides an appropriate assessment about the potentiality of θi to 137 

influence the model outputs and the correlations existing with the rest of θ, θj (with j = 138 

1, …, N and i ≠ j) (Kennedy & Petropoulos, 2017; Oakley & O'Hagan, 2004). Similarly, 139 

ABC permits also to highlight practical identifiability issues yielding simultaneously the 140 

most likely p(θ|y) (Beaumont et al., 2009; Filippi et al., 2013; Toni & Stumpf, 2010). 141 

As main disadvantage, Bayesian inference is often computationally intensive. 142 

 143 

The mathematical performance of the HS-AD model was previously verified, though 144 

the model was only validated for a single HS-AD batch experiment due to the elevated 145 

number of θ requiring calibration (i.e. > 30) (Pastor-Poquet et al., 2018, 2019b). Instead, 146 

this study aimed to fully calibrate and cross-validate the HS-AD model to simulate the 147 

effect of high NH3 levels in HS-AD of OFMSW, while testing the non-competitive NH3 148 

inhibition function [Equation 1] on the main acetogenic/methanogenic populations. In 149 

particular, this study assessed the practical identifiability of 35 θP and 32 θB, by using 150 

nine HS-AD batch digesters at different TS and/or ISR as a source of experimental data. 151 

Identifiability was assessed by variance-based GSA and ABC permitting to approximate 152 

also p(θ|y). Importantly, the proposed methodology can be easily readapted to account 153 

for further HS-AD datasets (e.g. batch, continuous) and/or model configurations. 154 

 155 
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 156 

2 METHODOLOGY 157 

2.1 Experimental Data 158 

To calibrate and cross-validate the HS-AD model, while further evaluating the effects of 159 

increasing the initial TS content on HS-AD simulations, four different batch 160 

experiments were used at thermophilic (55ºC) conditions from 10 to 30 % TS [Table 1]. 161 

The laboratory-scale reactor design volume (VReactor) was either 160 or 280 mL for the 162 

different experiments. In all experiments, centrifuged inoculum was used to increase 163 

simultaneously the initial TS and ISR. These small-scale digesters were manually 164 

shaken when the biogas production was measured. The batch experiments are described 165 

next, whereas a thorough description of these experiments and the bio-physical-166 

chemical analyses performed was reported elsewhere (Pastor-Poquet et al., 2019a). 167 

 168 

Experiment 1 consisted of a sacrifice test for mono-digestion of OFMSW using ISR = 169 

1.00 g VS/g VS. In this experiment, the main physical-chemical dynamics (i.e. biogas 170 

production and composition, TS, VS, VFA, TAN, and mono-valent ions) were 171 

evaluated at different operational times. In Experiments 2 to 4, the biogas production 172 

and composition were measured at different experimental times, whereas the rest of 173 

physical-chemical analyses (i.e. TS, VS, VFA, TAN and ions) were only performed 174 

before starting and after ending each experiment. Non-sacrifice experiments included 175 

mono-digestion of OFMSW using ISR = 1.50 g VS/g VS (Experiment 2) and ISR = 176 

0.50 g VS/g VS (Experiment 3), but also co-digestion of OFMSW and beech sawdust 177 

using ISR = 0.16 g VS/g VS (Experiment 4).  178 

 179 
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Within Experiments 2 and 4, different initial TS contents – dilutions – were evaluated, 180 

though all the initial batch conditions contained exactly the same amount of substrate 181 

and centrifuged inoculum. Briefly: 1) the inoculum was centrifuged; 2) the same 182 

amount of substrate and inoculum was added to each bottle; 3) distilled water was 183 

added to reach the different TS contents; and 4) each bottle was manually homogenized. 184 

This strategy was aimed to use the mass balances among the different initial TS 185 

conditions, as explained in Section 2.3.1, since soluble materials were partially removed 186 

when centrifuging the inoculum. In total, nine different HS-AD batch conditions were 187 

assessed at different TS, ISR and/or co-digestion ratios, subsequently named as “Batch 188 

No. 1 to 9” [Table 1]. 189 

 190 

2.2 HS-AD Model 191 

The HS-AD model included the main biochemical rates of Pastor-Poquet et al. (2018), 192 

though some minor modifications were also implemented [Table 2]. Firstly, a reversible 193 

non-competitive NH3 inhibition function [Equation 1] was included in the valeric (Sva), 194 

butyric (Sbu), propionic (Spro), and hydrogen (Sh2) uptake rates, similarly to the NH3 195 

(Snh3) inhibition on the acetate (Sac) uptake, aiming to simulate the VFA accumulation 196 

observed in HS-AD experiments likely consequence of the NH3 buildup (Pastor-Poquet 197 

et al., 2019a). Secondly, carbohydrates (Xch) were split into readily-biodegradable 198 

(Xch,fast) and slowly-biodegradable (Xch,slow) to simulate the relatively lower hydrolysis 199 

rates of sawdust and the longer methane production observed in co-digestion 200 

experiments (i.e. ≥ 200 d) [Table 1]. Importantly, the hydrolysis of both Xch,fast and 201 

Xch,slow pooled into soluble sugars (Ssu). 202 

 203 
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2.3 Model Calibration and Validation 204 

A common set of biochemical parameters was used for all HS-AD simulations at 205 

different ISR and/or TS. All biochemical parameters for thermophilic (55ºC) AD were 206 

extracted from Batstone et al. (2002), though some of those needed to be calibrated (i.e. 207 

θP) to improve the model fitting. The initial conditions of the batch experiments were 208 

predefined according to the experimental data available, as described by Pastor-Poquet 209 

et al. (2018) and also mentioned next. Moreover, different ranges of initial biomass 210 

concentrations were used (i.e. θB) to assess the potential interrelationship of θB with θP 211 

in batch experiments. 212 

 213 

2.3.1 Initial Conditions 214 

The initial conditions used for each batch simulation are shown in Table 3. Since the 215 

same amount of substrate and inoculum was used along different initial TS contents in 216 

Experiment 2, but also in Experiment 4, mass balances were used to reduce the number 217 

of ‘unknown’ initial conditions [Table 1]. To use mass balances, the anaerobic 218 

biodegradability (BD) of each substrate-inoculum mixture in Experiment 2 and 219 

Experiment 4 was assumed constant, whereas the soluble (S) and particulate (X) 220 

components were assumed proportional, among the different TS contents. With these 221 

assumptions, mass balances permitted to extrapolate the molar and chemical oxygen 222 

demand (COD) concentrations as a function of the initial reactor content mass (MGlobal), 223 

reactor content specific weight (ρGlobal) and reactor content volume (VGlobal). For 224 

example, the concentration of acetoclastic methanogens (Xac) in Batch No. 3 was 225 

approximated from Batch No. 2 as: Xac,Batch3 = Xac,Batch2·VGlobal,Batch2/VGlobal,Batch3. 226 

 227 
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The nitrogen content of soluble (Si) and particulate (Xi) inert in each substrate-inoculum 228 

mixture (Ni,subs) determined the initial protein (Xpr) + amino-acid (Saa) content, 229 

according to the nitrogen balance, as shown elsewhere (Pastor-Poquet et al., 2018). 230 

Thus, Ni,subs was different for each batch experiment [Table 3]. On the other hand, 231 

despite the initial conditions of batch experiments were maintained for all the 232 

simulations, different biomass concentrations (i.e. degraders of sugars, Xsu; amino acids, 233 

Xaa; long-chain fatty acids, Xfa; valerate, Xc5; butyrate, Xbu; propionate, Xpro; acetate, 234 

Xac; and hydrogen, Xh2) were also assessed, as mentioned before. Since mass balances 235 

were used among different TS in Experiments 2 and 4, only the initial conditions of 236 

Batch No. 1, 2, 6 and 7 [Table 1] were evaluated. 237 

 238 

2.3.2 Biochemical Parameters, Biomass Concentrations and Calibration Ranges 239 

The modified biochemical parameters (θP) and modified biomass concentrations (θB) in 240 

this study, including their initial values and potential variability ranges, are shown in 241 

Table 4. In total, 35 θP and 32 θB were evaluated. θP related to the hydrolysis, sugar 242 

fractioning (fsu), maximum growth rate (km) and half-saturation constant (KS), but also 243 

the pH, NH3 and H2 inhibition constants (Ki), since all these θP are simultaneously 244 

associated to the substrate under study, are correlated among themselves, and strongly 245 

regulate the biogas production/composition from solid substrates (Batstone et al., 2002; 246 

Garcia-Gen et al., 2015). On the other hand, θB included all the initial biomass 247 

concentrations in the HS-AD simulations (i.e. Xsu, Xaa, Xfa, Xc5, Xbu, Xpro, Xac and Xh2), 248 

as these concentrations might not only strongly influence the biogas production during 249 

the initial days of batch experiments, but might also be potentially interrelated among 250 

themselves and/or to the previous θP. 251 
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 252 

The sugars uptake yields butyrate (fbu,su), propionate (fpro,su), acetate (fac,su) and hydrogen 253 

(fh2,su) as COD fractions in ADM1. Therefore, a maximum of three fractions can be 254 

selected simultaneously to fulfill the COD balance: fbu,su + fpro,su + fac,su + fh2,su = 1. In 255 

this study, fbu,su, fac,su and fh2,su were selected, while fpro,su was recalculated: fpro,su = 1 - 256 

fbu,su - fac,su - fh2,su. Importantly, further structural parameters and initial conditions need 257 

to be induced in the HS-AD model as, for example, the amino-acid (AA, Saa) 258 

fractioning and the biomass yield coefficients (Yb), though these were not assessed here 259 

aiming to reduce the problem under study. In either case, the proposed methodology for 260 

calibration/validation can easily include any further θ. 261 

 262 

Variability ranges for structural parameters are suggested in ADM1 (Batstone et al., 263 

2002). However, considerably wider ranges were assessed in this study to emphasize 264 

the absence of prior knowledge about the optimal values. For simplicity, all θP were 265 

allowed to vary by 90 % from their initial values, θP,0: (1 - 0.9) · θP,0 ≤ θP ≤ (1 + 266 

0.9) · θP,0; uniform p(θP) [Table 4]. As the only exception, the lower pH threshold for 267 

acetoclastic methanogens (pHLL,ac) was bounded between a pH value where 268 

methanogenesis potentially collapses (i.e. ≤ 5.0) and the upper pH threshold for 269 

acetoclastic methanogens (pHUL,ac, i.e. 7.0), to maintain the suitability of the Hill 270 

function to simulate the pH inhibition [Table 2]. 271 

 272 

Different methods are available to approximate the initial conditions (i.e. biomass 273 

concentrations) in batch simulations as, for example, simulating a continuous reactor 274 

fed with exactly the same substrate until reaching steady state, and then use these steady 275 
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conditions to initialize the batch simulations (Dochain & Vanrolleghem, 2001; Donoso-276 

Bravo et al., 2011). However, since the inoculum was centrifuged right before setting 277 

the batch experiments in this study, absence of prior knowledge about the initial 278 

biomass concentrations was preferred. To explore homogeneously different orders of 279 

magnitude in the biomass concentrations (often 0 < θB < 1 kmol COD/m3), the 280 

logarithm-transformed θB were allowed to vary by 50 % from their initial values, θB,0: (1 281 

+ 0.5) · log10 (θB,0) ≤ log10 (θB) ≤ (1 - 0.5) · log10 (θB,0); uniform p(log10 (θB)) [Table 4]. 282 

 283 

2.3.3 Objective Function 284 

The weighted sum of squares between all the available experimental and the 285 

corresponding simulated values was used as objective function, J(θ) [Equation 4]. J(θ) 286 

was adapted from Flotats et al. (2003) to assess the model ‘goodness of fitting’, being: θ 287 

the structural parameters and/or initial conditions implemented in the HS-AD model; R 288 

the number of batch simulations; D the number of experimental datasets; texp the 289 

experimental time of each batch experiment; ��,�,� the experimental measurements; 290 

��,�,����(θ) the simulated values; and ��,� the weighting coefficients – calculated as a 291 

function of the average experimental data, ���,� [Equation 5]. With this approach, J(θ) 292 

was lower-bounded by the – preliminarily unknown – global minimum: J(θ) ≥ J(θopt). 293 

 

���� =  � � � ��,� ���,�,� − ��,�,������� !
�"#$

�%�&

'

�%(
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∑ ,��,�,� − ���,�-!�"#$

�%�&
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 294 

Noteworthy, only 6 out of 9 experimental conditions were used to calculate J(θ) in this 295 

study: Batch No. 1, 3, 5, 6, 7 and 9 [Table 1]. Meanwhile, 3 out of 9 experimental 296 
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conditions were used for cross-validation: Batch No. 2, 4 and 8 [Table 1]. Other 297 

experimental combinations could be used for calibration/cross-validation as, for 298 

example, Batch No. 2, 4, 5, 7 and 8 for calibration and Batch No. 1, 3, 6 and 9 for cross-299 

validation. However, the configuration used in this study permitted to include the most 300 

extreme HS-AD conditions for model calibration (i.e. TS ≤ 10 %, TS ≥ 30 %), while 301 

intermediate conditions (i.e. 10 ≤ TS ≤ 30 %) were used for cross-validation. This 302 

strategy also aimed to enhance the number of experimental data used for calibration and 303 

to ensure the most diverse operative conditions where θ might be representative. 304 

Additionally, the proposed configuration included the most informative dataset (i.e. 305 

Batch No. 1) to increase the complexity of J(θ) and remove identifiability issues related 306 

to the lack of bio-physical-chemical dynamics in the overall dataset, as further discussed 307 

in Section 3.1.3. 308 

 309 

2.3.4 Global Sensitivity Analysis 310 

GSA was aimed to highlight the most influential θ to be calibrated with the available set 311 

of experimental data. For GSA, multiple θ combinations were used to evaluate J(θ) 312 

[Equation 4]. Latin-hypercube sampling (LHS) served to explore the global θ space 313 

(Solon et al., 2015). Subsequently, J(θ) arrays and their corresponding θ were assessed 314 

by the GSA engine of Kennedy and O'Hagan (2001) and Oakley and O'Hagan (2004). 315 

The GSA engine calculates the individual (IE) and global (GE) effects of θi upon the 316 

global model output (e.g. p(y|θ), J(θ)) variance. On the other hand, the GSA engine 317 

provides also all the double correlations between θi and θj (i.e. θi ·  θj, being i ≠ j). Both 318 

IE and θi ·  θj are expressed as a percentage of the global variance explained. Thus, θi 319 

showing a relatively low IE are associated to poor practical identifiability, since these θi 320 
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influence minimally the model output. Meanwhile, GE comprises IE, the double 321 

correlations θi ·  θj and all the rest of multiple correlations for a single θi. Therefore, GE 322 

itself should not be used to assess the identifiability. Instead, the overall correlation of θi 323 

with θ can be inferred by the relative difference between IE and GE – though IE and GE 324 

are expressed in different units, as interactions can be repeated in the GE of two or more 325 

θi (Oakley & O'Hagan, 2004; Saltelli et al., 2006). Summarizing, both a low IE and a 326 

large IE to GE difference mean poor identifiability for a single θi, though a priori no 327 

fixed threshold – neither for IE, nor for GE minus IE – permits to distinguish whether θi 328 

should be considered as non-identifiable. 329 

 330 

A maximum θ subset of N' = 30 and/or 400 simulations of J(θ) can be evaluated 331 

simultaneously with the GSA engine (Kennedy & Petropoulos, 2017). Therefore, to 332 

assess θ interactions when N > 30, a combination strategy was followed. Firstly, 30 θi 333 

were randomly selected and evaluated by GSA (i.e. GSA No. 1). From these θ, only 334 

those showing the smallest IE (e.g. < 1 %) were disregarded as non-identifiable, 335 

removed from the initial θ subset, and not used for further GSA. Importantly, these non-336 

identifiable θi were fixed at their initial values [Table 4] for all subsequent model 337 

simulations, since non-identifiability implies that these θ can be fixed at any value 338 

within p(θ) (Dochain & Vanrolleghem, 2001; Guisasola et al., 2006). Then, θP and/or θB 339 

non-previously-assessed by GSA were combined with the non-removed θ subset, and a 340 

new GSA was performed (i.e. GSA No. 2). The GSA methodology was repeated until 341 

the last remaining θ subset was considered as ‘potentially identifiable’, θ'. 342 

 343 
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In total, seven GSA with different θ combinations were progressively performed [Table 344 

5]. In this study, the only criterion for non-identifiability was assumed as IE ≤ 0.20 %, 345 

which also coincided with a relatively low GE (i.e. < 4.5), though this conservative 346 

criterion could be modified as mentioned in Section 3.1.1. To enhance the GSA 347 

representativeness in presence of a high number of θ (i.e. 20 ≤ N' ≤ 30) and/or wide 348 

variability ranges (i.e. ± 50 %), each GSA was conducted in triplicate and the results 349 

averaged. Finally, all J(θ) arrays used for GSA were searched for the minimum 350 

observed value, Jmin(θ) (i.e. ≥ J(θopt)), to be subsequently used in ABC. 351 

 352 

2.3.5 Approximate Bayesian Computation 353 

The θ' posterior distribution, p(θ'|y), was assessed by ABC (Toni & Stumpf, 2010). In 354 

short, multiple simulations were carried at different θ' combinations sampled by LHS, 355 

whereas relatively high J(θ') values were discarded by a progressively stringent 356 

criterion based in a tolerance coefficient, ɛ (i.e. > 1.0). In other words, only J(θ') - 357 

Jmin(θ') ≤ ɛ were accepted for posterior evaluation: p(θ'|J(θ') - Jmin(θ') ≤ ɛ). With this 358 

approach, θ' identifiability was further assessed by the convergence in the confidence 359 

range. 360 

 361 

In this study, ɛ was successively reduced from 2.50 to 1.05 (i.e. 2.50, 1.80, 1.30, 1.10 362 

and 1.05). Within each explored J(θ') - Jmin(θ') ≤ ɛ range, 400 simulations were used. θ' 363 

were allowed to vary within the same range used for GSA [Table 4]. Meanwhile, the 5 364 

to 95 % interquartile range of each θ' was used as confidence range, but also as a 365 

criterion for identifiability/convergence. The posterior mean, median, mode, Kurtosis, 366 
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Skewness and correlation matrix were also evaluated, as described in Martin and Ayesa 367 

(2010). 368 

 369 

2.3.6 Cross-Validation 370 

Cross-validation assesses the model ‘goodness of fitting’ in experiments not used for 371 

calibration (Bennett et al., 2013). In this study, the θ' posterior mean was considered as 372 

θopt. Thus, θopt were used to simulate all batch experiments, including the three 373 

experimental conditions selected for cross-validation: Batch No. 2, 4 and 8 [Table 1]. 374 

 375 

 376 

3 RESULTS AND DISCUSSION 377 

3.1 GSA – Selecting the Most Influencing Input Parameters for Calibration 378 

3.1.1 Preliminary Identifiability Assessment  379 

GSA results are summarized in Table 5. GSA was started with 30 θP and progressively 380 

led to only 14 θ': 13 θP (i.e. Kh,pr, Kh,ch,slow, km,fa, km,c5, km,c4, km,pro, km,ac, km,h2, kd, pHLL,ac, 381 

fbu,su, fac,su, fh2,su) and 1 θB (i.e. Xac,Batch7). In this study, only the θi showing IE ≤ 0.20 % 382 

were fixed at their initial values [Table 4] to enhance the capabilities of GSA and ABC 383 

for calibrating structured AD models, as mentioned in Section 2.3.4. The overall J(θ) 384 

variance explained by the GSA engine was around 70 % in all cases, confirming the 385 

validity of this methodology to assess the most influential θ in the HS-AD model 386 

(Oakley & O'Hagan, 2004). 387 

 388 

IE provides a relative measure of the θi practical identifiability, while a high θi 389 

correlation – high difference between IE and GE – suggests that θi cannot be 390 
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independently calibrated with the available set of experimental data (Saltelli et al., 391 

2006). As an example, GSA No. 1 showed that 40.7 % out of 72.4 % of the global J(θ) 392 

variance was explained by adding up the IE of 30 θP [Table 5], while the remaining 393 

31.7 % variance was explained by correlations among these. For example, km,c4 394 

explained individually around 4.4 % of the global variance (i.e. IE), though showing GE 395 

up to 17.9. This meant that the correlation of km,c4 with other θ was high, and any 396 

improvement in J(θ) obtained by solely modifying km,c4 could be partially or totally 397 

compensated by the modification of a correlated θi. In this line, the km,c4·fbu,bu 398 

correlation in GSA No. 1 explained up to 2.8 % of the global variance (data not shown), 399 

due to the influence of fbu,su in J(θ) (i.e. IE = 2.0 % and GE = 24.4) [Table 5].  400 

 401 

In this study, θi were disregarded by a single and low-demanding criterion (i.e. IE ≤ 402 

0.20 %) [Table 5], since any chosen criterion for ‘potential identifiability’ would 403 

influence the GSA results when N ≥ 30. Meanwhile, GSA also depends on N' (i.e. ≤ 30) 404 

and/or the particular combination of θP and θB used. Thus, using a more demanding 405 

identifiability criterion (e.g. IE ≤ 0.50 % instead of 0.20 %) might have led to discard θi 406 

during preliminary GSA runs, which would be subsequently characterized as 407 

‘potentially identifiable’. For example, GSA No. 1 showed an IE = 0.22 % for km,c5, 408 

whereas GSA No. 7 eventually showed an IE = 0.67 % [Table 5]. To enhance 409 

identifiability, a strategy to reduce the gap between IE and GE for each θi is required 410 

(Kennedy & Petropoulos, 2017). However, reducing the IE to GE gap in this study 411 

would require to readapt the criterion used for ‘potential identifiability’. One strategy 412 

might consist on fixing those θi showing, for example, IE ≤ 0.30 % in GSA No. 7 (i.e. 413 

fac,su), and then perform further rounds of GSA (i.e. GSA No. 8) until IE ~ GE for all θi. 414 
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 415 

With all the above, a second assessment for identifiability can be useful when using 416 

variance-based GSA for structured AD models. ABC is a well-suited tool in this regard, 417 

yielding also p(θ|y), in contrast to GSA. Importantly, both methodologies should yield 418 

equivalent results regarding the θi identifiability, though ABC is much computationally 419 

intensive than GSA, as explained in Section 3.2.1. 420 

 421 

3.1.2. Importance of the p(θ) for Model Calibration 422 

It must be noted that any p(θ) could be used to calibrate AD models, provided that θ do 423 

not contradict biochemical laws (e.g. θP ≥ 0 and θB ≥ 0) or disrupt mathematical 424 

resources (e.g. pHUL,ac > pHLL,ac) and the overall p(θ) range is as densely and 425 

homogeneously sampled as possible. On the other hand, the p(θ) distribution used (e.g. 426 

uniform, log-transformed uniform, normal) can be also crucial to determine p(θ|y) and 427 

the overall θ estimation. 428 

 429 

In this study, using triplicates permitted to enhance the GSA representativeness (overall 430 

sampling) in presence of large N and p(θ) ranges. Meanwhile, a uniform distribution 431 

with mostly a 90 % modification was predefined for θP, whereas a log-transformed 432 

uniform distribution with a 50 % modification was allowed for θB [Table 4], as 433 

mentioned in Section 2.3.2. These specific p(θ) ranges were considered sufficiently 434 

wide for the objectives of this study, and were based mainly on experience and visual 435 

analysis of the overall model results. Particularly, the order of magnitude of many θP are 436 

relatively well characterized in literature according to their corresponding bio-physical-437 

chemical meaning. Nonetheless, the order of magnitude of θB is highly unknown, 438 



 20

particularly after the inoculum centrifugation used in this study. Thus, using a uniform 439 

p(θ) permitted to emphasize the precision over punctual θP values within the p(θP) range, 440 

whereas the precision over the ‘unknown’ order of magnitude in the θB range was 441 

emphasized by using a log-transformed uniform distribution p(log10 (θB)). 442 

 443 

With all the above, using a different p(θ) range or distribution might alter the results of 444 

variance-based GSA and the overall calibration of structured AD models. For example, 445 

using considerably narrower p(θP) ranges in GSA No. 1 (i.e. (1 - 0.3) · θP,0 ≤ θP ≤ (1 + 446 

0.3) · θP,0; uniform p(θP)) resulted in some θP – which were highlighted as ‘potentially 447 

identifiable’ in this study – being disregarded as non-identifiable (e.g. Kh,pr and km,c4), 448 

likely because part of their ‘optimal’ or ‘sub-optimal’ θP values were left outside the 449 

p(θP) range [Supplementary Information]. On the other hand, using wider ranges (i.e. 450 

0.01 · θP,0 ≤ θP ≤ 3 · θP,0; uniform p(θP)), the results were not substantially different; i.e. 451 

only the km,c5 identifiability was additionally disregarded by GSA No. 1. However, 452 

using a log-transformed uniform distribution (i.e. (1 + 0.5) · log10 (θP,0) ≤ log10 (θP) ≤ (1 453 

- 0.5) · log10 (θP,0); uniform p(log10 (θP))) relatively altered the results of GSA No. 1; i.e. 454 

the order of magnitude of km,c5 and km,c4 was disregarded, while the order of magnitude 455 

of Kh,ch,slow and KS,Xh2 has was highlighted as highly important for the HS-AD model 456 

calibration. Therefore, for the correct calibration of structured AD models, both the p(θ) 457 

range and distribution should be set accordingly to all the prior information available for 458 

these θ, minimizing the p(θ) range explored alongside the number of simulations 459 

required for the objectives of the study. 460 

 461 

3.1.3 Importance of the Available Data for Model Calibration 462 
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Provided the θ are structurally identifiable, practical identifiability relates to the quantity 463 

as well as the quality (i.e. experimental errors and/or the sampling frequency) of the 464 

experimental data available (Donoso-Bravo et al., 2011; Guisasola et al., 2006; 465 

Nimmegeers et al., 2017; Rodriguez-Fernandez et al., 2006). Particularly, a reduced 466 

number of experimental data associated to some model dynamics usually prevents 467 

practical identifiability of the θ involved in these specific dynamics. For example, Yb 468 

might not be identifiable in AD models provided that the biomass concentration 469 

dynamics were measured (Bernard et al., 2001). 470 

 471 

In this study, the hydrolysis constant of readily-biodegradable carbohydrates (Kh,ch,fast) 472 

and lipids (Kh,li), but also the maximum growth rate of sugar (km,su) and amino acid 473 

(km,aa) degraders, showed a reduced influence in J(θ) by GSA. These results suggest that 474 

either insufficient experimental data was available to calibrate Kh,ch,fast, Kh,li, km,su and 475 

km,aa, or that the biogas production in the HS-AD batch experiments [Table 1] was 476 

mostly influenced by the VFA uptake – as the main limiting step. In the same line, due 477 

to the Monod properties, km and KS might be correlated when using batch experiments 478 

for calibration (Dochain & Vanrolleghem, 2001; Flotats et al., 2010; Guisasola et al., 479 

2006). Nevertheless, GSA showed negligible influence for all KS in this study, likely 480 

due to using different batch experiments (i.e. ISR and TS) and/or a reduced number of 481 

experimental data to obtain J(θ) [Equation 4].  482 

 483 

The liquid-gas transfer coefficient (kLa) was also disregarded during the initial steps of 484 

GSA (i.e. IE = 0.07 % and GE = 0.39) [Table 5]. The kLa coefficient is related to the 485 

homogenization and mixing strategy, as well as other operational parameters in AD (e.g. 486 



 22

temperature and pH) (Batstone et al., 2002). In this study, all the HS-AD digesters were 487 

manually shaken. However, increasing the TS content can hamper the liquid-gas 488 

transfer mechanisms in HS-AD (Pastor-Poquet et al., 2019a). Therefore, a calibration 489 

strategy should be specifically envisaged to correctly calibrate kLa (e.g. using different 490 

stirring velocities/devices for mixing), since the presence of several θ in HS-AD models 491 

can prevent identifiability of kLa with the reduced number of experimental data usually 492 

available. 493 

 494 

Importantly, both the NH3 and H2 inhibition parameters [Table 2] were shown as non-495 

identifiable in this study, despite the strong influence of these parameters to regulate the 496 

biogas production in an ADM1-based model, as mentioned in Section 2.3.2. These 497 

results were associated to the reduced TAN and VFA dynamics in the experimental data, 498 

since only one single sacrifice experiment was available for calibration/validation. 499 

Therefore, despite using different initial conditions (i.e. ISR and/or TS) for model 500 

calibration, the NH3 inhibition parameters in HS-AD of OFMSW cannot be assessed by 501 

using traditional batch experiments, where only the biogas production and composition 502 

are (usually) dynamically evaluated. 503 

 504 

The above results condense the importance of an adequate sampling to enhance 505 

identifiability in AD models, but also to test hypotheses regarding the effects of 506 

inhibitory substances in HS-AD. Particularly, an extensive sampling for VFA, pH and 507 

TAN at different operational times during batch experiments is required to identify 508 

crucial parameters regarding the NH3 inhibition in HS-AD of OFMSW. Therefore, 509 

sacrifice experiments and/or any sampling technique for batch setups – allowing the 510 
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thorough characterization of the reactor content variables in dynamic mode – should be 511 

recommended to calibrate structured HS-AD models using batch experiments. On the 512 

other hand, including (semi-)continuous datasets when available might also alleviate 513 

these identifiability issues during calibration (Bennett et al., 2013; Nimmegeers et al., 514 

2017). 515 

 516 

3.1.4 The Importance of Initial Conditions for Model Calibration 517 

Interestingly, all θB except Xac,Batch7 were shown as non-identifiable in this study [Table 518 

5]. The reason presumably lies on the high km of all microorganisms ‘shading’ the effect 519 

of their initial concentration. For example, Xpro was associated to a maximum growth 520 

rate (km,pro) around 10 d-1 [Table 4]. Thus, Xpro doubles within 1 h (i.e. 
./0 �!�

12
=521 

 ./0�!�·!4
(5 = 0.6 ℎ), whereas the HS-AD batch experiments lasted considerably longer 522 

than 20 days [Table 1]. 523 

 524 

Xac and Xh2 are important variables to avoid batch acidification during the initial 0 - 10 525 

days of HS-AD simulations, due to the rapid changes occurring in the bio-physical-526 

chemistry during these days and the influence of these two microbial populations to 527 

define the buffering capacity (Batstone et al., 2002; Capson-Tojo et al., 2017). 528 

Nonetheless, these biomass concentrations were also rapidly disregarded by GSA in this 529 

study [Tables 3 and 4], except the ‘potential identifiability’ of Xac,Batch7 suggested by 530 

GSA No. 7 which was likely explained by the influence of the order of magnitude of 531 

this particular biomass content to regulate the risk of acidification of the most extreme 532 

HS-AD condition in Experiment 7 (i.e. Batch No. 9, TS = 30 %) [Table 1].  533 

 534 
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With all the above, it is likely that only the initial biomass magnitude – not a precise 535 

value – was needed to calibrate the HS-AD model based on batch experiments. In other 536 

words, approximate biomass concentrations serve mainly to avoid acidification in HS-537 

AD batch simulations, since these might not influence significantly the model 538 

calibration. The θ influence on J(θ) in this study was further assessed by ABC. 539 

 540 

3.2 Parameter Optimization 541 

3.2.1 Second Identifiability Assessment 542 

Figure 1 shows p(θ'|y) using an ɛ = 1.05. The main statistics for these p(θ'|y) are 543 

summarized in Table 6, including the confidence ranges (i.e. 5 - 95 % interquartile 544 

range), since a reliable assessment of the θ confidence range is as important as the value 545 

of θopt themselves (Guisasola et al., 2006). The correlation matrix is included as 546 

Supplementary Information. Figure 2 shows the 5 - 95 % interquartile range vs. ɛ, since 547 

reducing progressively ɛ permitted to assess the convergence of the θ’ posterior as 548 

second identifiability assessment. 549 

 550 

Parameter identifiability is roughly associated to the ‘sharpness’ of the posterior 551 

distribution, p(θ|y) (Martin & Ayesa, 2010; Toni & Stumpf, 2010). In this line, Kh,pr, 552 

Kh,ch,slow, km,fa, km,c5, km,c4, km,ac, pHLL,ac and fbu,su showed relatively well-defined bell-553 

shaped distributions by ABC, suggesting an adequate identifiability [Figure 1]. 554 

Meanwhile, km,pro, km,h2, kd, Xac,Batch7, fac,su and fh2,su showed a more uniform-like 555 

distribution, suggesting a poorer identifiability. The substantial reduction observed in 556 

the interquartile range for Kh,pr, Kh,ch,slow, km,fa, km,c5, km,c4, km,ac, pHLL,ac and fbu,su (i.e. 60 557 

- 80 %) corroborated their adequate identifiability in this study, in contrast to km,pro, 558 
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km,h2, kd, Xac,Batch7, fac,su and fh2,su that showed a much constant interquartile range (i.e. ≤ 559 

50 % reduction) [Figure 2]. The poor practical identifiability of these last θ' is explained 560 

by their high correlation with the rest of θ'. For example, the fac,su·fbu,su correlation was -561 

0.82, while km,pro·kd was 0.72 – data not shown. As suggested in Section 3.1.4, Xac,Batch7 562 

served mainly to counteract the potential acidification in Batch No. 9, since the poor 563 

reduction in the interquartile range (i.e. 23 %) alongside the high correlation with other 564 

θ' (i.e. pHLL,ac·Xac,Batch7 = 0.24) indicated that only an approximate biomass content is 565 

needed to calibrate structured HS-AD models based on batch experiments. 566 

 567 

As expected, ABC supported the identifiability assessment previously performed by 568 

GSA. In particular, θ' showing IE < 1.5 % in GSA No. 7 (i.e. km,pro, km,h2, and fac,su) 569 

[Table 5] were associated to a poor identifiability. However, some parameters showing 570 

an IE ≥ 1.5 % in GSA No. 7 (i.e. kd, Xac,Batch7 and fh2,su) were also indicated as non-571 

identifiable by ABC in contrast to GSA, suggesting that ABC was a more sensitive 572 

methodology for parameter identifiability in this study. With all the above, a more 573 

restrictive IE threshold (i.e. 0.50 % instead of 0.20 %) could have been used in further 574 

GSA rounds, once fixing poorly-identifiable parameters to any value within the prior, as 575 

mentioned in Section 3.1.1. 576 

 577 

ABC is computationally intensive due to the high level of J(θ') - Jmin(θ') ≤ ɛ rejection, 578 

particularly when using highly-demanding ɛ (Filippi et al., 2013; Toni & Stumpf, 2010). 579 

For example, the acceptance ratio was 0.129 when using ɛ = 1.80, meaning that only 1 580 

out of 8 simulations was accepted for posterior evaluation, whereas the acceptance ratio 581 

was 0.004 when using ɛ = 1.10 – data not shown. Thus, ABC is not recommended to 582 
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assess identifiability in complex models with a large number of θ (i.e. N ≥ 30). Different 583 

upgrades have been proposed to increase the ABC efficiency (Beaumont et al., 2009; 584 

Filippi et al., 2013; Toni & Stumpf, 2010), though the evaluation of these upgrades for 585 

calibrating structured AD models was out of the scope of this study. Conversely, the 586 

GSA engine relies upon a Bayesian emulator to speed up the analysis of model outputs 587 

(Kennedy & O'Hagan, 2001; Oakley & O'Hagan, 2004). Therefore, GSA can be an 588 

adequate tool to reduce the global computation required for parameter optimization, by 589 

preliminarily reducing the number of θ' to be further assessed by ABC as shown in this 590 

study. 591 

 592 

3.2.2 Batch Simulations 593 

Using the θ' mean as θopt [Table 6] led to a good approximation of both the methane 594 

production [Figure 3] and the rest of variables at the end of all batch experiments 595 

[Figure 4] used either for calibration (i.e. Batch No. 1, 3, 5, 6, 7 and 9) or cross-596 

validation (i.e. Batch No. 2, 4 and 8) [Table 1]. Therefore, the θ' mean might be a good 597 

approximation of θopt, particularly for those θ' where practical identifiability was likely 598 

(i.e. Kh,pr, Kh,ch,slow, km,fa, km,c5, km,c4, km,ac, pHLL,ac and fbu,su). Importantly, the HS-AD 599 

model was able to capture particularly well the TS and TAN contents, but also VS (data 600 

not shown), in all mono- and co-digestion experiments, confirming the suitability of the 601 

hypotheses used for the model development (Pastor-Poquet et al., 2018). 602 

 603 

Some disagreements were also observed between the simulations and the experimental 604 

results. Particularly, the implementation of a reversible NH3 inhibition function 605 

[Equation 1] in all the VFA and H2 degrading populations [Table 2] was unable to 606 
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capture the VFA accumulation at the end of HS-AD experiments [Figure 4]. As the 607 

most noticeable example, calibration failed to represent the Sbu accumulation in Batch 608 

No. 6 [Figure 4e], yielding also a slight miss-adjustment in the methane production 609 

[Figure 3c]. More in general, Sac and Sbu at the end of all experiments were poorly 610 

represented [Figure 4], despite the butyrate (km,c4) and acetate (km,ac) growth rates were 611 

adequately identified and the NH3 inhibition upon the acetate uptake is a relatively well-612 

established strategy in structured AD models (Batstone et al., 2002). 613 

 614 

Two main reasons might explain the VFA disagreement between the model simulations 615 

and the experimental data available. The first reason relates to the relatively low amount 616 

of experimental data hampering calibration, as mentioned in Section 3.1.3. In this line, 617 

the NH3 half-inhibition parameters in the VFA and/or H2 uptakes (Ki,nh3) were 618 

disregarded as unimportant by GSA to represent the experimental data [Table 5], mainly 619 

because only Batch No. 1 contained the VFA, pH and TAN dynamics. The second 620 

reason relates to the poor suitability of the reversible non-competitive NH3 inhibition 621 

function [Equation 1] to explain the VFA accumulation in HS-AD simulations, as 622 

discussed in next section. 623 

 624 

3.3 Main Effects of Increasing the TS Content in HS-AD of OFMSW 625 

In this study, calibration/cross-validation served to further test the hypotheses used for 626 

model construction (e.g. mass balances), particularly regarding the TS and VS 627 

simulation. Noteworthy, the correct simulation of TS is crucial in HS-AD, as TS 628 

determines the apparent concentration of soluble compounds subsequently affecting all 629 

the HS-AD bio-physical-chemical dynamics (Pastor-Poquet et al., 2019b). For example, 630 
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TS = 20 % supposes approximately 20 % higher apparent concentrations (i.e. kmol/kg 631 

H2O) regarding the corresponding global concentrations (i.e. kmol/kg). 632 

 633 

The HS-AD model was also calibrated/validated to assess the effects of increasing TS 634 

upon the NH3 inhibition in HS-AD. Specifically, a high solute content – potentially 635 

associated to a high TS – exacerbates the solution ‘non-ideality’, affecting all the HS-636 

AD dynamics (e.g. pH, NH3 concentration, CO2 transfer) (Pastor-Poquet et al., 2019b). 637 

More in detail, ‘non-ideality’ can lower Snh3, serving as a potential source of NH3 638 

inhibition abatement in HS-AD of OFMSW. In this study, I ranged from 0.22 to 0.93 M 639 

[Figure 4c], emphasizing the need for an adequate ‘non-ideal’ bio-physical-chemical 640 

approach (Hafner & Bisogni, 2009; Solon et al., 2015). Importantly, despite the high I 641 

observed, Snh3 reached up to 0.13 mol N/kg in this study [Figure 4d] – equivalent to 642 

0.16 mol N/kg H2O (i.e. 2.3 g N/L). These Snh3 were considerably high, since reactors 643 

operated at Snh3 ≥ 1.0 g N/L usually show an inefficient VFA conversion (Rajagopal et 644 

al., 2013). 645 

 646 

The inefficient VFA conversion in HS-AD experiments was not well simulated by the 647 

reversible NH3 inhibition function, as mentioned in Section 3.2.2. To understand the 648 

poor VFA simulation, it is necessary to consider the relatively flat inhibition described 649 

by Equation 1 but also the COD fluxes in the HS-AD model. Briefly, Inh3 is 0.50 when 650 

Snh3,App = Ki,Snh3, whereas Inh3 is 0.33 when Snh3,App = 2·Ki,Snh3 [Equation 1]. In other 651 

words, a non-competitive reversible inhibition by NH3 might be far too ‘blunt’ to 652 

describe the actual effect of NH3 upon the anaerobic biomass (Astals et al., 2018). On 653 

the other hand, due to the COD fractioning used in this study, approximately 54 % of 654 
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the COD from Ssu [Table 6] and 26 % of the COD from Saa flowed through the butyrate 655 

pathway, whereas up to 80 % of the COD either from Ssu, Saa and/or long-chain fatty 656 

acids (Sfa) flowed through the acetate pathway (Batstone et al., 2002). Meanwhile, a 657 

considerable proportion of the initially biodegradable COD (i.e. 75 - 85 %) was 658 

assigned to Xch + Ssu + Xpr + Saa [Table 3]. 659 

 660 

With all the above, the ‘blunt’ definition of the NH3 inhibition function, alongside the 661 

high COD flowing through the butyrate and acetate pathways, presumably favored the 662 

Xbu and Xac growth even at considerably high Snh3 (i.e. up to 2.3 g N/L) during 663 

simulations. Summarizing, the high substrate content counterbalanced the effect of the 664 

NH3 inhibition, preventing the correct simulation of Sbu and Sac accumulation at the end 665 

of the HS-AD experiments. Therefore, the reversible non-competitive NH3 inhibition 666 

function [Equation 1] in the VFA and/or H2 uptakes [Table 2] requires further testing to 667 

represent the VFA accumulation observed in HS-AD of OFMSW. To this particular aim, 668 

using extensive data regarding the VFA, pH and TAN dynamics in HS-AD simulations 669 

is strongly recommended. 670 

 671 

To end up, the HS-AD model (Pastor-Poquet et al., 2018) is a suitable platform to 672 

understand the inner mechanisms of HS-AD, whereas further model developments 673 

and/or model configurations (i.e. inhibition functions) should be also tested to enhance 674 

our understanding about the VFA accumulation within HS-AD of OFMSW. Similarly, 675 

additional experimental data is needed to thoroughly understand the role of NH3 676 

inhibition in HS-AD simulations. Specifically, extensive data regarding the main 677 

species driving ‘non-ideality’ (i.e. VFA, pH, TAN) and/or further bio-physical-chemical 678 
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mechanisms (i.e. precipitation) in HS-AD seem to be crucial, due to the outstanding 679 

importance of ‘non-ideality’ for the biochemical parameter optimization (Pastor-Poquet 680 

et al., 2019b). In this scheme, the relatively simple calibration/validation methodology 681 

presented in this study can serve to test the θ practical identifiability and confidence 682 

ranges in presence of any set of experimental data and/or HS-AD model structure. 683 

 684 

 685 

4 CONCLUSIONS 686 

Nine different batch conditions were used to calibrate and cross-validate the HS-AD 687 

model. For parameter optimization, variance-based GSA in tandem with ABC served to 688 

evaluate the practical identifiability of 35 θP and 32 θB. Among all these, mostly 8 θP 689 

were correctly identified with the available data, as corroborated by the convergence of 690 

p(θ|y). The study also showed that HS-AD may be operated at Snh3 ≥ 2.3 g N/L and I ≥ 691 

0.9 M, whereas a reversible non-competitive NH3 inhibition function was not able to 692 

explain the VFA accumulation in HS-AD of OFMSW. Therefore, further datasets about 693 

the VFA, pH and TAN dynamics are required to enhance the θ practical identifiability, 694 

whereas further model configurations should be tested to enhance the simulation of NH3 695 

inhibition in HS-AD. 696 
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FIGURE CAPTIONS 805 
 806 

Figure 1. Posterior parameter distribution using 400 simulations and ɛ = 1.05 807 

Figure 2. Interquartile range (percentiles 5 to 95 %) of the posterior parameter 808 

distribution using ɛ ≥ 1.05 and ɛ ≤ 2.50 809 

Figure 3. Methane production with mono-digestion of dried OFMSW at a) ISR = 1.00; 810 

b) ISR = 1.50; and c) ISR = 1.00; and co-digestion of dried OFMSW and sawdust at d) 811 

ISR = 0.16. Dots represent experimental data, while lines represent simulated values. 812 

Figure 4. Main variables at the end of the four batch experiments: a) Total solids (TS); 813 

b) total ammonia nitrogen (TAN, Sin); c) ionic strength (I); d) free ammonia nitrogen 814 

(NH3, Snh3); e) acetic acid (Sac); f) propionic acid (Spro); g) butyric acid (Sbu); and h) 815 

valeric acid (Sva). Crosses represent experimental data, while geometries represent 816 

simulated values 817 
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Figure 1. Posterior parameter distributions using 400 simulations and ɛ = 1.05
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Figure 2. Interquartile range (percentiles 5 to 95 %) of the posterior parameter distributions using ɛ ≥ 1.05 and ɛ ≤ 2.50







Table 1. Batch experiments and initial conditions used for HS-AD model calibration 

and cross-validation 

 

Substrate 
Exp. 

No. 

Batch 

No. 

ISR (g 

VS/g VS) 

Initial 

TS 

(%) 

No. 

Replicates 

Design 

Volume 

(mL) 

Exp. Time 

(days) 

Calibration 

or 

Validation 

OFMSW 

1 1 1.00 15.0 15 280 92 C 

2 

2 

1.50 

10.8 3 

160 100 

V 

3 13.4 3 C 

4 16.4 3 V 

5 19.6 3 C 

3 6 0.50 28.3 2 280 99 C 

OFMSW + 

Sawdust 
4 

7 

0.16 

10.0 3 

280 284 

C 

8 15.0 2 V 

9 30.2 1 C 

 
  



Table 2. Biochemical rates used for the HS-AD model in this study 

Process Rate (rj, kgCOD m-3 d-1) 

Hydrolysis of Fast Biodegradable Carbohydrates kh,ch,fast·Xch,fast 

Hydrolysis of Slow Biodegradable Carbohydrates kh,ch,slow·Xch,slow 

Hydrolysis of Proteins kh,pr·Xpr 

Hydrolysis of Lipids kh,li·Xli 

Sugars Uptake km,su·Ssu,App/(KS,Xsu+Ssu,App)·Xsu· IpH· Iin 

Aminoacids Uptake km,aa·Saa,App/(KS,Xaa+Saa,App)·Xaa· IpH· Iin 

LCFA Uptake km,fa·Sfa/(KS,Xfa+Sfa)·Xfa· IpH· Iin· Ih2 

Valerate Uptake km,c5·Sva,App/(KS,Xc5+Sva,App)·Xc5· IpH· Iin· Ih2· Inh3 

Butyrate Uptake km,c4·Sbu,App/(KS,Xc4+Sbu,App)·Xc4· IpH· Iin· Ih2· Inh3 

Propionate Uptake km,pro·Spro,App/(KS,Xpro+Spro,App)·Xpro· IpH· Iin· Ih2· Inh3 

Acetate Uptake km,ac·Sac,App/(KS,Xac+Sac,App)·Xac· IpH· Iin· Inh3 

Hydrogen Uptake km,h2·Sh2,App/(KS,Xh2+Sh2,App)·Xh2· IpH· Iin· Inh3 

Sugar Degraders Decay kd·Xsu 

Aminoacids Degraders Decay kd·Xaa 

LCFA Degraders Decay kd·Xfa 

Valerate Degraders Decay kd·Xc5 

Butyrate Degraders Decay kd·Xc4 

Propionate Degraders Decay kd·Xpro 

Acetate Degraders Decay kd·Xac 

Hydrogen Degraders Decay kd·Xh2 

 
with Iin = Sin,App/(Ki,Sin + Sin,App) 

 Ih2 = Ki,Sh2/(Ki,Sh2 + Sh2,App) 

 IpH = KpH^NpH/(KpH^NpH + Sh+^NpH) 

 Inh3 = Ki,Snh3/(Ki,Snh3 + Snh3,App) 

  



Table 3. Initial conditions used for all batch simulations in this study 

 

Name 

Mono-digestion   Co-digestion 
Units 

ISR = 1.00   ISR = 1.50   ISR = 0.50  ISR = 0.16 

TS=15.0%   TS=9.5% TS=13.5% TS=16.5% TS=19.4%   TS=28.3%   TS=10.0% TS=15.0% TS=30.2%  

Ssu 9.761  6.920 8.776 10.861 13.245  6.201  1.800 2.779 6.496 kg COD m-3 

Saa 3.187  5.856 7.346 9.099 11.201  7.679  0.972 1.503 3.571 kg COD m-3 

Sfa 2.610  1.656 2.186 2.702 3.184  1.467  0.377 0.579 1.300 kg COD m-3 

Sva 0.791  1.015 1.282 1.582 1.936  1.061  1.467 2.269 5.314 kg COD m-3 

Sbu 0.500  0.195 0.244 0.302 0.370  1.518  0.230 0.355 0.831 kg COD m-3 

Spro 2.059  0.877 1.109 1.368 1.674  2.565  1.367 2.115 4.952 kg COD m-3 

Sac 0.103  0.035 0.044 0.054 0.066  0.871  0.058 0.090 0.210 kg COD m-3 

Sh2 1.00E-08  1.00E-08 1.00E-08 1.00E-08 1.00E-08  1.00E-08  1.00E-08 1.00E-08 1.00E-08 kg COD m-3 

Sch4 1.00E-08  1.00E-08 1.00E-08 1.00E-08 1.00E-08  1.00E-08  1.00E-08 1.00E-08 1.00E-08 kg COD m-3 

Sic 0.029  0.014 0.017 0.021 0.026  0.037  0.008 0.013 0.030 kmol C m-3 

Sin 0.186  0.125 0.157 0.194 0.238  0.229  0.033 0.051 0.120 kmol N m-3 

Si 1.00E-08  1.00E-08 1.00E-08 1.00E-08 1.00E-08  1.00E-08  1.00E-08 1.00E-08 1.00E-08 kg COD m-3 

Si,subs 34.706  29.233 37.076 45.883 55.954  90.351  27.565 42.559 99.486 kgCOD m-3 

Xch,fast 29.283  13.840 17.553 21.722 26.490  31.003  5.400 8.337 19.489 kg COD m-3 

Xch,slow -  - - - -  -  27.360 42.242 98.743 kg COD m-3 

Xpr 28.680  11.713 14.692 18.197 22.402  38.393  5.834 9.016 21.425 kg COD m-3 

Xg 18.271  3.312 4.373 5.405 6.367  5.866  2.637 4.053 9.102 kg COD m-3 

Xsu (*) 0.050  0.050 0.063 0.078 0.095  0.150  0.005 0.008 0.018 kg COD m-3 

Xaa  (*) 0.050  0.050 0.063 0.078 0.095  0.060  0.005 0.008 0.018 kg COD m-3 

Xfa  (*) 0.010  0.020 0.025 0.031 0.038  0.030  0.001 0.001 0.002 kg COD m-3 

Xc5  (*) 0.005  0.010 0.013 0.016 0.019  0.030  0.001 0.001 0.002 kgCOD m-3 

Xc4 (*) 0.001  0.050 0.063 0.078 0.095  0.030  0.001 0.001 0.002 kg COD m-3 

Xpro  (*) 0.005  0.020 0.025 0.031 0.038  0.030  0.001 0.001 0.003 kg COD m-3 

Xac (*) 0.024  0.150 0.190 0.234 0.286  0.100  0.003** 0.005 0.011 kg COD m-3 

Xh2 (*) 0.050  0.200 0.253 0.312 0.382  0.090  0.003 0.005 0.011 kg COD m-3 

Xi 1.00E-08  1.00E-08 1.00E-08 1.00E-08 1.00E-08  1.00E-08  1.00E-08 1.00E-08 1.00E-08 kg COD m-3 

Xi,subs 86.765  73.083 92.689 114.706 139.885  225.877  68.914 106.398 248.714 kg COD m-3 

Scat 0.100  0.060 0.075 0.091 0.109  0.166  0.040 0.059 0.120 kmoleq m-3 

San 0.051  0.040 0.050 0.060 0.073  0.069  0.020 0.030 0.060 kmoleq m-3 

MGlobal 37.12  29.92 24.02 19.80 16.47  23.45  138.23 93.13 46.13 g 

ρGlobal 1078  1059 1075 1093 1113  1128  1088 1134 1316 kg m-3 

TS 15.0  10.8 13.4 16.4 19.6  28.3  10.0 15.0 30.2 % 

VS 12.4   9.1 11.4 13.9 16.6   24.0   9.6 14.2 28.6 % 

Ni,subs 0.0010   0.0012 0.0012 0.0012 0.0012   0.0010   0.0004 0.0004 0.0004 kmol N kg COD-1 

VReactor 280   160 160 160 160   280   160 160 160 mL 

* These values were assessed by Global Sensitivity Analysis (GSA). ** This value was also assessed by Approximate 
Bayesian Computation (ABC). The inoculum-to-substrate ratio (ISR) is expressed in g VS/g VS 

 



Table 4. Main input parameters (θ) used for global sensitivity analysis (GSA), including 

the initial values, lower and upper thresholds 

 
Model 

Parameter 
Units ADM1 

Initial 

Value 

Lower 

Threshold 

Upper 

Threshold 

Initial 

Concentration 
Units 

Initial 

Value* 

Lower 

Threshold* 

Upper 

Threshold* 

Kh,ch,fast d-1 10 0.120 0.012 0.228 Xsu,Batch1 kg COD m-3 -1.301 -1.952 -0.651 

Kh,pr d-1 10 0.050 0.005 0.095 Xsu,Batch2 kg COD m-3 -1.301 -1.952 -0.651 

Kh,li d-1 10 0.080 0.008 0.152 Xsu,Batch6 kg COD m-3 -0.824 -1.236 -0.412 

Kh,ch,slow d-1 - 0.012 0.001 0.023 Xsu,Batch7 kg COD m-3 -2.301 -3.452 -1.151 

km,su d-1 70 70 7 133 Xaa,Batch1 kg COD m-3 -1.301 -1.952 -0.651 

km,aa d-1 70 70 7 133 Xaa,Batch2 kg COD m-3 -1.301 -1.952 -0.651 

km,fa d-1 10 10 1 19 Xaa,Batch6 kg COD m-3 -1.222 -1.833 -0.611 

km,c5 d-1 30 8 1 15 Xaa,Batch7 kg COD m-3 -2.301 -3.452 -1.151 

km,c4 d-1 30 13 1 25 Xfa,Batch1 kg COD m-3 -2.000 -3.000 -1.000 

km,pro d-1 20 10 1 19 Xfa,Batch2 kg COD m-3 -1.699 -2.548 -0.849 

km,ac d-1 16 16 2 30 Xfa,Batch6 kg COD m-3 -1.523 -2.284 -0.761 

km,h2 d-1 35 20 2 38 Xfa,Batch7 kg COD m-3 -3.301 -4.952 -1.651 

kd d-1 0.040 0.040 0.004 0.076 Xc5,Batch1 kg COD m-3 -2.301 -3.452 -1.151 

KS,Xsu kg COD m-3 1.00 1.00 0.1 1.9 Xc5,Batch2 kg COD m-3 -2.000 -3.000 -1.000 

KS,Xaa kg COD m-3 0.30 0.30 0.03 0.57 Xc5,Batch6 kg COD m-3 -1.523 -2.284 -0.761 

KS,Xfa kg COD m-3 0.40 0.40 0.04 0.76 Xc5,Batch7 kg COD m-3 -3.222 -4.833 -1.611 

KS,Xc5 kg COD m-3 0.40 0.40 0.04 0.76 Xc4,Batch1 kg COD m-3 -3.000 -4.500 -1.500 

KS,Xc4 kg COD m-3 0.40 0.40 0.04 0.76 Xc4,Batch2 kg COD m-3 -1.301 -1.952 -0.651 

KS,Xpro kg COD m-3 0.30 0.30 0.03 0.57 Xc4,Batch6 kg COD m-3 -1.523 -2.284 -0.761 

KS,Xac kg COD m-3 0.30 0.30 0.03 0.57 Xc4,Batch7 kg COD m-3 -3.222 -4.833 -1.611 

KS,Xh2 kg COD m-3 5.00E-05 5.00E-05 0.000005 0.000095 Xpro,Batch1 kg COD m-3 -2.301 -3.452 -1.151 

pHLL,ac - 6.00 5.80 5.00 6.90 Xpro,Batch2 kg COD m-3 -1.699 -2.548 -0.849 

Ki,Snh3,Xc5 kmol N m-3 - 0.0070 0.0007 0.0133 Xpro,Batch6 kg COD m-3 -1.523 -2.284 -0.761 

Ki,Snh3,Xc4 kmol N m-3 - 0.0100 0.0010 0.0190 Xpro,Batch7 kg COD m-3 -3.097 -4.645 -1.548 

Ki,Snh3,Xpro kmol N m-3 - 0.0100 0.0010 0.0190 Xac,Batch1 kg COD m-3 -1.620 -2.430 -0.810 

Ki,Snh3,Xac kmol N m-3 0.0110 0.0040 0.0004 0.0076 Xac,Batch2 kg COD m-3 -0.824 -1.236 -0.412 

Ki,Snh3,Xh2 kmol N m-3 - 0.0150 0.0015 0.0285 Xac,Batch6 kg COD m-3 -1.000 -1.500 -0.500 

fbu,su kg COD kg COD-1 0.130 0.500 0.050 0.950 Xac,Batch7 kg COD m-3 -2.523 -3.784 -1.261 

fac,su kg COD kg COD-1 0.270 0.290 0.029 0.551 Xh2,Batch1 kg COD m-3 -1.301 -1.952 -0.651 

fh2,su kg COD kg COD-1 0.190 0.100 0.010 0.190 Xh2,Batch2 kg COD m-3 -0.699 -1.048 -0.349 

Ki,Sh2,Xfa kg COD m-3 3.00E-05 1.00E-05 1.00E-06 1.90E-05 Xh2,Batch6 kg COD m-3 -1.046 -1.569 -0.523 

Ki,Sh2,Xc5 kg COD m-3 3.00E-05 3.00E-05 3.00E-06 5.70E-05 Xh2,Batch7 kg COD m-3 -2.523 -3.784 -1.261 

Ki,Sh2,Xc4 kg COD m-3 3.00E-05 3.00E-05 3.00E-06 5.70E-05 - - - -  

Ki,Sh2,Xpro kg COD m-3 1.00E-05 1.00E-05 1.00E-06 1.90E-05 - - - -  

kLa d-1 200 200 20 380 - - - -   

* Logarithm-transformed: log10 (θB) 

 



Table 5. Global sensitivity analysis (GSA) of input parameters (θ): Individual (IE) and global (GE) effects upon the objective function, J(θ), 

variance 

 
GSA No.1 GSA No.2 GSA No.3 GSA No.4 GSA No.5 GSA No.6 GSA No.7 

θ IE (%) GE θ IE (%) GE θ IE (%) GE θ IE (%) GE θ IE (%) GE θ IE (%) GE θ IE (%) GE 

Kh,ch,fast 0.08 0.63 Kh,pr 1.75 5.23 Kh,pr 2.75 8.62 Kh,pr 2.21 7.33 Kh,pr 1.01 5.42 Kh,pr 2.00 10.44 Kh,pr 1.97 7.72 

Kh,pr 2.01 7.56 Kh,li 0.25 0.69 Kh,li 0.26 2.54 Kh,li 0.11 2.85 Kh,ch,slow 4.28 14.61 Kh,ch,slow 4.07 14.47 Kh,ch,slow 4.43 17.86 

Kh,li 0.29 2.07 Kh,ch,slow 5.87 16.21 Kh,ch,slow 5.83 14.32 Kh,ch,slow 5.22 16.59 km,fa 0.46 4.14 km,fa 1.15 5.66 km,fa 1.11 8.95 

Kh,ch,slow 6.45 17.27 km,aa 0.07 0.43 km,fa 1.21 7.25 km,fa 0.56 4.81 km,c5 0.22 1.63 km,c5 1.59 8.34 km,c5 0.67 5.72 

km,su 0.16 3.82 km,fa 0.81 5.97 km,c5 0.80 3.12 km,c5 0.73 3.31 km,c4 1.38 11.18 km,c4 1.50 13.79 km,c4 2.39 15.94 

km,aa 0.53 2.43 km,c5 0.33 1.49 km,c4 2.23 17.17 km,c4 2.47 19.12 km,pro 1.77 8.66 km,pro 1.23 11.37 km,pro 0.72 9.24 

km,fa 0.91 4.34 km,c4 2.12 12.96 km,pro 0.51 8.59 km,pro 0.75 10.21 km,ac 3.56 12.26 km,ac 5.11 17.49 km,ac 4.13 17.22 

km,c5 0.22 3.64 km,pro 0.44 10.49 km,ac 7.18 17.17 km,ac 4.67 11.62 km,h2 3.72 13.46 km,h2 4.13 15.65 km,h2 1.46 12.35 

km,c4 4.39 17.87 km,ac 3.16 10.71 km,h2 4.07 10.68 km,h2 3.57 11.84 kd 5.16 15.78 kd 3.37 9.47 kd 4.43 13.37 

km,pro 0.62 8.62 km,h2 2.60 8.32 kd 3.67 9.00 kd 3.22 8.23 KS,Xh2 0.13 1.09 pHLL,ac 10.24 24.61 pHLL,ac 11.69 29.21 

km,ac 4.88 16.35 kd 2.86 7.83 KS,Xh2 0.40 1.76 KS,Xh2 0.22 0.91 pHLL,ac 11.04 25.72 fbu,su 3.34 26.74 fbu,su 1.89 24.59 

km,h2 1.60 11.78 KS,Xh2 0.71 2.03 pHLL,ac 11.09 22.10 pHLL,ac 9.69 18.95 Ki,Snh3,Xh2 0.21 3.16 fac,su 0.96 13.49 fac,su 0.22 9.58 

kd 1.65 5.26 pHLL,ac 11.48 25.57 Ki,Snh3,Xh2 0.32 2.61 Ki,Snh3,Xh2 0.39 1.91 fbu,su 4.03 30.77 fh2,su 5.00 14.87 fh2,su 6.37 19.92 

KS,Xsu 0.05 0.34 Ki,Snh3,Xpro 0.20 1.79 fbu,su 2.72 20.48 fbu,su 2.93 24.05 fac,su 0.81 15.33 Xac,Batch7 1.89 11.52 Xac,Batch7 2.73 13.98 

KS,Xaa 0.15 1.12 Ki,Snh3,Xac 0.16 1.55 fac,su 0.41 10.59 fac,su 0.48 12.46 fh2,su 7.05 17.03 Xh2,Batch7 0.00 0.00 - - - 

KS,Xfa 0.15 3.83 Ki,Snh3,Xh2 0.24 1.70 fh2,su 6.02 13.39 fh2,su 5.83 13.35 Ki,Sh2,Xc4 0.03 0.40 - - - - - - 

KS,Xc5 0.07 0.63 fbu,su 3.56 30.53 Ki,Sh2,Xc4 0.33 4.00 Ki,Sh2,Xc4 0.16 4.36 Xac,Batch7 1.63 7.72 - - - - - - 

KS,Xc4 0.00 0.00 fac,su 0.67 17.63 Ki,Sh2,Xpro 0.17 1.55 Ki,Sh2,Xpro 0.13 2.88 Xh2,Batch2 0.07 1.00 - - - - - - 

KS,Xpro 0.00 0.00 fh2,su 7.20 16.29 Xsu,Batch6 0.06 0.69 Xc4,Batch2 0.06 0.28 Xh2,Batch6 0.00 0.00 - - - - - - 

KS,Xac 0.13 1.13 Ki,Sh2,Xfa 0.00 0.00 Xaa,Batch6 0.02 0.38 Xc4,Batch6 0.06 0.33 Xh2,Batch7 0.40 3.15 - - - - - - 

KS,Xh2 0.79 4.53 Ki,Sh2,Xc5 0.03 0.88 Xaa,Batch7 0.00 0.00 Xc4,Batch7 0.00 0.00 - - - - - - - - - 

pHLL,ac 6.73 16.94 Ki,Sh2,Xc4 0.22 2.74 Xfa,Batch1 0.03 0.10 Xpro,Batch1 0.05 0.44 - - - - - - - - - 

Ki,Snh3,Xc5 0.02 0.29 Ki,Sh2,Xpro 0.25 2.26 Xfa,Batch2 0.00 0.00 Xpro,Batch2 0.00 0.00 - - - - - - - - - 

Ki,Snh3,Xc4 0.16 2.64 kLa 0.07 0.39 Xfa,Batch6 0.00 0.00 Xpro,Batch6 0.05 0.64 - - - - - - - - - 

Ki,Snh3,Xpro 0.33 4.71 Xsu,Batch1 0.05 0.47 Xfa,Batch7 0.07 0.69 Xpro,Batch7 0.20 1.12 - - - - - - - - - 

Ki,Snh3,Xac 0.99 6.99 Xsu,Batch2 0.03 0.28 Xc5,Batch1 0.00 0.01 Xac,Batch1 0.15 1.09 - - - - - - - - - 

Ki,Snh3,Xh2 0.23 3.55 Xsu,Batch6 0.22 3.38 Xc5,Batch2 0.16 0.72 Xac,Batch2 0.14 0.38 - - - - - - - - - 

fbu,su 1.97 24.39 Xsu,Batch7 0.04 0.29 Xc5,Batch6 0.03 0.14 Xac,Batch6 0.16 1.89 - - - - - - - - - 

fac,su 0.56 13.69 Xaa,Batch1 0.05 0.60 Xc5,Batch7 0.07 0.26 Xac,Batch7 1.99 7.48 - - - - - - - - - 

fh2,su 4.53 12.54 Xaa,Batch2 0.00 0.00 Xc4,Batch1 0.06 0.76 Xh2,Batch1 0.18 0.74 - - - - - - - - - 

Σ IE (%) = 40.67 - - 45.46 - - 50.46 - - 46.38 - - 46.94 - - 45.57 - - 44.21 - 

Total (%) = 72.37 - - 75.17 - - 78.67 - - 74.74 - - 72.81 - - 70.49 - - 68.79 - 

 

 



Table 6. Calibration of potentially-identifiable input parameters (θ’): Prior and posterior distributions 

 

Parameter Units Initial Value 
Initial Evaluation Range   Posterior Parameter Distribution 

Minimum Maximum   Mean Median Mode 5% Percentile 95% Percentile Skewness Kurtosis 

Kh,pr d-1 0.050 0.005 0.095  0.048 0.048 0.044 0.040 0.057 0.217 2.83 

Kh,ch,slow d-1 0.0120 0.0012 0.0228  0.0109 0.0108 0.0102 0.0084 0.0137 0.171 2.74 

km,fa d-1 10.0 1.0 19.0  7.3 6.8 6.6 4.6 12.0 1.663 6.93 

km,c5 d-1 8.0 0.8 15.2  10.4 10.3 8.6 7.2 13.4 0.084 2.75 

km,c4 d-1 13.0 1.3 24.7  19.6 19.5 20.2 15.8 23.6 0.001 2.52 

km,pro d-1 10.0 1.0 19.0  12.2 12.2 13.0 7.1 16.7 -0.148 2.66 

km,ac d-1 16.0 1.6 30.4  24.2 24.5 23.2 18.7 29.4 -0.242 2.32 

km,h2 d-1 20.0 2.0 38.0  26.0 25.5 25.1 17.0 36.1 0.077 2.19 

kd d-1 0.040 0.004 0.076  0.040 0.040 0.045 0.020 0.059 -0.155 2.83 

pHLLac  5.8 5.0 6.9  5.4 5.4 5.2 5.0 5.9 0.589 2.73 

Xac,Batch7 kg COD m-3 -2.523 -3.784 -1.261  -2.648 -2.713 -2.853 -3.574 -1.543 0.303 2.39 

fbu,su kg COD kg COD-1 0.50 0.05 0.95  0.54 0.54 0.49 0.38 0.72 0.161 2.67 

fac,su kg COD kg COD-1 0.29 0.03 0.55  0.28 0.29 0.23 0.12 0.43 -0.180 2.73 

fh2,su kg COD kg COD-1 0.10 0.01 0.19   0.09 0.09 0.09 0.02 0.17 0.060 2.31 

 

 



MODEL DEVELOPMENT

- Ionic Strength ≥ 0.9 M;

- NH3 ≥ 2.3 g N/L;

- Highly correlated 

parameters;

- Extensive experimental 

data needed to avoid non-

identifiability;

- The reversible function 

poorly represents NH3

inhibition.

HS-AD batch experiments 

fed with OFMSW

TS � [10-30] %

Reversible NH3 inhibition in 

all VFA and H2 degraders
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