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through hierarchical SNP aggregation
Florent Guinot1,2* , Marie Szafranski1, Christophe Ambroise1,3 and Franck Samson1

Abstract

Background: Genome-Wide Association Studies (GWAS) seek to identify causal genomic variants associated with
rare human diseases. The classical statistical approach for detecting these variants is based on univariate hypothesis
testing, with healthy individuals being tested against affected individuals at each locus. Given that an individual’s
genotype is characterized by up to one million SNPs, this approach lacks precision, since it may yield a large number of
false positives that can lead to erroneous conclusions about genetic associations with the disease. One way to improve
the detection of true genetic associations is to reduce the number of hypotheses to be tested by grouping SNPs.

Results: We propose a dimension-reduction approach which can be applied in the context of GWAS by making use
of the haplotype structure of the human genome. We compare our method with standard univariate and
group-based approaches on both synthetic and real GWAS data.

Conclusion: We show that reducing the dimension of the predictor matrix by aggregating SNPs gives a greater
precision in the detection of associations between the phenotype and genomic regions.

Keywords: Genome-wide association study, Statistical genetics, Variable selection, Hierarchical clustering

Background
Context
Recent breakthroughs in microarray technology have
meant that hundreds of thousands of single nucleotide
polymorphisms (SNPs) can now be densely genotyped
at moderate cost. As a result it has become possible to
characterize the genome of an individual with up to a
million genetic markers. These rapid advances in DNA
sequencing technologies have also made it possible to
carry out exome and whole-genome sequencing studies of
complex diseases. In this context, Genome-Wide Associ-
ation Studies (GWAS) have been widely used to identify
causal genomic variants implied in the expression of dif-
ferent human diseases (rare, Mendelian, or multifactorial
diseases).
From a statistical point of view, looking for these vari-

ants can be supported by hypothesis testing. The standard
approach in GWAS is based on univariate regression
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(logistic regression in case-control studies), with affected
individuals being tested against healthy individuals at one
or more loci. Classical testing schemes are subject to false
positives (that is to say SNPs that are falsely identified
as significant variables). One way around this problem is
to apply a correction for the False Discovery Rate [1, 2].
Unfortunately, this increases the risk of missing true asso-
ciations that have only a small effect on the phenotype,
which is usually the case in GWAS. [3] suggested that
standard approaches such as multiple hypothesis testing
may not be appropriate for the detection of small effects
from multiple SNPs. In such cases a significant part of the
heritability can be missing and GWAS fails to detect all
possible genetic variants associated with a disease.
Furthermore, this kind of standard approach faces other

limitations:

1. It does not directly account for correlations
among the predictors, whereas these
correlations can be very strong as a result of
linkage disequilibrium (LD). SNPs can be
correlated even where they are not physically
linked, because of population structure or
epistasis (gene by gene interactions).
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2. It does not account for epistasis, i.e. causal
effects that are only observed when certain
combinations of mutations are present in
the genome.

3. It does not directly provide predictive
models for estimating the genetic risk of the
disease.

4. It focuses on identifying common markers
with allele-frequency (MAF) above 5%,
although it is likely that analyzing
low-frequency (0.5% < MAF < 5%) and
rare (MAF < 0.5%) variants would be able
to explain additional disease risks or trait
variability [4].

Uncovering some of the missing heritability can some-
times be achieved by taking into account correlations
among variables, interaction with the environment, and
epistasis, but this is rarely feasible in the context of GWAS
because of the multiple testing burden and the high com-
putational cost of such analyses [5]. In the context of
rare-variant association analysis, a number of region- or
gene-based multimarker tests have been proposed as bur-
den tests [6], variance-component tests [7] or combined
burden and variance component tests [8]. Instead of test-
ing each variant individually, these methods evaluate the
cumulative effects of multiple genetic variants in a gene or
a region, increasing power when multiple variants in the
group are associated with a given disease or trait.
Furthermore, regarding limitation (4), analyzing rare

variants is more complex than analyzing more common
variants and a large sample size is needed to observe a rare
variant with a high probability.

Group and aggregation basedmethods for common
variants
Although classical GWAS have limitations that pre-
vent a full understanding of the heritability of genetic
and/or multifactorial diseases, there are nevertheless ways
of overcoming these limitations to some degree. For
instance, it is possible to take into account the structure
of the data in the hypothesis testing procedure. As an
illustration, [9] proposed a hierarchical testing approach
which considers the influence of clusters of highly cor-
related variables rather than individual variables. The
statistical power of this method to detect relevant vari-
ables at single SNPs level was comparable to that of the
Bonferroni-Holm procedure [10], but the detection rate
was much higher for small clusters, and it increased fur-
ther at coarser levels of resolution.
Group-based methods require an appropriate group

definition. In GWAS, the usual approach is to group SNPs
which are included in the same gene but this limits the
analysis to coding regions. It is well known that the human

genome is structured into haplotype blocks, i.e. sizable
regions over which there is little evidence for historical
recombination and within which only a few common hap-
lotypes may be observed [11]. The boundaries of blocks
and the specific haplotypes that they contain are highly
correlated across populations [12]. With this property of
the human genome in mind, [13] developed a method
for detecting haplotype-disease associations in genome-
wide studies, based on sliding windows of adjacent SNPs,
along with a Monte Carlo procedure to adjust for multiple
testing.
In [14], the authors proposed to group SNPs into sets

on the basis of their proximity to genomic features such
as genes or haplotype blocks and then to identify the
joint effect of each set via a logistic kernel-machine-based
test. This approach lays the foundation for the Sequence
Kernel Association Test method [7].
In the broad family of linear models, [15] introduced a

likelihood ratio-based set test that accounts for confound-
ing structure. The model is based on the linear mixed
model and uses two random effects, one to capture the
set association signal and one to capture confounders.
They demonstrate a control of type I error as well as an
improved power over more traditionally used score test.
Other methods focus on multiple linear regression either
by taking into account the linkage disequilibrium within
the genes to improve power [16] or by clustering variants
with weak association around known loci to increase the
percentage of variance explained in complex traits [17].
Finally, other approaches will focus on the aggregation

of summary statistics of single SNPs within a same gene
with for instance the data-driven aggregation of summary
statistics described in [18] or the procedures of p-value
combination in [19]. In the cited articles, the methods
are used on SNPs located in coding region (or extended
intronic region in [19]) but can be extended to any set of
SNPs as long as we pre-specified a set of variants within a
region. However the power for each test remains depen-
dent of the true disease model. Furthermore, this kind of
approaches may also lose statistical power in comparison
to single-variant-based tests when only a very small num-
ber of the variants in a gene are associated with the trait,
or when many variants have no effect or causal variants
are low-frequency variants [4].

Organisation of the paper
The present paper proposes a block-wise approach for
GWAS analysis which leverages the LD structure among
the genomic variants to reduce the number of hypothe-
ses testing. We aggregate the SNPs into different clusters
according to their LD levels and use a supervised learn-
ing approach to identify the clusters of SNPs related to a
case-control phenotype. Our algorithm provides a group
structure for the variables, enabling us to define a function
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that aggregates these clusters into new variables to be used
in the GWAS machinery. The advantage of this method
is that aggregating clusters of several SNPs into a single
variable reduces the dimension of the data without loss
of information, since we are grouping variables that are
highly correlated (in strong LD).
We compare our method in different scenarios with

the baseline approach, i.e. univariate hypothesis testing
[20] and with a state-of-the-art method, the logistic ker-
nel machine method developed by [14] on both syn-
thetic and real datasets from the Wellcome Trust Case
Control Consortium [21] and on ankylosing spondylitis
data [22].

Method
In this section we describe a new method for performing
GWAS using a four-step method that combines unsuper-
vised and supervised learning techniques. This method
improves the detection power of genomic regions implied
in a disease while maintaining a good interpretability. This
method consists in:

1. Performing a spatially constrained
Hierarchical Agglomerative Clustering
(constrained-HAC) of the SNPs matrix X
using the algorithm developed by [23].

2. Applying a function to reduce the
dimension of X using the group definition
from the constrained-HAC. This step is
described and illustrated in Fig. 1.

3. Estimating the optimal number of groups
using a supervised learning approach to find

the best cut into the hierarchical tree (cut
level algorithm). This algorithm combines
Steps 1 and 2 into an iterative process.

4. Applying the function defined in Step 2 to
each group identified in Step 3 to construct
a new covariate matrix and perform
multiple hypothesis testing on each new
covariate to find significant associations
with a disease phenotype y.

Step 1. Constrained-HAC
In GWAS, the covariates are ordinal and correspond to
SNP genotypes such that Xij ∈ {0, 1, 2} corresponds to
the number of minor alleles at locus j ∈ [1, . . . , J] for
observation i ∈ [1, . . . ,N].
To take into account the structure of the genome in

haplotype blocks, we group the predictors (SNPs) accord-
ing to their LD in order to create a new predictor matrix
which reflects the structure of the genome. We first use
the algorithm developed by [23], which clusters SNPs
into adjacent blocks. The clustering method is a spa-
tially constrained hierarchical clustering based on Ward’s
incremental sum-of-squares algorithm [24], in which the
measure of dissimilarity is not based on the Euclidean dis-
tance but rather on the linkage disequilibrium between
two SNPs: 1−r2(j, j′). The algorithm also makes use of the
fact that the LD matrix can be modeled as block-diagonal
by allowing only groups of variables that are adjacent on
the genome to be merged, which significantly reduces the
computation cost. This algorithm is available via the R
package called adjclust on https://cran.r-project.org/
web/packages/adjclust.

Fig. 1 Schematic view of Step 2 of the algorithm to calculate the matrix of predictors D

https://cran.r-project.org/web/packages/adjclust
https://cran.r-project.org/web/packages/adjclust
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Step 2. Dimension reduction function
One way of addressing issues related to high-dimensional
statistics (and in particular the multiple testing burden
that we mentioned above) is to reduce the dimensionality
of the predictor matrix X ∈ R

N×J by creating a reduced
matrix D with new covariates that nevertheless remain
representative of the initial matrix. This means reducing
the number of predictors J to G � J , with row Di. the
G-dimensional vector of new predictors for observation i.
In this study we use a blockwise approach to construct a
matrix of new uncorrelated predictors D ∈ R

N×G, with G
the number of groups in linkage disequilibrium identified
via the constrained agglomerative hierarchical clustering
described in Step 1.
While classical methods use the initial set of covari-

ates to predict a phenotype, we propose combining a
clustering model with a dimension reduction approach
in order to predict y. For each group identified with the
constrained-HAC, we apply a function to obtain a single
variable defined as the number of minor alleles present
in the group. For each observation i and in each cluster
g ∈ [1, . . . ,G], the variable is defined as:

Dig =
∑

j∈g
Xij. (1)

In order that the values for the different groups are com-
parable, we eliminate the effect of group size by centering
and scaling the matrix D to unit variance. In the remain-
der of the paper we will refer to the covariates in D as
aggregated-SNP variables.

Step 3. Optimal number of groups estimation
Estimating the optimal number of groups to select, i.e. the
level at which the hierarchical clustering tree should be
cut, is a fundamental matter which impacts the relevance
of the association analysis. It is known that the human
genome is structured into haplotype blocks with little or
no within-block recombination [12], but it is not easy to
determine how these blocks are allocated throughout the
genome for a given set of SNPs.
In the literature, in an unsupervised learning context, a

number of models have been proposed for determining
this optimal number of groups [25–28]. These methods
are all based on the measure of within-group dispersion
WG with G ∈ [1, . . . ,P]. Since GWAS consist in evaluat-
ing the likelihood of the disease from genetic markers, we
propose using the phenotype y as a way of determining the
optimal number of clusters.
We propose here a supervised validation set approach

to find this optimum. Since this algorithm aims to identify
phenotype-related SNPs clusters, it is necessary to split
the dataset into two subsets to avoid an inflation of type I
errors in the testing procedure. One subset, [Ysub1, Xsub1],

is used to choose the optimal cut and the second one,
[Ysub2, Xsub2], to perform the hypothesis testing in Step 4.
First we apply the constrained-HAC on a subset Xtrain

sub1 ⊂
Xsub1, and for a given level of the hierarchy we apply the
dimension reduction function defined above (Step 2) to
each of the G clusters to construct the matrix Dtrain

sub1 . We
then fit a ridge regression model to estimate the coef-
ficients of the predictors in Dtrain

sub1 . Ridge regression is a
penalized model which shrinks the estimated coefficients
towards zero and is known to have a good stability in
comparison to other penalized-regression models such as
lasso regression [29]. Moreover, a link can be established
between the ridge regression model and the mixed lin-
ear model used in the estimation of the heritability in a
high-dimensional setting [30]. Once the coefficients are
estimated, we predict the phenotypic values on the test set
using the matrix Dtest

sub1 and calculate either the mean test
set error when the phenotype is quantitative or the Area
Under the ROC curve (AUC-ROC) when it is binary. The
procedure, summarized in Algorithm 1, is then repeated
for different levels in the hierarchy and the optimal cut
level in the tree is defined as the level which maximizes
the prediction accuracy criterion.

Step 4. Multiple testing on aggregated-SNP variables
Once the optimal number of groups has been deter-
mined, we apply the function (1) to each selected group
and construct the matrix of aggregated-SNP. Here we use
a standard Single Marker Analysis (SMA) to find asso-
ciations with the phenotype, but instead of calculating

Algorithm 1: Supervised learning cut level algorithm
input : Covariates matrix Xsub1
output: Matrix Dbest

sub2 of aggregated-SNPs at best cut
level

1 Define training and test set;
2 hierarchy ← Constrained-HAC on Xtrain

sub1
3 cutlevel ← Initialize levels where to cut hierarchy
4 for i ← Sequence(cutlevel) do
5 Dtrain

sub1 ← Aggregating(Xtrain
sub1 , hierarchy,

cutlevel[ i]);
6 Dtest

sub1 ← Aggregating(Xtest
sub1, hierarchy,

cutlevel[ i]);
7 ridgecoef ←

RidgeRegression(Ytrain
sub1 ∼ Dtrain

sub1);
8 Ypred

sub1 ← Predict(Xtest
sub1, ridgecoef);

9 AUC[ i]← ROC(Ytest
sub1, Y

pred
sub1);

10 end
11 bestlevel ← Which(cutlevel, Max(AUC)) ;
12 Dbest

sub1 ← Aggregating(Xsub1, hierarchy, bestlevel);
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p-value for each SNPs in Xsub2, we calculate p-value for
each aggregated-SNP variables in Dsub2.
As in standard SMA, a univariate general-

ized linear model [31] is fitted for each variable
D.j: f (μi) = Dijβ , where μi ≡ E(Yi|Di)
(Yi ∼ some exponential family distribution), f is a
smooth monotonic ’link function’, Dij is the ith row
of the model matrix D.j of aggregate-SNP and β is a
vector of 2 unknown coefficients with β0 for the inter-
cept and β1 for the predictor j. Where the response
variable is a binary trait (i.e. case-control phenotype),
we use the logit function as the ’link function’ f and
Yi ∼ Bernoulli distribution. This model is known as the
logistic regression model. Then, for each single-predictor
model, we perform a Likelihood Ratio Test where we
compare the intercept-only model against the single-
predictor model and get for each predictor a p-value
using the χ̃2 distribution.
Given that a large number of covariates are being tested,

we need to compute an appropriate significance threshold
to control the family-wise error rate, FWER = P(FP > 1),
with FP being the False Positive, since keeping the thresh-
old at the conventional value of α = 0.05 would yield
numerous false positives. Several approaches, including
the Bonferroni correction, have been proposed in the con-
text of genetic studies for controlling the FWER [32]. An
alternative approach, developed by [1], seeks to control
the False Discovery Rate (FDR) which is the expectation of
ratio between the number of false positives and the total
positive outcomes: FDR = E

(
FP

FP+TP

)
, with TP being the

True Positive. The Bonferroni correction reduces the sig-
nificance level according to the number of tests carried
out in the study. However, in the context of GWAS,
where hundreds of thousands of tests have to be per-
formed, the Bonferroni correction is too strong, and will
often decrease the significance threshold to a level where
almost nothing is significant. Controlling FDR is there-
fore preferable. It is an approach that is less stringent but
nonetheless powerful. The method for controlling FDR
does not directly set a significance threshold, but rather
identifies the largest p-value that is substantially smaller
than its expected value (by a factor of at least 1/φ where
φ is the desired FDR level), given that all the tests follow
H0. The p-value thus identified and all smaller p-values are
deemed to be significant.

Numerical simulations
The performance evaluation described below was
designed to assess the ability of our method to retrieve
causal SNPs or causal clusters of SNPs under different
simulation scenarios. For each scenario, we use a matrix
XHAPGEN of SNPs generated by the HAPGEN2 software
[33] with a sample size of 1000 individuals. This software

allows to simulate an entire chromosome conditionally on
a reference set of population haplotypes (from HapMap3)
and an estimate of the fine-scale recombination rate
across the region, so that the simulated data share similar
patterns with the reference data. We generate the chro-
mosome 1 (103 457 SNPs) using the haplotype structure
of CEU population (Utah residents with Northern and
Western European ancestry from the CEPH collection) as
reference set. The HAPGEN2 software allows to generate
a controls-only matrix of SNPs (no disease allele). We fil-
tered this matrix according to the minor allele frequency
to only keep SNPs with a MAF greater than 5% thus
reducing the size of XHAPGEN to 60 179 SNPs.
We generate a posteriori the phenotype using the logit

model with a given set of causal SNPs or cluster of SNPs.
The main difference between the different scenarios is to
be found in the way that the case-control phenotype y is
simulated.

Simulation of the case-control phenotype
For all simulation scenarios, we simulated a case-control
phenotype y under a logistic regression model. The case-
control phenotype is generated following a Bernoulli dis-
tribution function, following the conditional probability
P

(
yi = 1|X̃i.

)
with X̃ ∈ R

n×� a matrix constructed by
sampling � causal variables fromXHAPGEN, X̃i. being the �-
dimensional vector corresponding to the ith observation.
The conditional probability is calculated using the logit

model:

P
(
yi = 1|X̃i.

) = exp
(
β0 + βX̃i.

)

1 + exp
(
β0 + βX̃i.

) ,

where β = [β1, . . . ,β�] is the vector of coefficients cor-
responding to the � predictors

[
X̃.1, . . . , X̃.�

]
and β0 is the

intercept defined as ln
(

π
(1−π)

)
, with π the true prevalence

of the disease in the population. The predictors are cen-
tered to have zero-mean before generating the vector of
probability.
One way to have an association between the response

and the predictors strong enough to be detected is to set
large β coefficients on the predictors. Indeed there is a
direct relationship between the odd ratio (OR) of a covari-
ate X̃i. and its corresponding coefficients β i in the logistic
regression model [34] given byORi = e(β i). In our simula-
tions, the difficulty of the problem, i.e. the power to detect
an association, is linked to the number of causal predictors
used to generate y and the OR set to each predictors.
To simulate different scenarios we considered the fol-

lowing parameters:

1. Nature of the causal predictors:
• Clusters of SNP: For each replicates, � = 1, 2, 3

genomic regions have been identified to be
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causal. These regions have been chosen among
the matrix XHAPGEN to have different levels of
LD among the SNPs that compose them. The
average correlation coefficient among the SNPs
in these regions varies from r2 = 0.6 to
r2 = 0.85 and the size of the region varies from
20 SNPs to 60 SNPs. Once identified, the causal
regions were aggregated using the function
described in Step 2 to construct a matrix X̃ of
aggregated-SNPs predictors used to generate
the case-control phenotype. Under this scenario,
all the SNPs within the region in LD can be
considered as causal but it is the aggregated
variables that is used to generate the phenotype.
We will refer to it as the SNPclus scenario.

• Single SNPs. In this scenario the phenotype
was simulated by directly using sampled SNPs
from the same causal regions identified in the
SNPclus scenario. For each replicates, we chose
10 individuals SNPs among each of these
regions to construct a matrix X̃ with
� = 10, 20, 30 single SNPs predictors, depending
on the number of causal regions . This matrix is
then used to generate the case-control
phenotype. The chosen SNPs have a MAF
varying from 10% to 30%. We will refer to this
scenario as the singleSNP scenario.

2. Number of causal predictors � and number of
replicates:
We performed 5 replicates for each combination �×
number of scenarios and we evaluate the average
performance over these 5 replicates. For each
scenario we considered from 1 to 3 causal genomic
regions, thus, for SNPclus scenario, we used up to 3
causal predictors, and for the singleSNP scenario, up
to 10 × 3 = 30 causal predictors to generate the
case-control phenotype.

3. Odd ratio (β coefficients) of the causal predictors:
For the SNPclus scenario we chose an equal OR of 2.7
for each causal aggregated predictors, corresponding
to a β coefficient equal to 1. For the singleSNP
scenario we chose an equal OR of 1.1 for each causal
predictors, corresponding to a β coefficient equal to
0.1. The rationale behind these coefficients arises
from the hypothesis that the combined effect of
several low-effect SNPs on the phenotype is stronger
than the effects of each individual SNP.

As previously mentionned, we generated the pheno-
type using causal SNPs simulated with the HAPGEN2
software. However, as commercial genechips such as
Affymetrix and Illumina arrays do not genotype the
full sequence of the genome, some SNPs are thereby

unmapped and the marker density is in general lower
than the HapMap marker density. That is why we chose,
in our numerical simulation, to generate the phenotype
with causal variables chosen from the HAPGEN matrix
and to assess the performance of the methods using only
those SNPs which are mapped on a standard Affymetrix
genechip (about 23 823 mapped SNPs). By doing so, some
causal SNPs are not mapped on the commercial SNP set
and thus simulations are more similar to real genome-
wide analysis conditions.

Results
Performance evaluation
Competitors The objective of our method being to iden-
tify the optimal scale at which to perform association
studies, we compared our proposal with several methods
working at different genomic scales. The purpose is to
assess the ability of each method to retrieve true causal
genomic regions in the different simulation scenarios. For
each scenario, four approaches have been considered:

• SKATtree, a SKAT model using our group definition,
• SKATnotree, a SKAT model using an alternative

group definition produced by successive chunks of 20
SNPs,

• SMA, the classical Single Marker Analysis,
• SASA (Single Aggregated-SNP Analysis) a method

close to SMA, where instead of testing the genotype-
phenotype association using each single SNP, we are
testing it using aggregated-SNP variables.

The two above described group definitions for SKATwere
considered to evaluate the impact of the group structure
on the association findings.
The comparison with SMA allows to highlight the

advantage of working at a group scale. We hypothesize
that grouping low-effect SNPs should have a better sta-
tistical power than testing the main effects at single-SNP
level.
For all methods, we compare the results using 2 types

of multiple testing corrections : the methods of Holm-
Bonferroni [10] and [1].

True and False Positive definitions. The problem of
retrieving true causal associations can be represented as a
binary decision problemwhere the comparedmethods are
considered as classifiers. The decision made by a binary
classifier can be summarized using four numbers: True
Positives (TP), False Positive (FP), True Negatives (TN)
and False Negatives (FN). We represent True Positive
Rate (Recall or Power = TP/(FN + TP)) versus Precision
(Precision = TP/(FP + TP)).
In this context, a True Positive corresponds to a true

causal genomic region associated to significant p-value.
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The definition of what can be considered as the true
causal genomic region may nevertheless be subject to
some ambiguity. In GWAS, the presence of LD between
SNPs often leads to consider the signal associated to
multiple neighboring SNPs as indicating the existence of
a single genomic locus with possible influence on the
phenotype.
In our simulations, a causal genomic region is defined

a priori as a causal predictor in the logit model. How-
ever, since the clusters of SNPs identified by our algorithm
are not totally independent, some residual correlationmay
remain between clusters. This leads to question the notion
of relevant variable when the variables are structured into
strongly correlated groups. Should all the variables of the
block be considered as explanatory, or should we define
as only true positives the causal variables used to generate
the phenotype ?
In order to circumvent this issue, we chose to relax the

definition of a False Positive joining the work of [35] and
[36] where they propose to control the FDR in GWAS by
considering significiant SNPs correlated to the true causal
variables as true positives.
For the simulation of the phenotype, we hypothe-

size an underlying multivariate regression model, but
test for univariate model as it is the usual practice,
which leads to reconsider the definition of true pos-
itive. As in [36] we consider the set of true posi-
tive as the union of the causal true positive and the
linked true positive, which are regions adjacent to the
causal regions and correlated with them at a level of at
least 0.5. Regarding the single-marker analysis approach,
since it works at the single SNP level, we compare it with
the others in the singleSNP scenario only.

Results and discussions of the numerical simulations
Area Under the ROC Curve. For each simulation, the
cut level algorithm was applied. We recall that this algo-
rithm calculates a prediction error on a test set for several
levels in a constrained-HAC tree with a ridge regression
model and chooses the level for which this error is the
smallest. The AUC-ROC is plotted for the different lev-
els, and the best cut level corresponds to the level for
which AUC-ROC is the greatest. The results from the
simulation scenario clusSNP and singleSNP described in
“Simulation of the case-control phenotype” section are
shown in Fig. 2. Our algorithm cuts the hierarchy
either at a fairly high level (few large clusters) or at
a low level (many small clusters), depending on the
number of causal variables we used to generate the
phenotype. The more the number of causal regions
decreases, the higher the algorithm cuts in the hierarchi-
cal tree. In either case our algorithm is able to increase
the predictive power by aggregating SNPs with the
function (1).

We are thus able build a matrix of uncorrelated
aggregated-SNP predictors that are representative of
the initial SNP matrix and strongly linked to the
phenotype.

Performance results for simulated data. As described
in the performance evaluation section, we evaluate
and compare the methods using two metrics, namely
Recall or Power = TP/(FN + TP) and Precision =
TP/(FP + TP).
Here the Precision metric is somewhat relaxed com-

pared to its true definition since we adapted the definition
of a True Positive and False Positive to the GWAS con-
text. It is important to note that for all the methods,
we compare the Benjamini-Hochberg method to control
FDR with the Bonferroni correction to control FWER at a
threshold of 5%. However, since there are residual corre-
lations between SNPs clusters and that the replication of
numerous samples per combination of parameters is dif-
ficult in this realistic setting of simulations, the observed
Type I error rate may be greater than 5%. What we think
is important to put forward to in these simulations is the
ability of our algorithm to define groups of relevant clus-
ters that will be detected on average with more precision
andmore power (SASA and SKATtree) than using an arbi-
trary group definition (SKATnotree) or no definition of
groups at all (SMA).
The results represented in Fig. 3 show that the meth-

ods using our algorithm for the cluster definition (SASA
and SKATtree) have in average a better precision than the
two other methods. The approach SASA, which combine
our clustering algorithm and the aggregating function (1)
to test the association of aggregated-SNPs with the phe-
notype, perform poorly in term of Recall but is far better
in term of Precision compared to SMA and SKATnotree.
These results suggest that it is better to combine our
algorithm with the SKAT method than with the SASA
method. We also note that applying the SKAT approach
on an arbitrary group definition (SKATnotree) lead to a
good recall but a very poor precision, showing the ben-
efit of using our custom group definition in this context.
Regarding the SMA approach in the singleSNP scenario,
we can observe a loss in term of Recall compare to the
SKATtree and SKATnotreemethod suggesting that we can
take benefit of grouping low effect SNPs to improve the
power to detect causal genomic regions.
In GWAS, having a method with a good precision is as

important, or even more important, than having a good
recall. It is better to spot a few significant associations with
a high certainty than to spot numerous significant asso-
ciations but with only a low level of certainty for most of
them. For this reason, we believe that our method repre-
sents an improvement in terms of precision without loss
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Fig. 2 Area under ROC curves according to the number of clusters in the clusSNP and singleSNP scenarios: the vertical lines indicate the number of
aggregated-SNPs (clusters) obtained with Algorithm 1, i.e. the level where the prediction error is minimized (AUC-ROC at its maximum)

Fig. 3 Recall vs Precision for each method (shape and colors in plot). In rows are the simulation scenarios. In columns, we evaluate performance
using Benjamini-Hochberg threshold (left) and bonferroni correction threshold (right). The second row illustrates the performance to retrieve the
true causal genomic region under the SNPclus scenario, thus only group-based approaches are considered (SASA, SKAT.tree and SKAT.notree). The
numbers inside the points correspond to the number of causal predictors and each point is the average value of 5 replicates
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Fig. 4 Histograms of Minor Allele Frequencies (MAF) distribution in each datasets. (BD) Bipolar disorders; (CAD) Coronary arthery disease ; (IBD)
Inflammatory bowel disease ; (HT) Hypertension ; (RA) Rheumatoid arthritis ; (T1D) Type I diabetes ; (T2D) Type II diabetes

of power insofar as SKATtree seems able to detect signifi-
cant genomic regions associated with the phenotype with
a higher degree of certainty than standard approaches.

Application in wellcome trust case control
consortium(WTCCC) and Ankylosing Spondylitis (AS)
studies
To evaluate the performance of our method on real data,
we performed GWAS analysis on datasets made avail-
able by [21]. The WTCCC data collection contains 17000
genotypes, composed of 3000 shared controls and 14000

cases representing 7 common diseases of major public
health concern: inflammatory bowel disease (IBD), bipo-
lar disorder (BD), coronary artery disease (CAD), hyper-
tension (HT), rheumatoid arthritis (RA), and Type I (T1D)
and Type II (T2D) diabetes. Individuals were genotyped
with the Affymetrix GeneChip 500K Mapping Array Set
and are represented by about 500,000 SNPs (before the
application of quality control filters).
In parallel to the analysis of the WTTCC data, we

decided to assess our method on another dataset from a
different study. The ankylosing spondylitis (AS) dataset

Fig. 5 AUC-ROC for different cut levels in a HAC-tree of 7 WTCCC diseases after quality control filters. Each point corresponds to an AUC value
computed on a test set from a logistic ridge regression model for a given level in the constrained-HAC tree
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Fig. 6 AUC-ROC for different cut levels in a HAC-tree of the spondylitis arthritis disease (Immunochip genechip). Each point corresponds to an AUC
value computed on a test set from a logistic ridge regression model for a given level in the constrained-HAC tree

consists of the French subset of the large study of
the International Genetics of Ankylosing Spondylitis
(IGAS) study [22]. For this subset, unrelated cases were
recruited through the Rheumatology clinic of Ambroise
Paré Hospital (Boulogne-Billancourt, France) or through
the national self-help patients’ association: “Associ-
ation Française des Spondylarthritiques”. Population-
matched unrelated controls were obtained from the
“Centre d’Etude du Polymorphisme Humain”, or were
recruited as healthy spouses of cases. The dataset con-
tains 408 cases and 358 controls, and each individ-
ual was genotyped for 116,513 SNPs with Immunochip
technology.
To remove the bias induced by population stratifi-

cation in Genome-Wide analysis, we added the first 5
genomic principal components into the regression model
as described in [37]. Since the methods evaluated here do
not deal with missing values, we chose to impute the miss-
ing genotypes with the most frequent genotypic value, hj
observed for each j SNP.
For each each dataset, we filtered the values to keep

only those SNPs having a MAF greater than 5%. The

Table 1 Comparison of marker density and averaged LD level
betweenmarkers in a region of 300 SNPs for the different datasets

Dataset SNP/kb Median Mean

Simulated data 1.3 × 10−27 1 × 10−2 0.11

WTCCC data 7 × 10−32 9 × 10−4 0.03

AS data 9 × 10−9 3 × 10−2 0.27

minor allele frequencies of each datasets are represented
in Fig. 4.
We applied our cut level algorithm to find relevant

clusters of SNPs and we performed single marker anal-
ysis on single SNPs (SMA) and on groups of SNPs
(SASA, SKATtree, SKATnotree). We then compared
the significant associations detected by the different
methods to reveal possible new associations with the
phenotype.

Results in WTCCC and AS studies
AUC-ROC curves In this section, we compare the AUC-
ROC curves generated by our cut level algorithm for each
disease (WTCCC and AS data).
Concerning the WTCCC diseases, given that patients

were all genotyped using the same GeneChip, their geno-
types have the same LD structure, and therefore the
shapes of the AUC-ROC curves should be very similar
between the different diseases. As can be observed in
Fig. 5 (WTCCC diseases), the shape of the AUC-ROC
curves are closely similar, with a chosen cut level located
around 100 000 clusters of SNPs, suggesting a shared LD
pattern among patients.
In contrast, the AUC-ROC from the AS data (Fig. 6)

behaves differently from the WTCCC data. Predictive
power is substantially improved if aggregated-SNP pre-
dictors are used at a fairly high level in the hierarchical
tree (7478 optimal clusters identified by the cut level algo-
rithm). It is relevant to note that the pattern we observe
on this real dataset is similar to the pattern we observed in
the numerical simulations, especially under the clusSNP
scenario.
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As we remarked concerning the WTCCC results, the
algorithm identifies a relatively high number of clusters in
relation to AS and simulated data. This difference is cer-
tainly due to the LD level among the genetic markers in
the Affymetrix GeneChip. The correlation levels among
SNPs for a given bandwith are similar between the simu-
lated and the AS data, but greater than for the WTCCC
data (Table 1 and Fig. 7). This suggests that there is a
stronger LD pattern between blocks of SNPs in AS and
simulated data, implying that the optimal number of clus-
ters identified by the algorithm is dependent on the LD
level among variables.

GWAS analysis on AS and WTCCC datasets To eval-
uate the ability of our procedure to discover new asso-
ciations between SNPs and ankylosing spondylitis, we
compare our procedure with the univariate approach
(SMA) and SKAT model with our group definition and
arbitrary group definition (20 SNPs). For SASA, we per-
form multiple hypothesis testing on the aggregated-SNP
predictors in order to unravel significant associations with
the phenotype. Fig. 8 presents the results of the asso-
ciation analysis. For each method the logarithm of the
p-value of the different predictors is plotted along their
position on the genome (this plot is also known as Man-
hattan plot).
Either methods highlight a region on chromosome 6

strongly associated with the phenotype. This region corre-
sponds to the Major Histocompatibility Complex (MHC),
and Human Leukocyte Antigen (HLA) class I molecules
HLA B27 belonging to this region have been identified as
a genetic risk factor associated with ankylosing spondyli-
tis [38]. Our method SASA succeeds in detecting this risk
locus with a good precision, 64 aggregated-SNPs variables
are significantly associated with the phenotype compared

to 602 significantly associated SNPs with the standard
SMA approach.
For the analysis of the WTCCC datasets, we represent

the results, in Fig. 9, by plotting the expected p-value
against the observed p-value (this a plot is known as
Quantile-Quantile plot). We perform the analysis using
our approach SASA only.

Discussion
Overall,accounting for the linkage disequilibrium struc-
ture of the genome and aggregating highly-correlated
SNPs is seen to be a powerful alternative to stan-
dard marker analysis in the context of GWAS. In
terms of risk prediction, our algorithm proves to be
very effective at classifying individuals given their geno-
type, while in terms of the identification of loci, it
shows its ability to identify genomic regions associated
with a disease with a higher precision than standard
methods.
Is is also worth mentioning that our algorithm can also

accomodate imputed variables as imputation in GWAS
uses the Linkage Disequilibrium between variables to
improve the coverage of variants. Our method being
based on LD to define groups of common variants,
we expect the group structure not to be impacted by
imputation.
In this work we propose a four-step method explic-

itly designed to utilize the linkage disequilibrium in
GWAS data. Our method combines, on the one hand,
unsupervised learning methods that cluster correlated-
SNPs, and on the other hand, supervised learning tech-
niques that identify the optimal number of clusters and
reduce the dimension of the predictor matrix. We eval-
uated the method on numerical simulations and real
datasets and compared the results with standard single-
marker analysis and group-based approaches (SKATtree

Fig. 7 Comparison of linkage disequilibrium level among SNPs for 3 different types of dataset: WTCCC, simulated and ankylosing spondylitis
datasets. LD computation is based on R2 between SNPs
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Fig. 8Manhattan plots showing results of GWAS analysis on ankylosing spondylitis data. For each Manhattan plot, the Benjamini-Hochberg (BH)
threshold is represented by the blue line and the Bonferroni threshold by the red line. According to the BH threshold, there are: (a) 64 significantly
associated aggregated-SNPs; (b) 602 significantly associated single SNP; (c) 80 significantly associated groups of SNPs and (d) 138 significantly
associated groups of SNPs

and SKATnotree). We remarked that the combination
of our aggregating function with a ridge regression
model leads to a major improvement in terms of predic-
tive power when the linkage disequilibrium structure is
strong enough, hence suggesting the existence of multi-
variate effects due to the combination of several SNPs.
These results remained consistent across two applications
involving several binary traits (WTCCC and ankylosing
spondylitis datasets).
In terms of the identification of associated loci in dif-

ferent simulation scenarios, our method demonstrates its
ability to retrieve true causal SNPs and/or clusters of SNPs
with substantially higher precision coupled with a good

power. On real GWAS data, our method has been able
to recover a genomic region associated with ankylosing
spondylitis (HLA region on chromosome 6) with a higher
precision than standard single-marker analysis.
To improve our method further, while taking into

account structured input variables in GWAS, there are dif-
ferent avenues that may be explored. One avenue would
involve highlighting potential non-linear relationships
between aggregated-SNPs and a response phenotype. This
could be done by making use of the continuous nature
of aggregated-SNPs variables (in contrast to the ordinal
nature of single SNP variables), by using generalized addi-
tive models [39], and by performing non-linear regression
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Fig. 9 Q-Q plots of group-based genome-wide analysis on WTCCC data using the SASA approach. For each Manhattan plot, the Benjamini-Hochberg
(BH) threshold is represented by the green dotted line and the Bonferroni threshold by the red dashed line. (a) Bipolar disorder - 13 significant
clusters of SNPs; (b) Coronary arthery disease - 4 significant clusters of SNPs; (c) Inflammatory bowel disease - 356 significant clusters of SNPs;
(d) Hypertension - 47 significant clusters of SNPs; (e) Rheumatoid arthritis - 202 significant clusters of SNPs; (f) Type I diabetes - 358 significant
clusters of SNPs; (g) Type II diabetes - 28 significant clusters of SNPs

using natural polynomial splines. In addition, whereas
we evaluated our method for binary traits (case-control
phenotype), a possible extension might include quantita-
tive non-binary traits (i.e., using a ridge regression model
instead of logistic ridge regression).
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