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Abstract

Genomic prediction is a useful tool for plant and animal breeding programs and is starting to

be used to predict human diseases as well. A shortcoming that slows down the genomic

selection deployment is that the accuracy of the prediction is not known a priori. We propose

EthAcc (Estimated THeoretical ACCuracy) as a method for estimating the accuracy given a

training set that is genotyped and phenotyped. EthAcc is based on a causal quantitative trait

loci model estimated by a genome-wide association study. This estimated causal model is

crucial; therefore, we compared different methods to find the one yielding the best EthAcc.

The multilocus mixed model was found to perform the best. We compared EthAcc to accu-

racy estimators that can be derived via a mixed marker model. We showed that EthAcc is

the only approach to correctly estimate the accuracy. Moreover, in case of a structured pop-

ulation, in accordance with the achieved accuracy, EthAcc showed that the biggest training

set is not always better than a smaller and closer training set. We then performed training

set optimization with EthAcc and compared it to CDmean. EthAcc outperformed CDmean

on real datasets from sugar beet, maize, and wheat. Nonetheless, its performance was

mainly due to the use of an optimal but inaccessible set as a start of the optimization algo-

rithm. EthAcc’s precision and algorithm issues prevent it from reaching a good training set

with a random start. Despite this drawback, we demonstrated that a substantial gain in accu-

racy can be obtained by performing training set optimization.

Introduction

Prediction of unobserved individuals using genomic information has gained increasing impor-

tance in plant and animal breeding [1, 2]. Moreover, it is an accurate tool for prediction of

complex diseases in humans [3, 4] and is included in the precision medicine initiative [5].

Basically, a training set of individuals, the so-called training set, that is both phenotyped

and genotyped is used to train a model that is applied to predict unobserved individuals, the

so-called test set, on the basis of only genotyping data from the latter. Many methods have
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been proposed for the training model step that are included in the mixed model framework

[6, 7], in penalized regression methods [8], in Bayesian modeling [9], and in semiparametric

and nonparametric learners [10, 11]. These methods have been comprehensively compared,

and depending on the trait under study, one or another method has been shown to be more

reliable, but the best performers provide comparable accuracy rates [12, 13]. In any case, geno-

mic best linear unbiased prediction (GBLUP) [7] was shown to be competitive with more com-

plicated models. Its ease of use and its efficient computer implementation explain its

development into a reference model. Moreover, the flexibility of the mixed model framework

for modeling of nonadditive genetic factors or for incorporation of functional knowledge [14]

explains the large number of extensions of the GBLUP model.

A shortcoming that slows down the genomic selection deployment is that the accuracy of

the prediction is not known a priori and depends on a number of factors such as the size of the

training set, trait architecture (especially its heritability), density of markers, relatedness

between tests and trainings, and others. The prediction accuracy is useful for at least two pur-

poses. One of them is to decide whether genomic selection is worth applying to a crop for a

trait of interest. This accuracy is defined as the expectation of the prediction accuracy for a

training set randomly drawn in a population. The second purpose is to allow for optimization

of the training set used to predict the test individuals and must involve a quantity that

enables discrimination among several training sets, and therefore it must be defined given a

training set.

Most of the accuracy proxies have been developed for the first purpose, that is the expecta-

tion of prediction accuracy for a random training set belonging to a population. Moreover,

they have been developed by means of predictions obtained in a linear mixed model, known as

GBLUP or equivalently ridge regression best linear unbiased prediction (RR-BLUP) because

there is an analytical prediction of the genetic value in this case. Nonetheless, the first proxy

proposed by Daetwyler et al. [15] was developed within a simpler model assuming that the

genetic value is explained by a fixed number of independent quantitative trait loci (QTLs).

This seminal formula was generalized later by Goddard [16] who linked accuracy to the effec-

tive number of segments in the genome by adding the assumption that the QTL effects are

independent and identically distributed. From these two papers, different formulas have been

derived that linked the prediction accuracy to heritability h2, training population size T, the

number of markers M, and the number of effective segments in the genome Me [16–18]. Some

authors [19] compared these formulas with a meta-analysis of 13 papers in which prediction

accuracy was computed using both simulated or real data. They showed that training popula-

tion size T and the effective number of segments Me have a significant impact on the accuracy;

this situation is cause for concern because Me can be estimated in several models that yield

very different values [20]. They also demonstrated that among the different formulas, none

outperforms the others. Until recently, Goddard’s formula has continued to give rise to new

works such as the improvement proposed in [21] for the Me parameter. Nevertheless, all these

accuracy proxies derived from Goddard’s approach are based on a number of statistical and

mathematical approximations that were clearly explained in [22]. That paper highlighted the

difficulties of finding a proxy that reflects correctly the diversity of situations of training popu-

lation structures and linkage disequilibrium between markers and QTLs.

Another proxy came from Rabier et al. [20] who developed a theoretical formula of the

accuracy conditional to a given training set. In contrast to Goddard, Rabier et al [20] did not

assume the independence of the QTLs or a distribution of the QTL effects but attempted to

derive their formula using a fixed number of known causal QTLs. The major drawback of this

theoretical formula is that the QTL locations and effects have to be estimated first and plugged

into the formula to get an estimate of the prediction accuracy, that we call “EthAcc” here
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(Estimated THeoretical ACCuracy). Contrary to the above proxies that are estimates of the

expectation of prediction accuracy for a training set randomly drawn from a given population,

EthAcc is an estimator of the genomic prediction accuracy of a given training set. It could then

be used to optimize the training set to increase the accuracy by choosing the trainings that

together performed the best on the test predictions.

Panel optimization for genomic prediction was first proposed by Rincent et al [23]. They

supposed that a panel of candidates has been genotyped and that the goal is to choose the best

set to phenotype (i.e., the training individuals). The same objective was later addressed by the

authors of [24]. Both research groups proposed to perform panel optimization with a fixed size

of the training set, which is consistent when assuming a limited budget proportional to candi-

dates to be phenotyped (i.e., the training set). Moreover, the two criteria upon which they

based the optimization generally increase with the training set size, and therefore a fixed size is

necessary to obtain an optimized training set that is smaller than the whole panel of candidates.

The question of training panel optimization for the test prediction is more suitable for geno-

mic selection per se. In a breeding company, as an example, past breeding panels that have

already been phenotyped are nowadays genotyped. They constitute the resources upon which

genomic models can be trained. At the same time, new breeding resources are created and

genotyped but are still not phenotyped. These resources have to be subjected to genomic selec-

tion, and the key task is to choose the best training set from genotyped and phenotyped past

resources to optimally predict the current resources.

Materials and methods

The genomic prediction of the genetic value of test individuals was based on GBLUP [7], and

we define the accuracy of genomic prediction as Pearson’s correlation between its phenotype

and its BLUP-value for a random test individual and a given training set. We refer to this cor-

relation as the accuracy in the text below.

This accuracy is a theoretical quantity that is usually estimated using the mean of empirical

Pearson’s correlation between phenotypic values and their GBLUP for a random test set. In

statistics, this estimate is called an empirical estimate or sample estimate, but we call it the test

set (TS) accuracy in the analysis that follows. This TS accuracy can be calculated only if pheno-

types are observed in test individuals, which is the case when the TS is randomly drawn within

a dataset or obtained by a simulation process. This TS accuracy was compared to three meth-

ods that estimate the accuracy without making use of the test set phenotypic observations.

Accuracy estimated given a training set

The idea behind finding an estimate of the accuracy is to confound the causal-QTL model

which emulates the genetic value with QTLs to the model used to make the prediction of the

genetic value using markers. As we focus on the prediction obtained by GBLUP or equivalently

by RR-BLUP, this confusion means that each marker is assumed to be a QTL, and the QTL

effects are assumed to be independent and identically distributed according to a Gaussian dis-

tribution. We called this confusion “the GBLUP model of the genetic value”. In the GBLUP

model, the coefficient of determination (CD) of the genetic value of a test individual is by defi-

nition the square correlation between the genetic value and its predictor. This accuracy is

known to be linked to the accuracy involving the phenotypic value by the square root of herita-

bility [25]; thus, the first accuracy estimate is

r̂ CD ¼
1

ntest

X

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðutest;iÞ

Varðutest;iÞ þ s
2
ε

CDðutest;iÞ

s
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where utest,i is the random genetic value of the ith individual in a TS, ntest is the number of test

individuals, and s2
ε denotes the residual variance using the GBLUP model.

The second method for predicting the accuracy is based on the prediction error variance

(PEV) involving the GBLUP model. By definition, PEV is the variance of the difference

between an individual genetic value and its predictor. In the GBLUP model, it can be proved

that CovðûBLUP
test;i ; utest;iÞ ¼ VarðûBLUP

test;i Þ and so PEVðutest;iÞ ¼ Varðutest;iÞ � CovðûBLUP
test;i ; utest;iÞ,

where ûBLUP
test;i is the BLUP predictor of the ith individual. Therefore, the second accuracy esti-

mate is

r̂ PEV ¼
1

ntest

X

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Varðutest;iÞ

Varðutest;iÞ þ s
2
ε

1 �
PEVðutest;iÞ

Varðutest;iÞ

 !v
u
u
t

Both CD and PEV rely on the GBLUP model, or equivalently the RR-BLUP model [26] that

is presented here:

ytrain ¼ 1mþ Xtrainβþ ε

where μ is the global mean, 1 represents a vector of 1, Xtrain is the matrix of SNP genotypes for

individuals in the training set, and ytrain denotes their observed phenotypes. β is the vector

of SNP effects assumed to be independent and identically distributed (iid) with Gaussian dis-

tribution N ð0; s2
b
Þ, and ε is the vector of residual errors assumed to be iid with Gaussian

distribution N ð0; s2
εÞ, independent of β. Moreover, utest,i is assumed to be equal to x0

test;iβ,

where x0
test;i is the line vector of SNP genotypes for test individual i; accordingly, we get

Varðutest;iÞ ¼ s
2
b
xtest;ix0test;i.

The third method is based on the work of [20] who theoretically derived the accuracy when

QTL locations and effects are known. They developed their formula within a framework

where the RR-BLUP model serves as an instrumental approach to get β estimated values,

whereas a linear causal model with a fixed number of known QTLs is assumed to model the

phenotype as follows:

ytrain ¼ 1mþ Qtrainθ þ e

where Qtrain is the matrix of QTL genotypes for individuals in the training set, θ represents the

vector of QTL effects, and e denotes the vector of residual errors assumed to be iid with Gauss-

ian distribution N ð0; s2
eÞ. Genetic value gtest,i is assumed to be equal to q0

test;iθ, where q0
test;i is

the line vector of QTL genotypes for the ith test individual.

Using the instrumental RR-BLUP model and the causal-QTL model, they obtained the fol-

lowing theoretical formula of the accuracy for an individual randomly sampled in the test pop-

ulation:

r ¼
θ0 Eðqtest;ixtest;i 0ÞX

0

trainH
� 1Qtrainθ

ðs2
e Eðk xtest;iX

0

trainH
� 1 k2Þ þ θ0Q0trainH

� 1XtrainVarðxtest;iÞX
0

trainH
� 1QtrainθÞ

1=2
ðs2

g þ s
2
eÞ

1=2

where k.k is the L2 norm, s2
e represents the error variance in the causal model, s2

g ¼ Varðgtest;iÞ

and H ¼ XtrainX
0

train
þ

s2
ε
s2
b

I
� �

, with I denoting the identity matrix. Note that the formula is

correct if matrices of SNP genotypes are previously column centered to make them orthogonal

to μ.

To estimate ρ, all quantities depending on a random individual in the test set are replaced

by the empirical or sample estimate (i.e., the mean across test individuals). s2
e is estimated by
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the least square method in the causal-QTL model by means of genotypes and phenotypes of

training set individuals. Nevertheless, the location of QTLs and their effect have to be esti-

mated if they are unknown.

For the three accuracy estimates, variance parameters s2
ε and s2

b
are estimated by restricted

maximum likelihood (REML) using genotypic and phenotypic data of training set individuals.

Estimation of a causal-QTL model

The authors of [27] used penalized regression methods to detect the QTLs and to estimate

their effects though it is well known that penalized regression yields biased estimators of QTL

effects. In this paper, we used a two-step procedure, the first step was to locate the QTLs via

multi-QTL methods developed for a genome-wide association study (GWAS), then the QTL

effects were estimated via a classical linear model by the ordinary least square method as well

as the error variance in the causal model s2
e .

One of multi-QTL methods is the forward selection approach of the multilocus mixed

model (MLMM) proposed in [28]. A classical marker-by-marker GWAS model [29] with a

VanRaden’s kinship matrix [7] for the polygenic effect and no fixed structure effect is

employed. The forward selection approach is an iterative technique, where at each step, the

SNP with the minimum p-value is added into the model as a fixed effect, and a rescan of the

remaining SNPs is performed. The iterative procedure stops when the variance of the poly-

genic effect is close to zero, meaning that the discovered SNPs that have been added into the

model as fixed effects together explain almost all the polygenic variability. This final model

outputs the discovered SNPs as causal QTLs.

The others multi-QTL methods used penalized regressions. They were thoroughly com-

pared for GWAS by Waldman et al. [30]. Consequently, we based our choices for penalization

parameters of the least absolute shrinkage and selection operator (LASSO) and the elastic net

(EN) upon their comparisons. We computed LASSO shrinkage parameters λ by a 10-fold

cross-validation schema, and we calculated the optimal λ from the minimum mean square

error (minMSE) of the predictor and minMSE plus one standard error (1SE) of minMSE.

Recently, Yi et al. [31] proposed a false discovery rate (FDR) control to make the choice of the

λ parameter. We chose the analytical FDR control because it has been shown to perform the

best on SNP selection [31]. The EN α parameter was set to 0.5 and 0.1. To complete the penal-

ized regression methods, we added the adaptive LASSO [32] that gives the most accurate

results when QTL effects are estimated by penalized regression estimators [27].

Once causal QTLs were located, their effects were all together estimated by the ordinary

least square method via a classical linear model, as well as the error variance of this estimated

causal-QTL model. The ordinary least square method was applicable because we limited the

number of QTLs searched in function of the number of individuals. Nevertheless, in practice,

this constraint on the number of QTLs has never been applied.

Panel optimization

Panel optimization consists of choosing (within a panel of candidates) the set of training indi-

viduals that better predicts a test belonging to a population of tests. One research group [23]

proposed to use the CDmean criterion to make the choice. Later, [24] suggested to perform

the optimization on the basis of PEV. CDmean is the mean across ntest test individuals i (i.e.,

sample estimate) of the CD for contrast between individual genetic value utest,i and the popula-

tion mean (test + training individuals). The criterion on the basis of PEV is the mean across

ntest test individuals i (i.e., sample estimeate) of PEV of individual genetic value utest,i. CDmean

served as the reference for comparison with EthAcc because it has been shown to perform

Training set optimization via EthAcc
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slightly better than PEV on panel optimization [23] even for a mildly structured population

[33, 34].

The panel optimization burden was dealt with by the hill-climbing algorithm with exchange

moves that was proposed in [23]. We did not implement a stopping criterion to always per-

form a given number of exchange moves. The number of exchange moves was set to 5000.

The starting training set of the hill-climbing algorithm for both criteria was the optimal

training set found by maximization of the TS accuracy, i.e., we found the training set that gave

a maximum for the mean correlation between GBLUP and the observed phenotypes of the test

individuals. This maximization of the TS accuracy was possible because the TS was randomly

drawn within the whole dataset, and therefore test individuals had phenotypes. Having this set

as a start of the algorithm prevents it from getting stuck in a local maximum that is far from

the maximum of the TS accuracy. Starting with this optimal training set, we were able to mea-

sure how the different criteria will degrade the maximum of the TS accuracy, in other words,

how big the decrease in accuracy (caused by each criterion) will be.

Fig 1 resumes the optimization process for a random sampling of the test set.

For CDmean calculation, the variance components of the RR-BLUP model, s2
ε and s2

b
, were

estimated by REML with the entire candidate panel to obtain the most precise estimated val-

ues. The causal-QTL model of EthAcc was discovered by the forward selection approach of

MLMM applied to the current training set. It was thus re-evaluated at each new training set.

At the end of the optimization burden, the TS accuracy was computed via the RR-BLUP

model trained on the respective optimal training set of each criterion.

Simulation implementations

Method comparisons were made by randomly drawing a TS within the whole panel. Unless

precise, 20% of the panel served as a TS and the remaining individuals were the candidates or

the largest training set when we did not perform training set optimization. To ensure accurate

comparisons, the TS accuracy and the accuracy estimates were computed on the same TS. The

results were obtained for 30 random TS draws.

Predicted genetic values of TS individuals were obtained by estimating SNP effects with the

training set by means of the mixed.solve function of R package rrBLUP https://cran.r-project.

org/web/packages/rrBLUP/index.html. This function was also applied to compute CD, PEV,

and CDmean via our own R code.

The R code for computing EthAcc (from a training set that is genotyped and phenotyped

and a test set that is only genotyped) is given in S1 File. We used our own R code, which was

rewritten based on Segura’s code [28] and that is now available on CRAN https://cran.r-

project.org/web/packages/mlmm.gwas/index.html, to implement the forward selection

MLMM approach. The glmnet R package https://cran.r-project.org/web/packages/glmnet/

index.html was used to perform localization of QTLs by penalized regression methods. The

parcor R package https://cran.r-project.org/web/packages/parcor/index.html with the parame-

ter of cross-validation set to 5 was used to perform adaptive LASSO.

To avoid computation issues, SNP filtration on minor allele frequency (MAF) was carried

out. All code can be provided on request.

Plant material

Maize data has been downloaded from http://www.genetics.org/content/suppl/2012/08/03/

genetics.112.141473.DC1. Sugar beet, sunflower and wheat data are available at https://lipm-

browsers.toulouse.inra.fr/pub/Mangin2018-PlosOne/

Training set optimization via EthAcc

PLOS ONE | https://doi.org/10.1371/journal.pone.0205629 February 19, 2019 6 / 21

https://cran.r-project.org/web/packages/rrBLUP/index.html
https://cran.r-project.org/web/packages/rrBLUP/index.html
https://cran.r-project.org/web/packages/mlmm.gwas/index.html
https://cran.r-project.org/web/packages/mlmm.gwas/index.html
https://cran.r-project.org/web/packages/glmnet/index.html
https://cran.r-project.org/web/packages/glmnet/index.html
https://cran.r-project.org/web/packages/parcor/index.html
http://www.genetics.org/content/suppl/2012/08/03/genetics.112.141473.DC1
http://www.genetics.org/content/suppl/2012/08/03/genetics.112.141473.DC1
https://lipm-browsers.toulouse.inra.fr/pub/Mangin2018-PlosOne/
https://lipm-browsers.toulouse.inra.fr/pub/Mangin2018-PlosOne/
https://doi.org/10.1371/journal.pone.0205629


Sugar beet. A panel of 2101 elite lines of diploid sugar beet (Beta vulgaris L.), which

resulted from many different crosses in Florimond Desprez’s breeding program, was analyzed.

Testcross progenies of these lines were evaluated in unbalanced multienvironment trials for

seven traits: the white sugar yield (WSY, t/ha), sugar content (S, %), white sugar content

(WS, %), the root yield (RY, t/ha), potassium content (K, meq/100 g), sodium content (Na,

meq/100 g), and α-amino nitrogen content (N, meq/100 g). The sugar beet panel was finger-

printed with 836 SNP markers, but the panel was analyzed with 692 SNPs after filtration for

MAF and missing data (see details in S1 File). The structure of subpopulations in this panel

was then studied. We applied hierarchical clustering to principal components using the Facto-

MineR package https://cran.r-project.org/web/packages/FactoMineR/index.html [35] in R

software to assign each individual to a subpopulation after principal component analysis

(PCA). The HCPC function of the FactoMineR package implements this calculation after hav-

ing constructed the hierarchy and suggests an optimal level for division.

Fig 1. Illustration of the sampling and of the optimization process that were implemented to compare CDmean and EthAcc criteria.

https://doi.org/10.1371/journal.pone.0205629.g001
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Sunflower. Sunflower data covered hybrids obtained by crossing 36 restorer of CMS

PET1 male sterility lines serving as males to 36 maintainer lines as females in an incomplete

factorial as described elsewhere [36]. Hybrid genotyping data were obtained from the whole-

genome sequencing of their parents. A total of 468 194 nonredundant SNPs passed the differ-

ent filters [36] and were used to compute their kinships. The phenotype trait, adjusted for field

effects [36], was oil content in the 13EX01 environment with nonmissing data on 272 hybrids.

The test set was compiled by randomly sampling seven parents among the 72 parents

(roughly 10%), and we placed all their descendants in the test set. This sampling produced a

test set consisting of only T1 or T0 hybrids, as described by authors in [37], which have been

shown to be difficult to predict because they are more distant from the possible training sets

[36].

Maize. The two maize diversity panels employed in this study are some lines of the Flint

and Dent panels that passed the genotyping and phenotyping filters described in [23]. Each

panel is composed of 261 lines, genotyped for 30 027 and 29 094 markers for the Dent and the

Flint lines, respectively, and crossed to a tester belonging to the other panel for hybrid pheno-

typing. Two traits were analyzed: the mean of male flowering time (Tass_GDD6) and the plant

dry matter yield (DM_Yield) that were observed in 2010 at four or five locations in Europe.

Wheat. A sample of 296 bread wheat accessions was employed for this study. This sample

is a part of the INRA bread wheat core collection of 372 accessions (372CC) set up by [38].

Each accession was genotyped for 2013 markers (SSR, DArT, and SNP) covering the whole

genome [39, 40]. The SSR markers were transformed into biallelic markers by considering the

different alleles independently. Each accession was phenotyped for heading date (day of year,

DOY) in Clermont-Ferrand (France) in 2005. For this purpose, 10 seeds of each accession

were sown in a single row on 27 October 2004. Ear emergence day of the main tiller of five to

six individual plants was recorded when half of the ear had emerged from the flag leaf. The

numbers were averaged to obtain the heading date for each accession [40].

Results

EthAcc as an accurate estimate of the accuracy

The theoretical accuracy formula proposed by Rabier et al [20] was shown by simulation to be

an accurate predictor of the accuracy when causal-QTLs are known. Nevertheless, the QTL

estimation step may have destroyed this desirable property. Thus, we studied the ability of

EthAcc to predict the accuracy.

How to estimate the causal QTLs for EthAcc?. The question of the best choice of the

QTL detection methods necessary for EthAcc computation was addressed first. Method com-

parisons were made by randomly drawing a TS within the whole sugar beet panel. The mean

accuracy and mean square error (MSE) as compared to the TS accuracy, were computed based

on 100 random TSs for each trait. All traits were well predicted with the mean accuracy rang-

ing from 0.59 for α-amino nitrogen content (N) to 0.76 for sugar content (S), white sugar con-

tent (WS), and sodium content (Na). The most important trait for breeding, the white sugar

yield (WSY), was predicted with the accuracy 0.60 (Table 1). Results clearly highlighted

MLMM forward selection as the best choice for locating causal QTLs to be plugged into

EthAcc. Whatever the trait that was considered, the MLMM QTL search outperformed all the

other methods tested (lowest MSE). The influence of the criterion used to choose the LASSO

shrinkage parameter seems to be the most important factor in the ranking of penalized regres-

sion methods. After the best performer (MLMM), the penalized regression methods are classi-

fied by, first, the criterion of minimum MSE plus one standard error (Lasso.1se, EN05.1se,

EN01.1se), then the minimum MSE criterion (Lasso.min), and finally the FDR criterion
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(EN05.FDR). The adaptive LASSO was ranked between penalized regresions using the best cri-

terion (.1se) and the second one (.min). For the WSY trait (which is one of the most difficult

traits to predict) having the accuracy of 0.60 on average, the MLMM method reached the low-

est MSE (2.13 10−3), whereas the EN05.FDR method was fivefold worse, with the highest MSE

(1.09 10−2).

EthAcc behavior shows that “bigger is not always better”. The structure of the sugar

beet panel was analyzed to assess the influence of population structure on the accuracy of pre-

diction. The optimal cluster number of the hierarchical clustering in PCA [35] was set to 2.

Sugar beet lines were represented in the first two principal components (see Fig A in S1 File).

Clusters contained respectively 676 (Panel_A) and 1425 lines (Panel_B).

We addressed the question of whether it is better to train a model within a cluster or by

means of the two clusters for prediction of a TS belonging to a unique cluster. We also com-

pared EthAcc to the two other estimators of the accuracy: CD and PEV. TSs were randomly

drawn specifically in a unique cluster (20% of the cluster size), and the model was trained

either with all the remaining individuals of this cluster or with the remaining individuals of the

whole panel (i.e., both clusters). Results on the mean accuracy among 100 randomly drawn

TSs together with EthAcc, CD, and PEV means for each trait are presented in Table 2. When

the TS belonged to Panel_A, it was better to include in the training set only the remaining indi-

viduals of Panel_A (i.e., 540 individuals) rather than adding all individuals of Panel_B (i.e.,

1425 individuals). Indeed, whatever the trait analyzed, the mean accuracy was higher when

both trainings and tests belonged to the same cluster, even if training sets were smaller (540 vs

1965 individuals). The increase in accuracy reached 14% (α-amino nitrogen content) and was

of 5% on average among all the traits, while the training set was more than threefold smaller.

Opposite results were obtained in the other cluster (Panel_B). In this case, the mean accuracy

was always higher when all the remaining individuals from both clusters were used. The

increase in the training set size (1140 vs 1816 individuals) led to an 8% increase in the accuracy

on average among all the traits. The largest increase, 19%, was obtained for WSY with the

mean accuracy of 0.640 when the training set was composed of individuals belonging to both

Table 1. The accuracy and MSE of EthAcc compared to the TS accuracy according to several methods for estimation of causal QTLs on different traits (mean over

100 random test-training sets).

Traita Mean accuracy Mean Square Error

MLMM Lasso.minb Lasso.1se EN05.1sec EN01.1se EN05.FDR adp.Lassod

K 0.74 6.70 10−4 1.77 10−3 9.28 10−4 8.84 10−4 8.76 10−4 4.19 10−3 1.37 10−3

Na 0.76 4.86 10−4 1.41 10−3 5.96 10−4 5.75 10−4 6.59 10−4 3.67 10−3 9.72 10−4

N 0.59 1.50 10−3 5.37 10−3 2.68 10−3 2.74 10−3 2.90 10−3 1.60 10−2 3.94 10−3

S 0.76 6.28 10−4 1.36 10−3 7.31 10−4 6.99 10−4 8.56 10−4 7.20 10−3 1.06 10−3

WS 0.76 5.35 10−4 1.51 10−3 7.03 10−4 7.56 10−4 1.04 10−3 5.62 10−3 1.14 10−3

RY 0.72 9.56 10−4 2.24 10−3 1.06 10−3 1.05 10−3 1.02 10−3 1.05 10−2 1.69 10−3

WSY 0.60 2.13 10−3 5.43 10−3 2.48 10−3 2.24 10−3 2.28 10−3 1.09 10−2 3.96 10−3

Mean 0.70 9.86 10−4 2.73 10−3 1.31 10−3 1.28 10−3 1.38 10−3 8.28 10−3 2.02 10−3

a potassium content in meq/100 g (K), sodium content in meq/100 g (Na), α-amino nitrogen content in meq/100 g (N), sugar content in % (S), white sugar content in %

(WS), the root yield in t/ha (RY), and the white sugar yield in t/ha (WSY)
b .min, .1se, and .FDR: choice of the LASSO shrinkage parameters λ based on the minimum MSE of the predictor (minMSE), minMSE plus one standard error (1SE) of

minMSE and FDR, respectively
c ENx: EN with its α parameter equal to x,
d adp.Lasso: adaptive LASSO,

https://doi.org/10.1371/journal.pone.0205629.t001
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clusters, whereas the mean accuracy was only of 0.536 when the training set was composed

only of individuals belonging to Panel_B.

The comparison of the three estimators of the accuracy highlighted the correct behavior of

EthAcc and showed that both CD and PEV are not accurate. The mean accuracy was correctly

estimated by EthAcc, whereas CD and PEV were very close and generally overestimated the

mean accuracy. Contrary to CD and PEV, EthAcc was the only estimator showing that the big-

ger training set was not always better for all the traits; this result was consistent with the mean

accuracy. We performed a mean test comparison of the three estimators for their ability to

evaluate the TS accuracy via the standard error correction proposed by [41] to take into

account the dependencies of the sampled TSs (see the standard error correction and the test

p-values in Table A in S1 File). Accuracy values estimated by CD and PEV were found to be

significantly different (5% error risk) from the TS accuracy for all the traits and all the test-

Table 2. The accuracy and its values estimated by EthAcc, CD, and PEV using sugar beet structures in two clusters (Panel_A and Panel_B) on several traits (the

mean for 100 random test sets).

Traita Test setb Training setb Mean accuracy Estimated by

EthAcc CD PEV

K Panel_A Panel_A+B 0.712 0.696 0.818 0.818

K Panel_A Panel_A 0.742 0.734 0.823 0.824

Na Panel_A Panel_A+B 0.660 0.675 0.815 0.815

Na Panel_A Panel_A 0.689 0.676 0.776 0.777

N Panel_A Panel_A+B 0.500 0.552 0.744 0.745

N Panel_A Panel_A 0.571 0.588 0.678 0.680

S Panel_A Panel_A+B 0.665 0.684 0.851 0.851

S Panel_A Panel_A 0.682 0.690 0.801 0.802

WS Panel_A Panel_A+B 0.680 0.691 0.851 0.851

WS Panel_A Panel_A 0.700 0.698 0.809 0.810

RY Panel_A Panel_A+B 0.654 0.655 0.826 0.827

RY Panel_A Panel_A 0.688 0.699 0.790 0.792

WSY Panel_A Panel_A+B 0.583 0.562 0.735 0.735

WSY Panel_A Panel_A 0.597 0.603 0.702 0.703

K Panel_B Panel_A+B 0.752 0.780 0.887 0.888

K Panel_B Panel_B 0.714 0.715 0.788 0.789

Na Panel_B Panel_A+B 0.802 0.814 0.895 0.895

Na Panel_B Panel_B 0.773 0.769 0.814 0.815

N Panel_B Panel_A+B 0.637 0.669 0.869 0.869

N Panel_B Panel_B 0.567 0.560 0.733 0.734

S Panel_B Panel_A+B 0.800 0.813 0.899 0.900

S Panel_B Panel_B 0.759 0.757 0.817 0.818

WS Panel_B Panel_A+B 0.798 0.813 0.902 0.903

WS Panel_B Panel_B 0.759 0.754 0.820 0.822

RY Panel_B Panel_A+B 0.750 0.779 0.887 0.888

RY Panel_B Panel_B 0.703 0.696 0.783 0.785

WSY Panel_B Panel_A+B 0.640 0.644 0.865 0.865

WSY Panel_B Panel_B 0.536 0.527 0.678 0.680

a potassium content in meq/100 g (K), sodium content in meq/100 g (Na), α-amino nitrogen content in meq/100 g (N), sugar content in % (S), white sugar content in %

(WS), the root yield in t/ha (RY), and the white sugar yield in t/ha (WSY)
b cluster(s) to which the individual belongs

https://doi.org/10.1371/journal.pone.0205629.t002
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training panels (min p-value of 10−21, max p-value of 4 10−2), whereas the accuracy estimated

by EthAcc was never deemed significantly different (min p-value of 6 10−2, max p-value of

0.99). The worse case for EthAcc, i.e., where EthAcc and the TS accuracy showed the largest

difference, involved the root yield (RY) trait, a test set in Panel_B, and a training set belonging

to both clusters. Nonetheless, on average among all the traits and all the test-training configu-

rations, the accuracy estimated by EthAcc and that obtained on average seemed very close

(mean p-value of 0.64).

We showed that on average, the biggest training set is not always the best to make a predic-

tion in a structured population. This conclusion is also valid for a test set in a nonstructured

population, as is the case for the sunflower hybrid population. Fig 2 presents a test set of T1 or

T0 hybrids having a training set of 77 hybrids that yielded a TS accuracy of 0.745, whereas the

TS accuracy with all the 218 hybrids as trainings is 0.722. This is not a great difference, but it

indicates that in a particularly homogenous population that has not evolved, a training set

adapted to the tests to be predicted can perform better than a bigger panel.

Comparison of EthAcc and CDmean for training set optimization

Fig 3 depicts the comparison of the accuracy for optimization based on EthAcc with that based

on CDmean. It is worth remembering that what is shown in this figure is the degradation pro-

duced by CDmean and EthAcc of the maximum of the TS accuracy because the starting point

of the hill-climbing algorithm for the two criteria is the training set giving the maximum of the

TS accuracy. In all the cases, EthAcc yielded a smaller decrease in prediction accuracy than

CDmean did. This result is expected because EthAcc estimates the accuracy via a model with a

fixed number of QTLs whereas CDmean estimates the accuracy by means of a model with as

many QTLs as markers, moreover assuming that QTL effects are Gaussian distributed.

Toward an understanding of differences between EthAcc and CDmean

To illustrate the difference in optimized training sets when we optimized the trainings using

EthAcc or CDmean, we chose the test set that manifested the biggest difference in the TS accu-

racy values. This test set involved the Flint panel for the DM_Yield trait and a fixed training set

size of 50 individuals. Its TS accuracy was 0.07 and 0.76 when CDmean or EthAcc, respec-

tively, served as the optimization criterion. Fig 4 depicts these optimized training sets in a net-

work representation. The kinship matrix that was employed to build the (0-1) network was

VanRanden’s kinship matrix subject to a threshold equal to 0.77 (i.e., individuals were linked

in the network if their kinship was greater than 0.77).

Results shown in Fig 4 clearly indicate that the optimization with the EthAcc criterion on

the one hand and CDmean criterion on the other hand did not select the same individuals into

their training sets to predict the same test set. This difference in selection can explain the

extreme difference in the accuracy that was observed with the two training sets. Only 11 indi-

viduals out of 50 were identical between EthAcc and CDmean, represented by yellow circles in

Fig 4. CDmean chose mostly individuals in the training set that are directly or indirectly linked

in the network to individuals in the test set (i.e., kinship coefficient > 0.77). Only three indi-

viduals that were less related to the test set were selected. In contrast, EthAcc selected fewer

individuals with high kinship coefficients toward test set individuals. Indeed, 18 out of 50 indi-

viduals belonging to the training set were unlinked in the network to the individuals of the test

set. To delve deeper into what happened, we compared the causal QTLs detected by the for-

ward selection approach of MLMM in the two training sets previously optimized by CDmean

and EthAcc. Eight and five SNPs were detected with the EthAcc and CDmean training sets,

respectively. Among the eight SNPs detected in the EthAcc training set, a single SNP was rare
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in the training set (MAF lower than 10% in the training set), whereas three out of five of the

SNPs detected in the CDmean were rare (see Tables B and C in S1 File). The reduction in

training set diversity caused by the CDmean criterion resulted in GWAS signals for rare SNPs

and a prediction with the highest weights on those rare SNPs and on their linked SNPs. To

confirm this observation, PCA was conducted with the detected SNPs and with all the SNPs

for comparison. All individuals (test, training, and the remaining individuals) were projected

onto the first two principal components (Fig 5), but test individuals were not used in the

Fig 2. SUNRISE hybrids obtained from 36 maintainer lines (females, rows) crossed to 36 restorer lines (males, columns).

Parental lines are arranged according to the hierarchical clustering based on VanRaden’s kinship matrices. Black squares indicate

the 54 T0 or T1 hybrids in the test set, red squares are the 77 training individuals, and grey squares are hybrids that were among

candidates but were not chosen to be in the training set.

https://doi.org/10.1371/journal.pone.0205629.g002
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analysis to construct components. We can see that the detected SNPs of the CDmean training

set clearly structured the panel by reducing diversity with relatedness, in contrast to the

detected SNPs of the EthAcc training set, which did not emphasize any structure.

Issues with training set optimization via EthAcc

Even though EthAcc performs quite well when the starting set of optimization is the optimal

training set, we had to face numerical and algorithmic problems when performing optimiza-

tion with a random training set as start.

One of these problems was due to what seems to be overparametrization of the step of

learning causal QTLs. The causal QTLs were learned with MLMM for each new training set,

and some false positive training sets were always produced by the optimization process (i.e., a

training set with a high EthAcc value, close to 1, but low TS accuracy). We found a solution to

this problem. Indeed, we observed that all false positive training sets yielded a high variance of

the TS predicted genetic values. Because this variance is evaluated in the estimated causal-QTL

Fig 3. A significant increase in the TS accuracy produced by training set optimization with EthAcc compared to CDmean for several training set sizes and different

datasets. The optimal (but inaccessible without test phenotypes) training set is the starting set of the optimization process. The black boxplot corresponds to the largest

training set. A) WSY within sugar beet Panel_A. B) DOY for wheat. C) DM_Yield within the Dent panel. D) DM_Yield within the Flint panel. E) Tass_GDD6 within the

Dent panel. E) Tass_GDD6 within the Flint panel. Boxplots were constructed from 30 random test sets representing 20% of the whole panel.

https://doi.org/10.1371/journal.pone.0205629.g003
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model, it seems that for a given test set, we can always find a training set that produces high

dispersion of the TS genetic values. A solution was then to reduce the original phenotype to a

variance of one and to prevent EthAcc from reaching these training sets by means of a con-

straint on this TS genetic value variance (by requiring that it is strictly less than 1). In other

words, we forbided EthAcc from estimating a genetic variance greater than the phenotypic

variance.

The second problem is an algorithmic problem, as illustrated in Fig 6. This is a plot of the

EthAcc values of training sets computed during the hill-climbing algorithm with 20 000

moves. The same TS was chosen for the optimization process with five random training sets

and the optimal one, as starting sets. The hill-climbing moves are represented by red circles

and the other moves (except those that are discarded due to the constraint) are plotted as grey

triangles. It is clear that despite five random starts, each with 20 000 moves, the maximum

value of EthAcc is not yet reached. Finding the training set that maximizes EthAcc is a

Fig 4. Network representation to highlight the differences in optimized training sets obtained with EthAcc and

CDmean as optimization criteria. The data involve a test set of the Flint panel for the DM_Yield trait. This test set

had the accuracy of 0.07 and 0.76 when we used as training sets those optimized by CDmean and EthAcc, respectively.

The network representation is based on VanRanden’s kinship matrix containing 25 682 SNPs subject to a threshold

equal to 0.77 (i.e., individuals were linked in the network if their kinship coefficient was greater than 0.77). Individuals

belonging to the test set, the training set optimized via EthAcc, the training set optimized via CDmean, the intersection

of the two training sets, and the remaining set are black, red, green, yellow, and white circles, respectively.

https://doi.org/10.1371/journal.pone.0205629.g004
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Fig 5. The first principal component plane based on SNP markers: A) SNPs detected by the MLMM forward selection approach in the training set

optimized by EthAcc, B) SNPs detected by the MLMM forward selection approach in the training set optimized by CDmean, C) all SNPs with MAF greater

than 0.05. Test set individuals were projected onto the plane but were not included in the computation of PCA axes. The test set is from the Flint panel for the

DM_Yield trait. This test set had the accuracy of 0.07 and 0.76 when we used as training sets those optimized via CDmean and EthAcc, respectively. Individuals

belonging to the test set, the training set optimized via EthAcc, the training set optimized via CDmean, the intersection of the two training sets, and the

remaining set are plotted as black, red, green, yellow, and white circles, respectively.

https://doi.org/10.1371/journal.pone.0205629.g005
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combinatorial optimization that is really difficult to solve due to the causal-QTL learning step.

Other algorithms could have been tested [42]; however, the results would have been almost the

same because the optimal training set seems to be very specific.

Moreover, the precision of EthAcc is variable: even though we obtained an average mean

square error close to 10−3, some training sets yielded an absolute difference between EthAcc

and the TS accuracy greater than 0.5. Such a huge difference, due to the QTL estimation step

Fig 6. Hill-climbing moves for the optimal (but inaccessible without test phenotypes) training set (first column) and five random training sets

serving as starts. Red circles denote the training sets that produced an increase of the current EthAcc value, and grey triangles represent the training sets

that did not increase the current EthAcc value. A total of 20 000 moves represented each start.

https://doi.org/10.1371/journal.pone.0205629.g006
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and the simple linear QTL model of the phenotype, prevents the algorithm from reaching

obviously desirable training sets: those with both a high EthAcc value and TS accuracy.

Discussion

We have compared several estimates to infer the accuracy of GBLUP for a given training set

(i.e., Pearson’s correlation between the observed phenotype and the predicted genetic value of

tests given a training set genotyping). We demonstrated that neither CD- nor PEV-based accu-

racy estimators are accurate. The reason is that both implied that the causal-QTL model,

which emulates the genetic value, is identical to the linear mixed marker model that enables

making the prediction. This model equality implies that each marker is a QTL and that the

QTL effects are independent and identically distributed according to a Gaussian distribution.

These assumptions on QTL effects (and thus on the genetic value) are asymptotically correct

in the pedigree mixed model because it is proved to be the consequence of random draws of

individuals in a lineage and an infinite number of equal and additive loci [43]. On the other

hand, to estimate the accuracy precisely, the essential missing information is the identical-by-

descent status of alleles at the causal loci between the test and the training individuals. This

missing information has to be reflected by the marker-based kinship matrix, and a lot of

research has been published regarding improvement of this kinship estimation [14, 44, 45]. In

contrast to this way of thinking stuck in the mixed model framework, Rabier et al. [20] pro-

posed an estimate of the accuracy by working in an instrumental mixed marker model to pre-

dict the genetic value and a causal fixed linear model to emulate the genetic values. Into their

theoretical accuracy formula, we plugged the location and the SNP effect estimated by the for-

ward MLMM approach [28]. Thus, we showed on real data that we obtained an accurate esti-

mate of the accuracy (MSE of 10−3 on average among sugar beet traits).

Having an estimate of the accuracy for a given training set requires knowledge of the geno-

typing of the training set but allows researchers to easily obtain an estimate of the expectation

of the accuracy for a training set randomly drawn in a population. Indeed, this accuracy expec-

tation can be calculated by performing random draws of training sets and taking the mean.

This accuracy expectation was the goal of the different formulas derived from the works of [15,

16]. Via estimation of the QTL locations and effects, the authors of [27] compared the expecta-

tion of the theoretical accuracy to these analytical formulas and found that the former per-

formed better than the other formulas. The most important issue with the theoretical accuracy

formula is the estimation of the causal-QTL locations and effects. The authors of [27] com-

pared different penalized regression methods and revealed that adaptive LASSO [32] per-

formed the best. We also compared different methods by plugging them into the theoretical

accuracy formula, but in contrast to [27], we did not use the penalized regression estimators of

the QTL effects because they are known to be biased. We used a two-step procedure to avoid

this bias, whereas MLMM and penalized regression methods were employed to locate the

QTLs, and their effects were estimated by classical ordinary least square methods. We based

our choice to locate the QTLs on the comparison implemented by [30] for GWAS, and we

added the analytical FDR control because it has been shown to perform the best on SNP selec-

tion [31], MLMM [28] and adaptive LASSO [32]. We ranked EN (except with the FDR con-

trol) before LASSO in terms of mean squared error as compared to the TS accuracy. Adaptive

LASSO was ranked after penalized regressions that based their choice for the LASSO skrinkage

parameter on the criterion of minimum MSE plus one standard error; however, MLMM was

the best performer.

Accordingly, the theoretical accuracy with QTL locations obtained by MLMM was named

EthAcc for Estimated THeoretical ACCuracy. We proposed R code to compute EthAcc that
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does not involve Henderson’s mixed model equations, as opposed to [23] and [33], but made

all the calculations based on the ridge regression matrix H ¼ XtrainX
0

train
þ

s2
ε
s2
b

I
� �

, where Xtrain

is a matrix of genomic information of training individuals. The reason is the necessity to have

an invertible kinship matrix to use Henderson’s equations, which is not the case for VanRa-

den’s kinship matrix. When not invertible, the kinship matrix is generally projected on the

cone of positive–definite matrices which create computation approximations. Moreover, Hen-

derson’s equations are effective when the size of recorded data is huge as compared to the

training set size, which is generally the case in animal breeding evaluation as the data are

recorded on females while the males are evaluated. By contrast, in plant breeding, there is gen-

erally one record per individual on evaluation; therefore, it is simple and more effective to use

ridge regression matrix H. Nevertheless, EthAcc can also be computed via Henderson’s equa-

tions; this approach makes sense when the kinship matrix is not a marker-based matrix.

EthAcc allows us to perform optimization of training individuals to predict and we com-

pared it to training set optimization with CDmean [23]. EthAcc clearly outperformed CDmean

on all the real data we tested (sugar beet, maize, and wheat). Nonetheless, this performance

was due to the fact that we started the optimization burden with the optimal training set by

means of the test set phenotypes to find it. Close to this optimal training set, EthAcc finds a

good training set (because it is an accurate estimate of the accuracy), whereas CDmean chose a

training set that strongly decreases the maximum of the TS accuracy by increasing the related-

ness of individuals. In contrast, with a random training set as start, algorithmic and precision

issues prevent EthAcc from reaching good training sets and despite a lot of attempts we did

not succeed in making EthAcc perform correct training set optimization. Certainly, we could

have performed optimization with a more effective algorithm than the hill-climbing algorithm

or we could have increased the number of hill-climbing moves. MLMM is a long CPU software

application, especially with a high number of markers but it could be replaced by the best

penalized regression which is much faster and therefore allows much more moves. Neverthe-

less, the crucial point is the precision of EthAcc. Indeed, a MSE of 10−3 on average is not a

guarantee of having a close estimate of the accuracy. During the optimization process,

some training sets were mostly overestimated then yielding false positive training sets. The

precision of the theoretical accuracy—with known causal-QTL locations and effects—was

shown to be much higher [20, 27]. This finding suggests that the QTL localization should be

improved. Adding functional information such as candidate genes, metabolic networks,

and transcription factors may help to explore various ways to facilitate the QTL localization by

limiting the search to fragments of the genome that are known to be involved in the trait of

interest. Nevertheless, the task of funding causal genome fragments is daunting, and if there

are too many missing causal regions, a decrease in accuracy can be observed, as in sunflower

hybrids when the oil metabolic network is used to predict oil content [36]. EthAcc is derived

from a linear additive causal-QTL model. This simple model can be made more real by model-

ing the interaction between causal QTLs. A more generalized theoretical formula has to be

devised in such a model, but the procedure developed in [20] can be applied without any

difficulty.

Despite the drawbacks of EthAcc, we illustrated that a substantial gain in accuracy can be

obtained by performing training set optimization (up to 100% in the Flint maize panel with a

yield). This accomplishment is quite different from the small differences among all the pub-

lished methods for improving prediction (i.e., linear mixed models, penalized regression anal-

yses, Bayesian methods, and nonparametric models). Such an increase in accuracy is worth the

time spent on work on training set optimization, in particular with a complex and highly
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polymorphic trait. Moreover, we showed that increasing the training population size does not

always lead to better performance relative to optimization of the training set.
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MAF of SNPs detected using MLMM in the training set optimized via EthAcc and Table C:
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