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Introduction: Arbuscular mycorrhizal (AM) symbiosis between soil fungi and the majority
of plants is based on a mutualistic exchange of organic and inorganic nutrients. This takes
place inside root cortical cells that harbor an arbuscule: a highly branched intracellular
fungal hypha enveloped by an extension of the host cell membrane—the perifungal
membrane—which outlines a specialized symbiotic interface compartment. The
perifungal membrane develops around each intracellular hypha as the symbiotic fungus
proceeds across the root tissues; its biogenesis is the result of an extensive exocytic
process and shows a few similarities with cell plate insertion which occurs at the end of
somatic cytokinesis.

Materials and Methods: We here analyzed the subcellular localization of a GFP fusion
with TPLATE, a subunit of the endocytic TPLATE complex (TPC), a central actor in plant
clathrin-mediated endocytosis with a role in cell plate anchoring with the parental
plasma membrane.

Results: Our observations demonstrate that Daucus carota and Medicago truncatula
root organ cultures expressing a 35S::AtTPLATE-GFP construct accumulate strong
fluorescent green signal at sites of symbiotic interface construction, along recently
formed perifungal membranes and at sites of cell-to-cell hyphal passage between
adjacent cortical cells, where the perifungal membrane fuses with the plasmalemma.

Discussion: Our results strongly suggest that TPC-mediated endocytic processes are
active during perifungal membrane interface biogenesis—alongside exocytic transport.
This novel conclusion, which might be correlated to the accumulation of late endosomes
in the vicinity of the developing interface, hints at the involvement of TPC-dependent
membrane remodeling during the intracellular accommodation of AM fungi.

Keywords: arbuscular mycorrhizas,Medicago truncatula,Daucus carota, endocytosis, symbiosis, live cell imaging,
confocal laser scanning microscope, transmission electron microscope
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INTRODUCTION

Arbuscular mycorrhizal (AM) symbiosis with Glomeromycotina
fungi supports life of most land plants, including the majority of
crop species, providing their roots with a more efficient access to
soil nutrients (Gutjahr and Parniske, 2013). In change, host
plants share with their symbiotic fungi up to 20% of
photosynthesis-derived carbon, in form of sugars and lipids
(Bago et al., 2002; McLean et al., 2017). This nutrient exchange
takes place in highly branched hyphae, called arbuscules, that are
accommodated inside the living root cells (Gutjahr and Parniske,
2013). This intimate intracellular interaction is achieved through
the assembly of a novel host cell compartment, called the
symbiotic interface (Gutjahr and Parniske, 2013).

Enveloped by the perifungal membrane, a specialized
extension of the host plasmalemma (Pumplin and Harrison,
2009), the symbiotic interface surrounds intracellular hyphae
and arbuscules with plant cell wall-related compounds.

Furthermore, live cell investigations have revealed how the
symbiotic interface is assembled within the prepenetration
apparatus (PPA), a broad cytoplasmic aggregation (Genre
et al., 2005; Genre et al., 2008), where the secretory process is
focused and coordinated (Genre et al., 2012).

We have recently demonstrated that root colonization by AM
fungi is associated with cell cycle reactivation (Carotenuto et al.,
2019a; Carotenuto et al., 2019b), suggesting that symbiotic
interface biogenesis could evolutionarily and developmentally
be related to cell plate assembly (Russo et al., 2019).

Indeed, analogous cellular features have been described for the
two processes. Firstly, the composition of the interface materials has
been described as largely analogous to that of the cell plate, the non-
structured cell wall that divides daughter cells at the end of mitosis
(Balestrini and Bonfante, 2005; Balestrini and Bonfante, 2014).
Secondly, ultrastructural details of the PPA aggregate present
remarkable similarities with the organization of subcellular
compartments during cell plate assembly (Genre et al., 2012).
This includes the concentration of Golgi stacks and proliferation of
trans-Golgi membranes (Genre et al., 2012). In this frame, the
occurrence of late endosomes/multivesicular bodies (MVB) in the
PPA aggregate has raised the question whether the PPA-driven
exocytic activity could be associatedwith endocytic processes (Genre
et al., 2008; Genre et al., 2012). Indeed, the massive exocytic process
directed to the cell plate by phragmoplast microtubules during plant
cell division (Lee and Liu, 2013; Boruc and Van Damme, 2015) is
associated with extensive endocytic recycling of surplus membrane
(Backues et al., 2007). In fact, a key actor of the endocytic process—
the adaptin-related protein TPLATE, a subunit of the octameric
TPLATE adaptor complex (TPC), has been shown to accumulate on
both the cell plate membrane and the plasmalemma at the cortical
division zone surrounding the cell plate insertion site, where the cell
platewill eventually fuse (VanDammeet al., 2006;VanDammeet al.,
2011; Gadeyne et al., 2014). TPLATE and other endocytic players
(Gadeyne et al., 2014) have been shown to be upregulated during
early AM development (Russo et al., 2019), and TPLATE-GFP-
decorated cell walls have highlighted the occurrence of ectopic cell
divisions in the root area that is preparing to accommodate
arbuscules (Russo et al., 2019).
Frontiers in Plant Science | www.frontiersin.org 2
The present study, largely based on live cell imaging of D.
carota and M. truncatula ROCs colonized by the AM fungus
Gigaspora gigantea, suggests PPA-associated endocytic activity at
the sites of perifungal membrane assembly. In particular, the
endocytic marker accumulates at the growing tips of the
perifungal membrane and at sites of perifungal membrane
fusion with the peripheral plasmalemma, in striking analogy
with the described TPLATE localization during cell plate
expansion and fusion. Our results support the involvement of
intense endocytic processes, likely related to perifungal
membrane modeling and the recycling of membrane surplus at
sites of hyphal exit from the host cell.
METHODS

Plant and Fungal Materials
Agrobacterium rhizogenes-transformed root organ cultures
(ROCs) expressing the 35S::AtTPLATE-GFP vector (Van
Damme et al., 2004) were obtained from Medicago truncatula
Jemalong A17 wild-type and dmi3-1 seedlings (Sagan et al., 1995;
kindly provided by M. Chabaud, LIPM, INRA, Toulouse,
France), according to Boisson-Dernier et al. (2001). ROCs
from Daucus carota var Sativus expressing the same vector
were obtained according to Bécard and Fortin (1988). For both
species, transformed roots with a high level of fluorescence were
selected 21 days after transformation, decontaminated and
subcultured on M medium (Bécard and Fortin, 1988) at 25°C
in the dark for subsequent use as ROCs. ROC generation was
repeated in two independent experiments for each species and
line, with overlapping results in terms of GFP fluorescence
pattern. In each case, a single representative clone was chosen
for further studies. Transformation efficiency and expression of
35S::AtTPLATE-GFP was checked with GFP specific primers on
both genomic DNA and cDNA obtained from all the selected
lines, as described in Russo et al. (2019).

G. gigantea (isolate HC/FE30, Herbarium Cryptogamicum
Fungi, University of Torino, Italy), which is characterized by
strong cytoplasmic autofluorescence (Genre et al., 2005), was
used to inoculate ROCs in vitro for confocal imaging. Spores of
G. gigantea were collected from pot cultures in sand (with leek
and clover, respectively), surface-sterilized, and stored at 4°C
according to Bécard and Fortin (1988) until inoculation.
Confocal Microscopy
The targeted AM inoculation technique for studying early stages
of the symbiotic association between Gigaspora species and
transformed root cultures, developed by Chabaud et al. (2002)
and adapted for confocal observation by Genre et al. (2005), was
applied to both M. truncatula and D. carota ROCs expressing
35S::AtTPLATE-GFP. An upright Leica TCS SP2 confocal
microscope fitted with a long distance 40X water-immersion
objective (HCX Apo 0.80) was used for imaging living ROCs
directly in the Petri dishes. The argon laser band of 488 nm was
used to excite both GFP andG. gigantea autofluorescence. The two
December 2019 | Volume 10 | Article 1628
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signals were separated using specific emission windows: 500 to 525
nm for GFP and 590 to 630 nm for fungal autofluorescence. The
latter channel was then false-colored in red to maximize the
contrast in overlapping images.

Confocal images presented in figures are representative of the
observations performed on a minimum of 30 infection units from
at least 10 independent ROC specimens for each plant species.
Electron Microscopy
Following the identification of GFP-labeled PPAs in the inner
cortex through confocal microscopy, five D. carota ROC
segments were excised and processed for transmission electron
microscopy (TEM) according to Genre et al. (2008). After
fixation, samples were infiltrated and embedded in a thin layer
of Epon-Araldite (Hoch, 1986) resin. Fungal colonization sites
within flat-embedded samples were selected under an optical
microscope, excised with a razor blade, and mounted on resin
stubs prior to ultramicrotomy. Ultrathin (70 nm) sections were
cut, counterstained, and observed using a Philips CM10 TEM.
RESULTS

TPLATE-GFPAccumulates inEpidermal PPA
TPLATE localization was studied through the expression of a
35S::AtTPLATE-GFP fusion protein in M. truncatula and D.
carota ROCs. This construct had previously been used in both
species to mark cell divisions in meristematic and differentiated
root tissues (Russo et al., 2019). The same GFP fusion was also
expressed in ROCs derived from the non-mycorrhizal dmi3-1
mutant of M. truncatula (Sagan et al., 1995; Levy et al., 2004),
where the loss of Does not Make Infection 3 (a nuclear localized
calcium-and-calmodulin-dependent kinase) blocks a symbiotic
signal transduction pathway and halts fungal colonization to the
surface of epidermal cells (Morandi et al., 2005). ROCs were
colonized with the autofluorescent AM fungus G. gigantea and
dozens of infection sites, at different stages of root colonization,
were observed for each experimental condition through confocal
live cell imaging.

A significant accumulation of TPLATE-GFP was observed in
bothM. truncatula and D. carota epidermal root cells in the PPA
area (Figure 1): prior to root cell penetration the GFP signal was
strong between the repositioned nucleus and the hyphopodium
contact site, clearly highlighting both developing (Figures 1A, B)
and fully formed PPAs (Figure 1C). For comparison, the
fluorescence patterns of free DsRED (diffusing in the cytosol
and nucleus) and PIP2-GFP (labeling a plasma membrane
aquaporin) are presented in Supplementary Figure 1.
Significantly, no intracellular accumulation of TPLATE-GFP
was observed in the contacted epidermal cells of dmi3-1
mutants (Figure 1D).

Due to the acknowledged role of the TPLATE complex (TPC)
in endocytosis, our observations in two phylogenetically distant
plants suggest that the activation of endocytic processes are part
Frontiers in Plant Science | www.frontiersin.org 3
of the AM prepenetration responses in epidermal cells. This
conclusion is further supported by the absence of TPLATE
accumulation in dmi3-1 mutants of M. truncatula, where PPAs
(Genre et al., 2005) and epidermal cell penetration (Levy et al.,
2004) are blocked, and TPLATE, AP2A1, and Clathrin are not
upregulated upon AM inoculation (Russo et al., 2019).
Perifungal Membrane Dynamics in the
Cortex Recruit TPLATE
As we extended our observations to inner root tissues, following
the progress of fungal development, we remarked that intense
TPLATE accumulation in PPAs was also present in outer cortical
cells (Figure 2). In detail, by the time the penetrating hypha had
reached the inner side of the epidermal cell (Figure 2A), an
intense TPLATE-GFP labeling could be spotted in the
underlying cortical cell, within the developing PPA aggregation
opposite the hyphal tip. Comparably intense GFP signals could
also be seen in more advanced PPAs in the outer cortex of both
M. truncatula and D. carota (Figures 2B, C).

The limited translucence ofM. truncatula ROCs (Genre et al.,
2008) restricted our ability to obtain clear images of the inner cell
layers. Consequently, cortex colonization was more extensively
studied in the thinner and clearer D. carota ROCs expressing the
same TPLATE-GFP fusion.

A diffuse TPLATE-GFP signal highlighted cortical PPAs of
different developmental stages (Figures 2C, D), from small
nucleus-associated aggregates appressed to transverse cell walls
(Figure 2C) to broad arrow-shaped PPAs (Figure 2D), typical of
the carrot root cortex (Genre et al., 2008), where intraradical
colonization proceeds from cell to cell (Paris-type pattern;
Dickson, 2004). Intense TPLATE accumulation was also
observed around the tips of linear (Figures 2C, D) and
branched hyphae (Figure 2E, F) in both outer and inner
cortical cell layers. Furthermore, a fainter GFP signal extending
along the perifungal membrane behind the growing hyphal tip
was occasionally visible in both epidermal (Figure 2A) and
cortical cells (Figure 2E).

Lastly, diffuse fluorescence was present around newly formed
arbuscules that had not yet fully occupied the lumen of inner cortical
cells (Figure 2G). By contrast, no relevant GFP accumulation was
recorded around fully developed arbuscules (Figure 2H).

Overall, our observations of M. truncatula and carrot roots
indicate that TPLATE-GFP is recruited to the sites of perifungal
membranedevelopment inthePPAofbothplantspeciesandstrongly
suggest the involvement of endocytic processes in all cell types
engaged in AM colonization, before and during the development of
intracellular hyphae, hyphal branches, and arbuscules.

This conclusion appeared in line with previous detection of
MVBs in the PPA aggregate (Genre et al., 2008; Genre et al.,
2012). Indeed, our new TEM observations of carrot cortical PPAs
(Figure 3) confirmed the presence of membrane-delimited
compartments of different size, containing several intraluminal
vesicles, that can be ascribed with confidence to the class of
MVBs, or late endosomes. Their presence appears now
congruous with our localization of TPLATE-GFP in the PPA,
December 2019 | Volume 10 | Article 1628
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hinting to occurrence of endocytic processes during intracellular
fungal accommodation.
TPLATE Labeling at Sites of Cell-to-Cell
Hyphal Passage in Carrot
Tissue translucency and Paris-type colonization allowed a very
accurate observation of fungal proliferation and associated cell
responses in the outer cortex of carrot. Beside hyphal tip-associated
TPLATE-GFP labeling in PPA aggregates (Figures 4A–C) a
remarkable accumulation of fluorescent signal was also observed
along the transverse wall corresponding to the predicted exit site (es)
of the hypha from the colonized cell (Figure 4A). This transverse
wall-associated labeling appeared to persist during and after hyphal
cell-to-cell passage (Figures 4B,C). This is particularly evident when
comparing the panels ofFigures 4B,C, which frame the same cells as
the hyphal tip grows across the transverse wall over an interval of 1 h.
Such localized accumulations of membrane-associated TPLATE-
GFP are clearly different from the homogeneous distribution of a
membrane protein such as the aquaporin AtPIP2 (Supplementary
Figures 1E, F).

Such consistent observations hint at a role for TPC-related
endocytosis in the fusion between the developing perifungal
membrane and the plasmalemma at the cell exit site, a rather
unusual event in plant cell dynamics that predictably involves the
removal of a consistent membrane surplus.
Frontiers in Plant Science | www.frontiersin.org 4
DISCUSSION

Endocytosis in Host Cell Penetration
Our previous results (Russo et al., 2019) on the upregulation of
endocytic markers such as Clathrin, AP2A1, and TPLATE during
early AM interactions, had suggested a role for clathrin-mediated
endocytosis in AM fungal accommodation. Our current live-cell
observations in carrot and wild-type—but not dmi3-1—
Medicago, showing TPLATE-GFP accumulation in PPAs and
along the perifungal membranes, provide more direct evidence of
endocytosis in symbiotic processes of membrane remodeling and
interface biogenesis for all colonized cells.

This proposed role for endocytosis in AM fungal
accommodation complements previous demonstrations of the
exocytic origin of the symbiotic interface (Genre et al., 2012;
Ivanov et al., 2012). In fact, focused exocytic events in the plant
cell are normally associated with endocytic recycling of surplus
membrane (Samaj et al., 2004; Ketelaar et al., 2008). Significantly,
this is the case for cell plate formation (Dhonukshe et al., 2006;
Backues et al., 2007; McMichael and Bednarek, 2013) and the
analogous accumulation of TPLATE at sites of perifungal
membrane assembly supports the hypothesis that the whole
membrane remodeling process set in motion to perform cell
division is recruited by AM host cells for fungal accommodation.

Alongside membrane modeling, clathrin-mediated
endocytosis is also known to be involved in receptor turnover
FIGURE 1 | Accumulation of TPLATE-GFP in the prepenetration apparatus of Medicago truncatula and Daucus carota root epidermal cells. In the presence of a
hyphopodium (hp) on the root surface of M. truncatula WT ROCs (A, C) and D. carota ROCs (B), intense TPLATE-GFP fluorescence is observed in the PPA area
(arrowheads), during the initial nuclear repositioning (n) (A), at two sites of fungal contact within the same hyphopodium (B) and during the following extension of the
PPA (C). Furthermore, a thin line of intense fluorescence is also visible in C, outlining the point (empty arrowhead) where the penetrating hypha is developing. In
contrast, no GFP accumulation is visible on the root surface at the hyphopodium contact site of M. truncatula dmi3-1 mutants (D) that are impaired in PPA formation
and fungal colonization. Bars = 50 µm.
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and internalization, with the generation of signaling endosomes
(Ben Khaled et al., 2015). In the context of AM interactions, it
will be interesting to investigate whether this process plays a role
in the perception and translocation of fungal elicitors and
effectors within the host cell.
Frontiers in Plant Science | www.frontiersin.org 5
Membrane Remodeling at Host Cell
Exit Sites
While PPA-associated membrane proliferation from the site of
fungal entry in the cell generates an extension of the plasmalemma
(the perifungal membrane), hyphal exit from the cell lumen
FIGURE 2 | TPLATE-GFP labeling of symbiotic interface in deeper layers of Medicago truncatula and Daucus carota roots. (A) shows an intracellular hypha (h)
inside an M. truncatula root epidermal cell. The perifungal membrane appears outlined by a faint GFP signal (empty arrowhead), whereas intense fluorescence
accumulates in the developing PPA in the underlying outer cortical cell (arrowheads). An analogous situation is presented in (B), where two hyphae (h) are imaged as
they pass from cell to cell in the cortex: in both cases an intense fluorescence marks the PPAs (arrowheads). PPAs labeling at different developmental stages are
also observed in the cortex of D. carota (C–F). Bright GFP signals are visible around the tips and branches of intracellular hyphae (arrowheads); along the cell wall at
predicted hyphal exit site (double arrowhead in C); and along the perifungal membrane behind the growing hyphal tip (empty arrowhead in E). In (D) a Gigaspora
gigantea hypha is on the point of passing from one cell to the next in the same file: the GFP signal marks the typical arrow-shaped PPA (arrow) of Paris-type
mycorrhizas. (G) shows two young arbuscules (ar) surrounded by diffuse GFP fluorescence, suggesting that TPLATE is also involved in arbuscule accommodation,
while this intense signal is lost in cortical cells that harbor older arbuscules (H). Bars = 50 µm in (A–C, H); 10 µm in (D–G).
December 2019 | Volume 10 | Article 1628
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requires a rather different process. As the front of the proliferating
perifungal membrane reaches the plasma membrane, fusion must
occur between the two in order to generate a complete membrane
tunnel surrounding the hypha (Figures 4D, F). Such a membrane
fusion generating a trans-cellular apoplastic compartment is a
peculiar event with few analogs in plant cell biology. The closest
similarity is with the development of an infection thread carrying
rhizobia across legume root tissues, toward a nodule primordium
(Gage andMargolin, 2000;Downie, 2014).Nevertheless, 50million
year-old nitrogen-fixing symbioses are believed to have recruited
part of the symbiotic responses developed earlier in the course of
AM evolution, including intracellular colonization mechanisms
(Bonfante and Genre, 2008). A less obvious, but very intriguing
analogy is with the fusion of the cell plate membrane with the
peripheralplasmamembraneat the endof cell division (Figures4E,
G). In fact, the separation of daughter cells starts with the fusion of
finger-like protrusions of the growing cell plate border with the
plasmalemma, at the cortical division zone (Samuels et al., 1995). In
the light of our current findings, the similarity between suchfinger-
like protrusions and the tip of the perifungal membrane is striking:
both membranes at the cell plate border and the cortical division
zone are characterized by the active recruitment of TPC members
(Van Damme et al., 2011; Gadeyne et al., 2014); our observation of
TPLATE-GFP accumulation at fungal exit sites indicates the
recruitment of this protein on the two fusing membranes, and is
evocative of the co-optation of cell division-related membrane
dynamics in symbiotic responses.

Evolutionary-Developmental Implications
Our recent demonstration of cell cycle (Carotenuto et al., 2019a)
and cell division reactivation in root cortical cells during AM
Frontiers in Plant Science | www.frontiersin.org 6
colonization (Russo et al., 2019), proposed these processes as
features of the 400-Myr-old AM symbiosis that were conserved
for the origin of symbiotic nitrogen fixation (SNF) between
legumes and rhizobia, around 50 Myr ago. While, anyway, cell
cycle reactivation has been related to nodule initiation in SNF,
the lack of neo-organogenesis in AM left several hypotheses open
about the biological role of sparse cell divisions in the AM
root cortex.

We speculated that a mechanistic analogy could link the
exocytic processes of cell plate and symbiotic interface
biogenesis, also based on several analogies in the formation
(Lam et al., 2008; Pumplin et al., 2012) and composition in cell
wall-related materials (Balestrini and Bonfante, 2014) of the two
cell compartments. Our present results substantiate this
hypothesis, suggesting that the cell plate deposition machinery,
combining exocytic and endocytic processes, has been co-opted
in symbiotic interface biogenesis at the origin of AM, and later
conserved in SNF interactions.
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adjoining uncolonized cell, in the area of the predicted hyphal exit site (es). An elongated PPA (arrowhead) is visible in an uncolonized cell on the right side of panel (B);
the hypha growing in the cell on the left has reached the cell wall, where an intense GFP signal has accumulated (double arrowheads). The same site is pictured in
(C) 1 h later: The hypha has now penetrated the cell on the right; a bright signal surrounds the hyphal tip (arrowheads) and a strong fluorescence is still visible along
the cell wall (double arrowhead). Bars = 30 µm. Panels (D–G) show a schematic view of the analogies between perifungal membrane (D, F) and cell plate (E, G)
fusion with the peripheral plasma membrane. In both cases, TPLATE accumulation was observed at the front of the developing compartment (D, E), and at the exit
site (es) or cortical division zone (cdz), respectively. Following membrane fusion (F, G), TPLATE diffuses at the junction between the two membranes.
December 2019 | Volume 10 | Article 1628

https://www.frontiersin.org/articles/10.3389/fpls.2019.01628/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2019.01628/full#supplementary-material
https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Russo et al. Endocytic Dynamics in Arbuscular Mycorrhizas
REFERENCES

Backues, S. K., Konopka, C. A., McMichael, C. M., and Bednarek, S. Y. (2007).
Bridging the divide between cytokinesis and cell expansion. Curr. Opin. Plant
Biol. 10, 607–615. doi: 10.1016/j.pbi.2007.08.009

Bago, B., Pfeffer, P. E., Zipfel, W., Lammers, P., and Shachar-Hill, Y. (2002).
Tracking metabolism and imaging transport in arbuscular mycorrhizal fungi.
Metabolism and transport in AM fungi. Plant Soil 244, 189–197. doi: 10.1007/
978-94-017-1284-2_18

Balestrini, R., and Bonfante, P. (2005). The interface compartment in arbuscular
mycorrhizae: a special type of plant cell wall? Plant Biosyst. 139, 8–15. doi:
10.1080/11263500500056799

Balestrini, R., and Bonfante, P. (2014). Cell wall remodeling in mycorrhizal
symbiosis: a way towards biotrophism. Front. Plant Sci. 5, e237. doi: 10.3389/
fpls.2014.00237

Bécard, G., and Fortin, J. A. (1988). Early events of vesicular–arbuscular
mycorrhiza formation on Ri T-DNA transformed roots. New Phytol. 108,
211–218. doi: 10.1111/j.1469-8137.1988.tb03698.x

Ben Khaled, S., Postma, J., and Robatzek, S. (2015). A moving view: subcellular
trafficking processes in pattern recognition receptor-triggered plant immunity.
Annu. Rev. Phytopathol. 53, 379–402. doi: 10.1146/annurev-phyto-080614-
120347

Boisson-Dernier, A., Chabaud, M., Garcia, F., Becard, G., Rosenberg, C., and
Barker, D. G. (2001). Agrobacterium rhizogenes-transformed roots of
Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal
symbiotic associations. Mol. Plant–Microbe Interact. 14, 695–700. doi: 10.1111/
nph.15763

Bonfante, P., and Genre, A. (2008). Plants and arbuscular mycorrhizal fungi: an
evolutionary-developmental perspective. Trends Plant Sci. 13, 492–498. doi:
10.1016/j.tplants.2008.07.001

Boruc, J., and Van Damme, D. (2015). Endomembrane trafficking overarching cell
plate formation. Curr. Opin. Plant Biol. 28, 92–98. doi: 10.1094/
MPMI.2001.14.6.695

Carotenuto, G., Volpe, V., Russo, G., Politi, M., Sciascia, I., deAlmeida-Engler, J., et al.
(2019a). Local endoreduplication as a feature of intracellular fungal
accommodation in arbuscular mycorrhizas. New Phytol. 223, 430–446. doi:
10.1111/nph.15763

Carotenuto, G., Sciascia, I., Oddi, L., Volpe, V., and Genre, A. (2019b). Size
matters: three methods for estimating nuclear size in mycorrhizal roots of
Medicago truncatula by image analysis. BMC Plant Biol. 19, 180. doi: 10.1046/
j.1469-8137.2002.00508.x

Chabaud, M., Venard, C., Defaux-Petras, A., Becard, G., and Barker, D. G. (2002).
Targeted inoculation of Medicago truncatula in vitro root cultures reveals
MtENOD11 expression during early stages of infection by arbuscular
mycorrhizal fungi. New Phytol. 156, 265–273. doi: 10.1111/j.1469-
8137.2004.01095.x

Dhonukshe, P., Baluska, F., Schlicht, M., Hlavacka, A., Samaj, J., Friml, J., et al.
(2006). Endocytosis of cell surface material mediates cell plate formation
during plant cytokinesis. Dev. Cell 10, 137–150. doi: 10.1016/
j.cub.2014.01.028

Dickson, S. (2004). The Arum-Paris continuum of mycorrhizal symbioses. New
Phytol. 163, 187–200. doi: 10.1016/j.cell.2014.01.039

Downie, A. (2014). Legume nodulation. Curr. Biol. 24, 184–190. doi: 10.1016/
S1369-5274(00)00149-1

Gadeyne, A., Sanchez-Rodrıguez, C., Vanneste, S., Di Rubbo, S., Zauber, H.,
Vanneste, K., et al. (2014). The TPLATE adaptor complex drives clathrin-
mediated endocytosis in plants. Cell 156, 691–704. doi: 10.1105/
tpc.105.035410

Gage, D. J., and Margolin, W. (2000). Hanging by a thread: invasion of legume plants
by rhizobia. Curr. Opin. Microbiol. 3, 613–617. doi: 10.1105/tpc.108.059014

Genre, A., Chabaud, M., Timmers, T., Bonfante, P., and Barker, D. G. (2005).
Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago
truncatula root epidermal cells before infection. Plant Cell 17, 3489–3499. doi:
10.1093/pcp/pcr170
Frontiers in Plant Science | www.frontiersin.org 8
Genre, A., Chabaud, M., Faccio, A., Barker, D. G., and Bonfante, P. (2008).
Prepenetration apparatus assembly precedes and predicts the colonization
patterns of arbuscular mycorrhizal fungi within the root cortex of both
Medicago truncatula and Daucus carota. Plant Cell 20, 1407–1420. doi:
10.1146/annurev-cellbio-101512-122413

Genre, A., Ivanov, S., Fendrych, M., Faccio, A., Zarsky, V., Bisseling, T., et al.
(2012). Multiple exocytotic markers accumulate at the sites of perifungal
membrane biogenesis in arbuscular mycorrhizas. Plant Cell Physiol. 53, 244–
255. doi: 10.1007/978-1-4684-5119-1_7

Gutjahr, C., and Parniske, M. (2013). Cell and developmental biology of
arbuscular mycorrhiza symbiosis. Annu. Rev. Cell Dev. Biol. 29, 593–617.
doi: 10.1073/pnas.1200407109

Hoch, H. C. (1986). “Freeze-substitution of fungi,” in Ultrastructure techniques of
microorganisms. Eds. H. C. Aldrich and W. J. Todd (New York: Plenum Press),
183–211. doi: 10.1111/j.1365-2818.2008.02031.x

Ivanov, S., Fedorova, E. E., Limpens, E., De Mita, S., Genre, A., Bonfante, P., et al.
(2012). Rhizobium–legume symbiosis shares an exocytotic pathway required for
arbuscule formation. Proc. Natl. Acad. Sci. U. S. A. 109, 8316–8321. doi: 10.1016/
j.pbi.2013.10.008

Ketelaar, T., Galway, M. E., Mulder, B. M., and Emons, A. M. C. (2008). Rates of
exocytosis and endocytosis in Arabidopsis root hairs and pollen tubes.
J. Microsc. 231, 265–273. doi: 10.1126/science.1093038

Lam, S. K., Cai, Y., Hillmer, S., Robinson, D. G., and Jiang, L. (2008). SCAMPs
highlight the developing cell plate during cytokinesis in tobacco BY-2 cells.
Plantphysiology 147, (4), 1637–1645. doi: 10.1104/pp.108.119925

Lee, Y. R., and Liu, B. (2013). The rise and fall of the phragmoplast microtubule
array. Curr. Opin. Plant Biol. 16, 757–763. doi: 10.1105/tpc.17.00555

Levy, J., Bres, C., Geurts, R., Chalhoub, B., Kulikova, O., Duc, G., et al. (2004). A
putative Ca2+ and calmodulin-dependent protein kinase required for bacterial
and fungal symbioses. Science 303, 1361–1364. doi: 10.1111/nph.12122

McLean, A. M., Bravo, A., and Harrison, M. J. (2017). Plant signaling and
metabolic pathways enabling arbuscular mycorrhizal symbiosis. Plant Cell
29, 2319–2335. doi: 10.1007/s00572-004-0331-4

McMichael, C. M., and Bednarek, S. Y. (2013). Cytoskeletal and membrane
dynamics during higher plant cytokinesis. New Phytol. 197, 1039–1057. doi:
10.1104/pp.109.141879

Morandi, D., Prado, E., Sagan, M., and Duc, G. (2005). Characterisation of new
symbiotic Medicago truncatula (Gaertn.) mutants, and phenotypic or
genotypic complementary information on previously described mutants.
Mycorrhiza 15, 283–289. doi: 10.1111/nph.15398

Pumplin, N., and Harrison, M. J. (2009). Live-cell imaging reveals periarbuscular
membrane domains and organelle location in Medicago truncatula roots
during arbuscular mycorrhizal symbiosis. Plant Physiol. 151, 809–819. doi:
10.1016/0168-9452(95)04229-N

Pumplin, N., Zhang, X., Noar, R. D., and Harrison, M. J. (2012). Polar localization
of a symbiosis-specific phosphate transporter is mediated by a transient
reorientation of secretion. Proc. Natl. Acad. Sci. U.S.A. 109 (11), E665–E672.
doi: 10.1073/pnas.1110215109

Russo, G., Carotenuto, G., Fiorilli, V., Volpe, V., Chiapello, M., Van Damme, D.,
et al. (2019). Ectopic activation of cortical cell division during the
accommodation of arbuscular mycorrhizal fungi. New Phytol. 221, 1036–
1048. doi: 10.1104/pp.104.040683

Sagan, M., Morandi, D., Tarenghi, E., and Duc, G. (1995). Selection of
nodulation and mycorrhizal mutants in the model plant Medicago
truncatula (Gaertn.) after cray mutagenesis. Plant Sci. 111, 63–71. doi:
10.1083/jcb.130.61345

Samaj, J., Baluska, F., Voigt, B., Schlicht, M., Volkmann, D., andMenzel, D. (2004).
Endocytosis, actin cytoskeleton, and signaling. Plant Physiol. 135, 1150–1161.
doi: 10.1111/j.1365-313X.2004.02222.x

Samuels, A. L., Giddings, TH Jr, and Staehelin, L. A. (1995). Cytokinesis in tobacco
BY-2 and root tip cells: a new model of cell plate formation in higher plants.
J. Cell Biol. 130, 1345–1357. doi: 10.1105/tpc.106.040923

Van Damme, D., Bouget, F.-Y., Van Poucke, K., Inze, D., and Geelen, D.
(2004). Molecular dissection of plant cytokinesis and phragmoplast
December 2019 | Volume 10 | Article 1628

https://doi.org/10.1016/j.pbi.2007.08.009
https://doi.org/10.1007/978-94-017-1284-2_18
https://doi.org/10.1007/978-94-017-1284-2_18
https://doi.org/10.1080/11263500500056799
https://doi.org/10.3389/fpls.2014.00237
https://doi.org/10.3389/fpls.2014.00237
https://doi.org/10.1111/j.1469-8137.1988.tb03698.x
https://doi.org/10.1146/annurev-phyto-080614-120347
https://doi.org/10.1146/annurev-phyto-080614-120347
https://doi.org/10.1111/nph.15763
https://doi.org/10.1111/nph.15763
https://doi.org/10.1016/j.tplants.2008.07.001
https://doi.org/10.1094/MPMI.2001.14.6.695
https://doi.org/10.1094/MPMI.2001.14.6.695
https://doi.org/10.1111/nph.15763
https://doi.org/10.1046/j.1469-8137.2002.00508.x
https://doi.org/10.1046/j.1469-8137.2002.00508.x
https://doi.org/10.1111/j.1469-8137.2004.01095.x
https://doi.org/10.1111/j.1469-8137.2004.01095.x
https://doi.org/10.1016/j.cub.2014.01.028
https://doi.org/10.1016/j.cub.2014.01.028
https://doi.org/10.1016/j.cell.2014.01.039
https://doi.org/10.1016/S1369-5274(00)00149-1
https://doi.org/10.1016/S1369-5274(00)00149-1
https://doi.org/10.1105/tpc.105.035410
https://doi.org/10.1105/tpc.105.035410
https://doi.org/10.1105/tpc.108.059014
https://doi.org/10.1093/pcp/pcr170
https://doi.org/10.1146/annurev-cellbio-101512-122413
https://doi.org/10.1007/978-1-4684-5119-1_7
https://doi.org/10.1073/pnas.1200407109
https://doi.org/10.1111/j.1365-2818.2008.02031.x
https://doi.org/10.1016/j.pbi.2013.10.008
https://doi.org/10.1016/j.pbi.2013.10.008
https://doi.org/10.1126/science.1093038
https://doi.org/10.1104/pp.108.119925
https://doi.org/10.1105/tpc.17.00555
https://doi.org/10.1111/nph.12122
https://doi.org/10.1007/s00572-004-0331-4
https://doi.org/10.1104/pp.109.141879
https://doi.org/10.1111/nph.15398
https://doi.org/10.1016/0168-9452(95)04229-N
https://doi.org/10.1073/pnas.1110215109
https://doi.org/10.1104/pp.104.040683
https://doi.org/10.1083/jcb.130.61345
https://doi.org/10.1111/j.1365-313X.2004.02222.x
https://doi.org/10.1105/tpc.106.040923
https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Russo et al. Endocytic Dynamics in Arbuscular Mycorrhizas
structure: a survey of GFP-tagged proteins. Plant J. 40, 386–398. doi:
10.1073/pnas.1017890108

Van Damme, D., Coutuer, S., De Rycke, R., Bouget, F. Y., Inze, D., and Geelen, D.
(2006). Somatic cytokinesis and pollen maturation in arabidopsis depend on
TPLATE which has domains similar to coat proteins. Plant Cell 18, 3502–3518.
doi: 10.1105/tpc.106.040923

Van Damme, D., Gadeyne, A., Vanstraelen, M., Inze, D., Van Montagu, M. C.,
De Jaeger, G., et al. (2011). Adaptin-like protein TPLATE and clathrin
recruitment during plant somatic cytokinesis occurs via two distinct
pathways. Proc. Natl. Acad. Sci. U. S. A. 108, 615–620. doi: 10.1105/
tpc.106.040923
Frontiers in Plant Science | www.frontiersin.org 9
Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2019 Russo, Carotenuto, Fiorilli, Volpe, Faccio, Bonfante, Chabaud,
Chiapello, Van Damme and Genre. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use, distri-
bution or reproduction in other forums is permitted, provided the original author(s)
and the copyright owner(s) are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.
December 2019 | Volume 10 | Article 1628

https://doi.org/10.1073/pnas.1017890108
https://doi.org/10.1105/tpc.106.040923
https://doi.org/10.1105/tpc.106.040923
https://doi.org/10.1105/tpc.106.040923
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

	TPLATE Recruitment Reveals Endocytic Dynamics at Sites of Symbiotic Interface Assembly in Arbuscular Mycorrhizal Interactions
	Introduction
	Methods
	Plant and Fungal Materials
	Confocal Microscopy
	Electron Microscopy

	Results
	TPLATE-GFP Accumulates in Epidermal PPA
	Perifungal Membrane Dynamics in the Cortex Recruit TPLATE
	TPLATE Labeling at Sites of Cell-to-Cell Hyphal Passage in Carrot

	Discussion
	Endocytosis in Host Cell Penetration
	Membrane Remodeling at Host Cell Exit�Sites
	Evolutionary-Developmental Implications

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


