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Abstract 

The mycoparasitic fungus Paraphaeosphaeria minitans (formerly Coniothyrium minitans), is 

increasingly used by farmers to reduce soilborne inoculum of Sclerotinia sclerotiorum.  In 

France, its field efficacy tends to be higher in the North than in the South, leading to the 

hypothesis of possible regional differences in the susceptibility of the pathogen to the biocontrol 

agent.  A standardized assay was developed and four quantitative criteria were used to assess 
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the susceptibility to P. minitans of 75 S. sclerotiorum isolates collected from different regions 

of France.  There was no significant difference between the group of isolates from the North 

and that from the South, but wide differences were observed among isolates, with consistent 

responses for all quantitative criteria.  This study suggests that biocontrol efficacy might vary 

locally depending on the frequency of less susceptible isolates and it brings to attention the 

possibility that selection pressure could lead to a gradual increase in the frequency of less 

susceptible isolates, as this biocontrol method becomes widely adopted by farmers.  To our 

knowledge, this is the first report of the variable susceptibility of S. sclerotiorum to a 

commercialized strain of P. minitans and the first detailed characterization of a large group of 

isolates from France for traits related to fitness, such as mycelial growth and production of 

sclerotia. 
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Introduction 

The ascomycete Sclerotinia sclerotiorum has a broad host range and constitutes a threat to a 

variety of economically important crops, including oilseed rape, sunflower, soybean, and many 

vegetables (Bolton et al. 2006).  The pathogen does not produce asexual conidia, but it can 

generate large numbers of sclerotia on diseased plants.  These resting structures allow its long 

term survival and contribute to its dissemination (Coley-Smith and Cooke 1971).  Under 

conducive conditions they germinate and produce either mycelium (myceliogenic germination), 

which can play a role in epidemics on certain crops, or apothecia (carpogenic germination) that 

may release large numbers of ascospores that are dispersed by air currents and are highly 

infective on most aerial plant parts (Clarkson et al. 2003; Bolton et al. 2006).  Disease 

management in many crops is focused on the protection of the aerial plant parts against infection 

by ascospores, but due to their importance in the disease cycles, sclerotia are also a target for a 

variety of control methods (Kora et al. 2008; Derbyshire and Denton-Giles 2016; Clarkson et 

al. 2014; Shrestha et al. 2016; Lehner et al. 2017; Willbur et al. 2018).   

 The potential of using biocontrol agents to reduce soilborne populations of sclerotia or 

suppress their germination capacity has long been recognized (Campbell 1947; Steadman 1979; 

Adams 1990).  Microorganisms reported to colonize sclerotia and show antagonistic properties 

against species of Sclerotinia include bacteria, predominantly in the genus Bacillus (Adams and 

Ayers 1979; Duncan et al. 2006; Chitrampalam et al. 2008; Wu et al. 2008; Zeng et al. 2012b; 

Gao et al. 2014; Kamal et al. 2015). However, much research has been focused on species of 

mycoparasitic fungi, including Coniothirium minitans (Whipps and Budge 1990), Clonostachys 

rosea (Rabeendran et al. 2006), Dictyosporium elegans (McCredie and Sivasithamparam 1985), 

several species of Gliocladium and Trichoderma (McCredie and Sivasithamparam 1985; 

Whipps and Budge 1990; Budge et al. 1995; Huang and Erickson 2000; Carpenter et al. 2005; 

Rabeendran et al. 2006; Chitrampalam et al. 2008; Geraldine et al. 2013), Paecilomyces lilacinus 
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(Whipps and Budge 1990), Talaromyces flavus (McLaren et al. 1996; Huang and Erickson 2000) 

and Trichothetium roseum (Huang and Erickson 2000).  Among those, the widely distributed 

fungus C. minitans has received much attention world-wide and various isolates of this species 

have shown high biocontrol potential in laboratory or in field conditions (Trutmann et al. 1980; 

Sandys-Winsch et al. 1993; Gerlagh et al. 1999; Huang and Erickson 2000; Budge and Whipps 

2001; Jones et al. 2003; Rabeendran et al. 2006; Chitrampalam et al. 2010; Yang et al. 2011; 

Zeng et al. 2012b).  The taxonomy of this fungus was reexamined in recent years, leading to its 

assignment first to the species Paraconiothyrium minitans (W.A. Campb.) Verkley, and finally 

to Paraphaeosphaeria minitans (W.A. Campb.) Verkley, Göker & Stielow, comb. nov. 

(Verkley et al. 2014), which is the one adopted in our study. 

 One strain (CON/M 91-08) of P. minitans has been developed into a commercial 

product (De Vrije et al. 2001) and is now deployed in many countries.  Field studies with the 

commercial product have shown successful reduction in the density of soilborne sclerotia for 

different species of Sclerotinia and disease suppression on various crops (von Tiedemann et al. 

2001; Partridge et al. 2006; Chitrampalam et al. 2008; Öhberg and Bång 2010; Zeng et al. 

2012a; Elsheshtawi et al. 2017).  Variable results have also been reported in certain cases (Jones 

et al. 2004; Chitrampalam et al. 2010; Van Beneden et al. 2010; Bitsadze et al. 2015).  In France, 

P. minitans has been increasingly used against S. sclerotiorum on various arable and vegetable 

crops since the first registration of the commercial product Contans® in 2001.  Feedback from 

farmers are largely positive, but also suggest possible regional differences in efficacy, with a 

tendency for better control levels reported in the North than in the South of the country in open 

field conditions.  

 A wide range of abiotic and biotic factors may influence the efficacy of biocontrol and 

logically, variability in field efficacy of biocontrol is often attributed to environmental 

variability (Nicot et al. 2011).  A seldom-considered hypothesis could also be that some 
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variability in biocontrol efficacy might result from differences in the susceptibility to biological 

control agents among the naturally occurring populations of the pathogens.  A few reports have 

pointed to the possibility that plant pathogens could possess or develop reduced susceptibility 

to biocontrol agents (Bardin et al. 2015).  Although information is lacking about the strain of 

P. minitans used in the commercial product Contans®, variability was reported for the 

pathogenicity of two P. minitans strains from the UK to different isolates of S. sclerotiorum 

and S. trifoliorum (Turner and Tribe 1976).  In this study sclerotia were inoculated, placed at 

the surface of wet sand in trays and incubated for several weeks in humid conditions.  The 

sclerotia were then periodically assessed visually for symptoms of infection by P. minitans and 

the numbers of symptom-showing sclerotia were recorded.  Interestingly, the authors also 

observed the development of fungus gnat larvae on some of the sclerotia, and the possible role 

of these insects in the biocontrol of S. sclerotiorum was later formally investigated (Anas and 

Reeleder 1988; Gracia-Garza et al. 1997).  Although the infection study of Turner and Tribe 

did not allow for statistical analyses, and the experimental conditions did not exclude a possible 

interference of different biotic factors with mycoparasitism, their results suggest that intrinsic 

differences in susceptibility to P. minitans may exist among isolates of S. sclerotiorum.  

In order to better understand the regional differences in the field efficacy of biocontrol against 

S. sclerotiorum in France, the objectives our study were (i) to evaluate and quantify the 

variability in susceptibility to P. minitans among a large sample of S. sclerotiorum isolates 

collected from different regions of France and (ii) to test the hypothesis that isolates in the North 

may be more susceptible than those in the South of France.  For this, we used a standardized 

quantitative in vitro assay developed in preliminary study to assess the susceptibility of S. 

sclerotiorum to P. minitans under axenic conditions (Nicot et al. 2016).   

 

Materials and Methods 
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Isolates of S. sclerotiorum and production of sclerotia.  

A total of 75 isolates of S. sclerotiorum were used in the present study.  They belong to a core 

collection of isolates characterized for their genetic diversity in earlier work (Leyronas et al. 

2018).  They originated from sclerotia collected on diseased plants in commercial fields from 

several regions of France (Table 1).  Upon reception in our laboratory the sclerotia were 

systematically surface-disinfested with 5% sodium hypochlorite (three minutes, followed with 

three rinses in sterile water), plated on Potato Dextrose Agar medium (PDA) and incubated in 

a growth chamber at 21°C under fluorescent light (162 μmol s-1 m-2; 10 hour photoperiod) to 

stimulate myceliogenic germination.  The resulting colonies were subjected to single-hyphal 

tip isolation as described by Lehner et al. (2016).  The isolates were then stored at -20°C.   

 Prior to a test with P. minitans fresh sclerotia were produced for each isolate in 90-mm 

diameter Petri plates containing 17 mL of PDA.  The plates were incubated for three weeks in 

a growth chamber at 21°C under fluorescent light (162 μmol s-1 m-2; 10-hour photoperiod).  The 

sclerotia were then collected and used immediately as described below.  

 

Inoculum of P. minitans and inoculation of S. sclerotiorum sclerotia 

 One strain of P. minitans was used throughout this study.  It was isolated by dilution 

plating from a preparation of the commercial product Contans®. The isolate was then 

monospored as described for B. cinerea (Leyronas et al. 2012) and stored as a concentrated 

spore suspension (108 spores mL-1) at -20°C in 20% glycerol until use.  Fresh inoculum was 

produced for each test with S. sclerotiorum by depositing 2 µL aliquots of stored spore 

suspension in the center of Petri plates containing PDA.  The plates were incubated at 21°C 

under fluorescent light as described above.  After three weeks, spores were collected from the 

colonies in sterile water and filtered aseptically through 30-μm mesh sterile filters to remove 
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mycelial fragments.  The final inoculum of P. minitans consisted of spore suspensions adjusted 

to a concentration of 108 spores mL-1.   

 For each isolate of S. sclerotiorum, four batches of 20 sclerotia were prepared in sterile 

tubes and mixed with 2 mL of either P. minitans inoculum (three inoculated batches) or sterile 

water (one control batch).  Each batch of sclerotia was then mixed into 150 g of sterile sand in 

a 180 mL sample jar and incubated in the dark at 21°C.   

 

Quantifying the effect of P. minitans on sclerotia of S. sclerotiorum 

 After three weeks of incubation, the sclerotia were recovered from the sand and 

disinfested in 5% sodium hypochlorite (for three minutes, followed by three rinses in sterile 

water) to remove P. minitans from their surface. Each sclerotium was then cut in half and the 

two fragments were plated on PDA, with the cut surface against the medium to facilitate the 

growth of S. sclerotiorum and P. minitans from the medulla of the sclerotia.  For each isolate 

of S. sclerotiorum, a total of 80 half-sclerotia were plated on PDA, 60 from the batches of 

inoculated sclerotia and 20 from non-inoculated control sclerotia.  All plates were incubated for 

one week at 21°C under fluorescent light as described above. 

 To assess the impact of internal colonization of sclerotia by P. minitans and quantify 

the susceptibility of S. sclerotiorum, the growth of P. minitans and of S. sclerotium from each 

half sclerotium was recorded after three and seven days of incubation.  The number of daughter 

sclerotia produced by S. sclerotiorum on the Petri plates after seven days of incubation was also 

recorded.   

 To account for possible underlying differences in mycelial growth rates among isolates 

of S. sclerotiorum, a relative index was computed to compare their development from 

inoculated and non-inoculated sclerotia and thus quantify a reduction that would result 
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specifically from the effect of P. minitans.  This index of reduction of mycelial growth was 

computed as: 

IRm = 100*(Dcontrol – Dinoculated)/Dcontrol, 

where Dinoculated was the diameter of the S. sclerotiorum colonies on PDA after 3 days of 

incubation of sclerotia inoculated with P. minitans and Dcontrol was that for non-inoculated 

control sclerotia.  Similarly, an index of reduction of the production of daughter sclerotia by S. 

sclerotiorum was computed as:   

IRs = 100*(Ncontrol – Ninoculated)/Ncontrol, 

where Ninoculated was the number of daughter sclerotia produced on PDA after 7 days of 

incubation of sclerotia inoculated with P. minitans and Ncontrol was that for non-inoculated 

control sclerotia. 

 

Statistical analyses 

 All statistical analyses were carried out with Statistica (Dell). The "Non-parametric 

Tests" module (Kruskal-Wallis tests) was used to evaluate differences of susceptibility to P. 

minitans among isolates of S. sclerotiorum as characterized by the different criteria described 

above.  Wilcoxon-Mann-Whitney tests were used to evaluate the specific effect of P. minitans 

on each individual isolate by comparing colony diameter and production of daughter sclerotia 

from sclerotia of S. sclerotiorum previously incubated with the mycoparasite and from control 

non-inoculated sclerotia.  These tests were also used to compare the susceptibility of the group 

of S. sclerotiorum isolates from the North to that of isolates from the South of France. 

 Finally, polynomial regression analyses were implemented with the "General Linear 

Model" module to examine possible relations between the various criteria used to characterize 

the susceptibility of the 75 isolates of S. sclerotiorum. 
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Results 

Growth of P. minitans from sclerotia of S. sclerotiorum  

 Development of P. minitans colonies on PDA was never observed from non-inoculated 

sclerotia of S. sclerotiorum.  Colonies of P. minitans developed from many but not all 

inoculated sclerotia, suggesting that for some of them, the extent of internal colonization by the 

mycoparasite was not sufficient to allow detectable growth within 7 days after the half-sclerotia 

were deposited on PDA.  The frequency of detection of growth of P. minitans from sclerotia 

(Figure 1) differed significantly between isolates of S. sclerotiorum (P = 0.002) despite 

substantial variability among the three independent batches of sclerotia examined for each 

isolate, as shown by the size of the error bars.  Similarly, the extent of P. minitans mycelial 

growth (Figure 2) from the colonies differed significantly between isolates of S. sclerotiorum 

(P < 0.001), with a much smaller level of variability among the 60 half sclerotia examined for 

each isolate.  Polynomial regression analysis showed that these two types of assessment of the 

extent of sclerotial colonization by P. minitans were significantly associated (Figure 3), with 

the best fit obtained as y = 0.0024x² + 0.0188x + 0.9284 (R² = 0.8435; P < 0.001), where y was 

the colony diameter (in mm) and x the frequency of detection (in %) of P. minitans from S. 

sclerotiorum sclerotia.   

 For both of these criteria used to assess the susceptibility of S. sclerotiorum to P. 

minitans, there was no significant difference between the group of isolates from the North and 

those from the South of France (Table 2). 

 

Mycelial growth of S. sclerotiorum from sclerotia 

 Mycelial growth of S. sclerotiorum on PDA medium was observed for all non-

inoculated sclerotia and for many but not all sclerotia previously incubated for three weeks with 

P. minitans in sterile sand.  For 29 of the 75 isolates examined, mycelial development occurred 



 

Page 10 

from 100% of the inoculated sclerotia, while for the other isolates, mycelial growth was absent 

for up to 80% of the sclerotia (Figure 4), suggesting that the mycoparasite had compromised 

their viability.  There was no significant difference between isolates from the North and from 

the South of France (Table 2). Based on polynomial regression analyses, the likelihood for the 

sclerotia of an isolate to show no mycelial germination was significantly related (Figure 5), 

both to the observed frequency of development of P. minitans on PDA medium from those 

sclerotia (Y = 0.0085x² - 0.4447x + 5.4202; R² = 0.5547, P < 0.001) and to the diameter of 

resulting P. minitans colonies (Y = 0.0561x² + 0.2479x - 0.052; R² = 0.8054, P < 0.001). 

 The diameter of S. sclerotiorum colonies three days after the plating of sclerotia on PDA 

medium varied widely among isolates, both for non-inoculated sclerotia and for those 

previously incubated for three weeks with P. minitans in sterile sand (data not shown; P < 0.001 

for both).  The IRm index, computed to assess the reduction of mycelial growth from inoculated 

sclerotia relative to non-inoculated control sclerotia also varied significantly among isolates (P 

< 0.001, Figure 6).  For 46 of the 75 S. sclerotiorum isolates, IRm had a positive value, 

reflecting the fact that colony diameter from inoculated sclerotia was lower than that for control 

non-inoculated sclerotia, with statistically significant differences for 17 of those isolates (P < 

0.05; Wilcoxon-Mann-Whitney test).  However, IRm had negative values for 29 isolates, for 

which the diameter of the S. sclerotiorum colony was greater for sclerotia inoculated with P. 

minitans than for control non-inoculated sclerotia (Figure 6).  For those isolates, the 

mycoparasite appeared to have stimulated, rather than inhibited, mycelial germination and 

subsequent growth of S. sclerotiorum on PDA medium.  The differences were statistically 

significant for 19 of those isolates (P < 0.05; Wilcoxon-Mann-Whitney test).  There was no 

significant difference between isolates from the North and from the South of France (Table 2).  

Polynomial regression analyses showed statistically significant relations (P < 0.05) between 

the Index of Reduction of mycelial growth and several predictors such as the frequency of 
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development of P. minitans from sclerotia (y = 0.0043x² + 0.3403x - 29.144; R² = 0.421; Figure 

7-A), the diameter of resulting P. minitans colonies (y = -0.0239x² + 3.6866x - 31.056; R² = 

0.542; Figure 7-B). In contrast, the diameter of S. sclerotiorum colonies growing from control 

non-inoculated sclerotia was a poor predictor of IRm (R² = 0.094; Figure 7-C).  

 

Production of daughter sclerotia by S. sclerotiorum 

 The index IRs, computed to assess the reduction in production of daughter sclerotia by 

colonies growing from inoculated sclerotia relative to non-inoculated control sclerotia varied 

significantly among isolates (P < 0.001, Figure 8).  For 49 of the 75 S. sclerotiorum isolates, 

IRs had a positive value, reflecting the fact that production of daughter sclerotia on colonies 

from inoculated sclerotia was lower than that for control non-inoculated sclerotia.  IRs also 

showed negative values for some of the isolates, for which the production of daughter sclerotia 

by the S. sclerotiorum colonies growing from sclerotia inoculated with P. minitans was 

enhanced compared to control non-inoculated sclerotia (Figure 8).  There was no significant 

difference between isolates from the North and from the South of France (Table 2).   

 Polynomial regression analyses showed statistically significant relationship (P < 0.05) 

between the Index of reduction of production of daughter sclerotia and several predictors such 

as the frequency of development of P. minitans from sclerotia 

(y = 0.0056x² + 0.0932x - 8.9736; R² = 0.331), the diameter of resulting P. minitans colonies 

(y = -0.0295x² + 2.278x - 12.353; R² = 0.580).  In contrast, colony diameter and the production 

of daughter sclerotia by S. sclerotiorum colonies growing from control non-inoculated sclerotia 

were poor predictors of IRs (R² of 0.031 and 0.002, respectively; P > 0.05 for both predictors).  

 

Discussion 
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 Using a standardized assay in controlled axenic conditions, the present study showed 

wide differences in susceptibility to P. minitans among 75 isolates of S. sclerotiorum, with 

consistent responses for four criteria used to assess the impact of the mycoparasite.  To our 

knowledge, this is the first study documenting the diversity in susceptibility of S. sclerotiorum 

to a commercialized strain of P. minitans and the first detailed characterization of a large group 

of isolates from France for traits related to fitness, such as mycelial growth and production of 

sclerotia.   

 A similarly high level of diversity was found among isolates collected from the North 

or from the South of France, and no significant regional difference was observed, suggesting 

that other hypotheses should be considered to explain the reported tendency for better field 

efficacy of biocontrol in the North.  Many environmental factors, both abiotic and biotic, are 

known to influence the survival of sclerotia in soil (Bell et al. 1998; Duncan et al. 2006; Wu et 

al. 2008; Ćosić et al. 2012).  Natural predation of sclerotia by various soil invertebrate species 

as well as degradation by soilborne microorganisms have been documented (Coley-Smith and 

Cooke 1971; Anas 1987; Gracia-Garza et al. 1997).  Strains of P. minitans naturally present in 

soil, even if their density is likely to be considerably lower than that of the commercial 

biocontrol strain after soil treatments (Zeng et al. 2012b), could also play a role.  Many 

environmental factors may also influence the biology and mycoparasitic activity of P. minitans, 

and differences in farming practices, including for field application of the biocontrol product, 

could thus lead to contrasted efficacy of the treatments (De Vrije et al. 2001; Partridge et al. 

2006; Jones et al. 2011; Yang et al. 2011).  

 To avoid possible interference with some of these factors and focus on investigating 

intrinsic differences in susceptibility among isolates of S. sclerotiorum, the in vitro assay 

developed for the present study was highly standardized and the mycoparasitic activity of P. 

minitans on the sclerotia was limited to a three-week incubation period.  Therefore, our 
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observations are unlikely to represent fully the behavior of the S. sclerotiorum isolates in a field 

situation.  For example, sclerotia found free of infection by P. minitans after a three-week 

incubation period might eventually become parasitized over a longer time lap.  Furthermore, in 

field conditions the numerous possible interfering factors evoked above might not affect 

identically the outcome of mycoparasitism for all isolates of S. sclerotiorum.  Much additional 

research is needed to understand the mechanisms responsible for the differences of 

susceptibility revealed in our study and how those mechanisms could be affected by various 

factors operating in the field.   

 Even in a simplified experimental context as in the present study, our results highlight 

that mycoparasitism is clearly the complex outcome of multiple phenomena which occurred 

both during the three-week incubation period of sclerotia in the sample jars and after the 

sclerotia were plated on the PDA medium.  This is exemplified by the unexpected negative 

values of the indices IRm (Figure 6) observed for certain isolates.  Our starting hypothesis was 

that the extent of mycoparasitism in a sclerotium would lead to correspondingly reduced 

biomass of S. sclerotiorum, and that this in turn would result in slower germination and less 

vigorous mycelial growth from inoculated, compared to non-inoculated sclerotia.  Things were 

clearly more complex.  Although regression analysis showed that IRm was significantly related 

to other criteria used to characterize the susceptibility of S. sclerotiorum isolates, mycelial 

growth from inoculated sclerotia of the least susceptible isolates was stimulated (rather than 

showing reduced inhibition) relative to control non-inoculated sclerotia. Among possible 

explanations, one could be that two opposite phenomena occurred simultaneously, causing the 

observed outcome for these least susceptible isolates: (i) the penetration of the hard, melanized 

cortex of the sclerotia may have been slower or reduced, thus leading to reduced parasitism of 

the medullar part, and (ii) simultaneously the partial degradation of the cortex may be a 

stimulating factor for sclerotial germination, facilitating quicker growth of mycelium out of the 
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sclerotia when they were plated on PDA. Further work will be needed to test formally this and 

possibly other hypotheses.  The same hypotheses may be examined to explain the negative IRs 

values (Figure 8), as sclerotial production by S. sclerotiorum on agar media is mostly initiated 

when the growing margin of a mycelial colony reaches the rim of the Petri plate.  In addition to 

a possible link between production of daughter sclerotia and the kinetics of mycelial growth on 

PDA medium, a role of mycoparasitism on mycelia of S. sclerotiorum may also need to be 

further examined, as it is known to occur in vitro (Huang et al. 2011) as well as in planta 

(Trutmann et al. 1982), with possible consequences for production of daughter sclerotia in the 

latter case.  

 In conclusion, regardless of the possible mechanisms involved, the findings of the 

present study constitute a clear documentation of differences in susceptibility to a biocontrol 

agent among isolates of a plant pathogen, adding a contribution to a still very limited knowledge 

(Bardin et al. 2015).  Differences in susceptibility of S. sclerotiorum to P. minitans cannot 

explain differences in the efficacy of Contans® in the North and the South of France.  

Nevertheless, the wide range of variability observed among isolates of S. sclerotiorum, 

regardless of their geographic origin, suggests that biocontrol efficacy might vary locally 

depending on the frequency of less susceptible isolates in specific fields.  These results also 

bring to attention the possibility that selection pressure could lead to a gradual increase in the 

frequency of less susceptible isolates of the pathogen, as this biocontrol method becomes 

widely adopted by farmers. 
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Table 1: Code number and origin of the 75 isolates of Sclerotinia sclerotiorum characterized in 

the present study. 

Isolate Host Region 

(district)1 

Year of 

samplin

g 
 Isolate Host Region 

(district)1 Year 

2 Lettuce S (84) 2012  83 Melon S (17) 2014 

3 Lettuce S (84) 2012  86 Melon S (17) 2014 

4 Lettuce S (84) 2012  88 Melon S (17) 2014 

5 Lettuce S (84) 2012  90 Melon S (17) 2014 

6 Lettuce S (84) 2013  93 Melon S (17) 2014 

7 Lettuce S (66) 2013  95 Melon S (17) 2014 

10 Green bean N (29) 2011  102 Melon S (17) 2014 

17 Green bean N (29) 2011  103 Melon S (17) 2014 

23 Green bean N (29) 2012  106 Melon S (17) 2014 

24 Green bean N (29) 2012  109 Melon S (17) 2014 

25 Green bean N (29) 2012  120 Rapeseed N (21) 2014 

28 Green bean N (29) 2012  121 Rapeseed S (47) 2014 

29 Green bean N (56) 2012  123 Rapeseed N (77) 2014 

30 Green bean N (29) 2012  125 Rapeseed N (78) 2014 

31 Green bean N (29) 2012  138 Rapeseed N (77) 2014 

33 Green bean N (29) 2012  161 Melon S (17) 2014 

34 Green bean N (29) 2012  162 Melon S (17) 2014 

35 Green bean N (29) 2012  170 Melon S (81) 2014 

36 Green bean N (29) 2013  172 Melon S (82) 2014 

37 Green bean N (29) 2013  173 Melon S (82) 2014 

40 Green bean S (40) 2012  174 Melon S (82) 2014 

41 Green bean S (40) 2012  176 Melon S (17) 2014 

45 Melon N (86) 2012  242 Melon S (17) 2014 

46 Rapeseed N (57) 2003  736 Witloof 

chicory N (62) 2001 

48 Rapeseed N (18) 2007  739 Witloof 

chicory N (62) 2013 

51 Rapeseed N (21) 2007  864 Carrot S (33) 2014 
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58 Witloof chicory N (60) 2012  866 Carrot S (33) 2014 

59 Witloof chicory N (80) 2012  918 Carrot S (33) 2014 

60 Witloof chicory N (59) 2013  977 Carrot S (33) 2014 

61 Witloof chicory N (62) 2012  983 Carrot S (33) 2014 

64 Witloof chicory N (62) 2001  1003 Carrot S (33) 2014 

65 Witloof chicory N (80) 2011  1234 Carrot S (33) 2015 

66 Witloof chicory N (59) 2012  1252 Carrot S (33) 2015 

70 Melon S (17) 2014  1261 Carrot S (33) 2015 

73 Melon S (82) 2014  1262 Carrot S (33) 2015 

75 Melon S (82) 2014  1592 Melon S (17) 2015 

79 Melon S (17) 2014  1869 Melon S (17) 2015 

      2062 Carrot N (50) 2015 

 

1 The numbers between brackets refer to the official codes of French districts (ISO 3166; 

https://www.iso.org/obp/ui/#iso:code:3166:FR), located in the northern (N) or the southern (S) 

part of the country  

  

https://www.iso.org/obp/ui/#iso:code:3166:FR
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Table 2: Differences in the susceptibility of Sclerotinia sclerotiorum isolates to P. minitans 

based on their geographic origin in the North or the South of France  

 

Criteria used to estimate susceptibility to P. 

minitans 

Geographic origin of S. 

sclerotiorum isolates  

P value 

(Wilcoxon-

Mann 

Whitney 

test) 

North 

(32 isolates) 

South 

(43 isolates) 

Frequency of recovery of P. minitans from 

inoculated sclerotia (%) 

54.12 62.09 0.21 

Diameter of P. minitans colonies from 

inoculated sclerotia (mm) 

12.27 12.43 0.86 

Frequency of absence of S. sclerotiorum from 

inoculated sclerotia (%) 

15.29 14.09 0.41 

Reduction of S. sclerotiorum mycelial growth 

from inoculated sclerotia relative to non-

inoculated control sclerotia (%) 

9.91 2.47 0.32 

Reduction in production of daughter sclerotia by 

colonies growing from inoculated sclerotia 

relative to non-inoculated control sclerotia (%) 

24.31 18.04 0.51 
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Figures 

 

Figure 1:  Frequency of development of Paraphaeosphaeria minitans from inoculated sclerotia 

of 75 Sclerotinia sclerotiorum isolates incubated for seven days on PDA medium. For each 

isolate, the data represent averages for three replicate batches of 20 half sclerotia ± standard 

error of the mean.  

 

 

 

Figure 2:  Diameter of Paraphaeosphaeria minitans colonies developed from inoculated 

sclerotia of 75 Sclerotinia sclerotiorum isolates incubated for seven days on PDA medium. 

Data represent averages for 60 half sclerotia ± standard error of the mean.  



 

Page 24 

 

Figure 3:  Relation between the frequency of development (%) and the diameter of 

Paraphaeosphaeria minitans colonies (mm) developed from inoculated sclerotia of 75 

Sclerotinia sclerotiorum isolates after seven days of incubation on PDA medium.  The dotted 

line shows the best fit obtained from polynomial regression analysis. 

 

Figure 4:  Frequency of absence of mycelial development of Sclerotinia sclerotiorum on PDA 

medium from sclerotia previously inoculated with Paraphaeosphaeria minitans. For each 

isolate, the data represent averages for three replicate batches of 20 half sclerotia ± standard 

error of the mean.   
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Figure 5:  Relationship between the frequency of absence of Sclerotinia sclerotiorum 

development (%) and (A) the frequency of development of Paraphaeosphaeria minitans (%), 

or (B) the diameter of P. minitans colonies (mm) developed from inoculated sclerotia of 75 S. 

sclerotiorum isolates after seven days of incubation on PDA medium.  The dotted lines show 

the best fits obtained from polynomial regression analysis.  
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Figure 6:  Reduction of mycelial growth of Sclerotinia sclerotiorum on PDA medium from 

sclerotia previously incubated with Paraphaeosphaeria minitans, relative to that from control 

non-inoculated sclerotia. Error bars indicate the standard error of the mean.  For the 75 isolates 

of S. sclerotiorum, results of Wilcoxon-Mann-Whitney tests are shown to indicate significant 

reduction (*; light blue color) or increase (+; dark blue color) of colony diameter from 

inoculated sclerotia compared to non-inoculated controls (P = 0.05). 
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Figure 7:  Relation between the reduction of mycelial growth of Sclerotinia sclerotiorum (%) 

and (A): the frequency of development of Paraphaeosphaeria minitans (%), (B): the diameter 

of P. minitans colonies (mm) developed from inoculated sclerotia of 75 S. sclerotiorum isolates 
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after seven days of incubation on PDA medium, or (C): the diameter of S. sclerotiorum colonies 

from non-inoculated sclerotia.  The dotted lines show the best fits obtained from polynomial 

regression analysis.   
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Figure 8:  Reduction in production of daughter sclerotia by colonies of Sclerotinia sclerotiorum 

on PDA medium from sclerotia previously incubated with Paraphaeosphaeria minitans, 

relative to that from control non-inoculated sclerotia. Error bars indicate the standard error of 

the mean.   

 


