C. Basset-mens and H. M. Van-der-werf, Scenariobased environmental assessment of farming systems: the case of pig production in France, Agricult. Ecosys. Environ, vol.105, pp.127-144, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01460814

A. Boggia, L. Paolotti, and C. Castellini, Environmental impact evaluation of conventional, organic and organic-plus poultry production systems using life cycle assessment, World Poult. Sci. J, vol.66, pp.95-114, 2010.

J. Boissy, J. Aubin, A. Drissi, H. M. Der-werf, G. J. Bell et al., Environmental impacts of plant-based salmonid diets at feed and farm scales, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01460925

, Aquaculture, vol.321, pp.61-70

C. Castrodeza, P. Lara, and T. Pena, Multicriteria fractional model for feed formulation: economic, nutritional and environmental criteria, Agricult. Sys, vol.86, pp.76-96, 2005.

, Estimation des rejets d'azote -phos, 2003.

P. Cozannet, M. Lessire, C. Gady, J. P. Metayer, Y. Primot et al., Energy value of wheat dried distillers grains with solubles in roosters, broilers, layers, and turkeys, Poultr. Sci, vol.89, pp.2230-2241, 2010.

P. Cozannet, Y. Primot, C. Gady, J. P. Metayer, M. Lessire et al., Energy value of wheat distillers grains with solubles for growing pigs and adult sows, J. Anim. Sci, vol.88, pp.2382-2392, 2010.

F. Danic, S. Lepochat, B. Lévêque, L. Moniot, and G. Neveux, Comment utiliser les flux, indicateurs et méthodes ACV existants pour traiter l'impact sur la biodiversité. Rapport Final, 2014.

V. Scorelca, , p.148

L. De-baan, R. Alkemade, and T. Koellner, Land use impacts on biodiversity in LCA: a global approach, Int. J. Life Cycle Ass, vol.18, pp.1216-1230, 2013.

D. M. De-souza, D. F. Flynn, F. Declerck, R. K. Rosenbaum, H. De-melo-lisboa et al., Land use impacts on biodiversity in LCA: proposal of characterization factors based on functional diversity, Int. J. Life Cycle Ass, vol.18, pp.1231-1242, 2013.

M. A. Dolman, H. C. Vrolijk, and I. J. De-boer, Exploring variation in economic, environmental and societal performance among Dutch fattening pig farms, Livest. Sci, vol.149, pp.143-154, 2012.

J. Y. Dourmad, J. Ryschawy, T. Trousson, M. Bonneau, J. Gonzalez et al., Evaluating environmental impacts of contrasting pig farming systems with life cycle assessment, Animal, vol.8, pp.2027-2037, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01210763

B. Dumont, P. Dupraz, .. ). Aubin, J. Batka, M. Beldame et al., , p.1032, 2016.

L. Dusart, B. Méda, J. Protino, D. Chevalier, E. Dezat et al., OVALI : Une méthode d'évaluation de la durabilité des filières avicoles. 2 -Utilisation pour la conception de nouveaux systèmes de production, J. Rech. Avicole et Palmipèdes à Foie Gras, vol.11, pp.881-886, 2015.

I. Eriksson, . Strid, H. Elmquist, S. Stern, and T. Nybrant, Environmental Systems Analysis of Pig Production -The Impact of Feed Choice (12pp), Int. J. Life Cycle Assess, vol.10, pp.143-154, 2005.

L. Fahrig, J. Baudry, L. Brotons, F. G. Burel, T. O. Crist et al., Functional landscape heterogeneity and animal biodiversity in agricultural landscapes, Ecol. Lett, vol.14, pp.101-112, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00566627

. Fao, Greenhouse Gas Emissions from the Dairy Sector: A Life Cycle Assessment, 2010.

P. M. Fearnside, Soybean cultivation as a threat to the environment in Brazil, Envir. Conservation, vol.28, pp.23-38, 2001.

A. Flysjo, M. Henriksson, C. Cederberg, S. Ledgard, and J. E. Englund, The impact of various parameters on the carbon footprint of milk production in New Zealand and Sweden, Agricult. Sys, vol.104, pp.459-469, 2011.

J. A. Foley, N. Ramankutty, K. A. Brauman, E. S. Cassidy, J. S. Gerber et al., Solutions for a cultivated planet, Nature, vol.478, pp.337-342, 2011.

F. Garcia-launay, H. M. Van-der-werf, T. T. Nguyen, L. Tutour, L. Dourmad et al., Evaluation of the environmental implications of the incorporation of feed-use amino acids in pig. production using Life Cycle Assessment, Livest. Sci, vol.161, pp.158-175, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01209165

D. Gaudré, A. Wilfart, M. Magnin, D. Planchenault, O. Traineau et al., Impacts environnementaux des aliments porcs -Etat des lieux et possibilité de réduction par le changement de la composition de l'aliment, J. Rech. Porcine, vol.47, pp.99-104, 2015.

P. J. Gerber, H. Steinfeld, B. Henderson, A. Mottet, C. Opio et al., Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities, Food Agricult. Organization United Nations, 2013.

M. Henriksson, C. Cederberg, and C. Swensson, Carbon footprint and land requirement for dairy herd rations: impacts of feed production practices and regional climate variations, Animal, vol.8, pp.1329-1338, 2014.

, Emissions from livestock and manure management, IPCC guidelines for National Greenhouse Gas Inventories, p.87, 2006.

T. Koellner and R. Geyer, Global land use impact assessment on biodiversity and ecosystem services in LCA, Int. J. Life Cycle Ass, vol.18, pp.1185-1187, 2013.

A. Kool, H. Blonk, T. Ponsioen, W. Sukkel, H. Vermeer et al., Carbon fottprints of conventional and organic pork: Assessment of typical production systems in the, Blonk Milieu Advies BV. (Ed). bioKennis, p.93, 2009.

L. Roux, X. Barbault, R. Baudry, J. Burel, F. Doussan et al., Agriculture et biodiversité : des synergies à valoriser, 2008.

, Ministère de l'Agriculture et de la Pêche et Ministère de l'Ecologie du Développement et de l'Aménagement durables, p.637

S. Lehuger, B. Gabrielle, and N. Gagnaire, Environmental impact of the substitution of imported soybean meal with locally-produced rapeseed meal in dairy cow feed, J. Cleaner Prod, vol.17, pp.616-624, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00087583

I. Leinonen, A. G. Williams, J. Wiseman, J. Guy, and I. Kyriazakis, Predicting the environmental impacts of chicken systems in the United Kingdom through a life cycle assessment: Egg production systems, Poult. Sci, vol.91, pp.26-40, 2012.

S. G. Mackenzie, I. Leinonen, N. Ferguson, and I. Kyriazakis, Towards a methodology to formulate sustainable diets for livestock: accounting for environmental impact in diet formulation, Br. J. Nutr, vol.115, pp.1860-1874, 2016.

, Analyse d'un indicateur « biodiversité, MEDDE, p.17, 2013.

M. Meul, C. Ginneberge, C. E. Van-middelaar, I. J. De-boer, D. Fremaut et al., Carbon footprint of five pig diets using three land use change accounting methods, Livest. Sci, vol.149, pp.215-223, 2012.

L. Mogensen, J. Hermansen, T. T. Nguyen, and T. Preda, Environmental impact of beef by Life Cycle Assessment (LCA) -13 Danish beef production systems, p.85, 2015.

A. N. Monteiro, F. Garcia-launay, L. Brossard, A. Wilfart, and J. Y. Dourmad, Effect of feeding strategy on environmental impacts of pig fattening in different contexts of production: evaluation through Life Cycle Assessment, J. Anim. Sci, vol.94, pp.4832-4847, 2016.

P. C. Morel, D. Sirisatien, and G. R. Wood, Effect of pig type, costs and prices, and dietary restraints on dietary nutrient specification for maximum profitability in grower-finisher pig herds: A theoretical approach, Livest. Sci, vol.148, pp.255-267, 2012.

E. Mosnier, H. M. Van-der-werf, J. Boissy, and J. Y. Dourmad, Evaluation of the environmental implications of the incorporation of feed-use amino acids in the manufacturing of pig and broiler feeds using, Life Cycle Assessment. Animal, vol.5, pp.1972-1983, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01461056

T. T. Nguyen, I. Bouvarel, P. Ponchant, and H. M. Van-der-werf, Using environmental constraints to formulate low-impact poultry feeds, J. Cleaner Prod, vol.28, pp.215-224, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01209097

T. T. Nguyen, H. M. Van-der-werf, M. Eugene, P. Veysset, J. Devun et al., Effects of type of ration and allocation methods on the environmental impacts of beef-production systems, Livest. Sci, vol.145, pp.239-251, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01209098

T. T. Nguyen, M. Doreau, M. S. Corson, M. Eugene, L. Delaby et al., Effect of dairy production system, breed and co-product handling methods on environmental impacts at farm level, J. Environ. Manag, vol.120, pp.127-137, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01209113

C. Opio, P. Gerber, A. Mottet, A. Falcucci, G. Tempio et al., Greenhouse Gas Emissions from the ruminant suplly chains: A Global Life Cycle Assessment, 2004.

, Ambio, vol.33, pp.316-323

C. Pomar, F. Dubeau, M. P. Letourneau-montminy, C. Boucher, and P. O. Julien, Reducing phosphorus concentration in pig diets by adding an environmental objective to the traditional feed formulation algorithm, Livest. Sci, vol.111, pp.16-27, 2007.

J. Protino, P. Magdelaine, C. Berri, B. Méda, P. Ponchant et al., OVALI : Une méthode d' évaluation de la durabilité des filières avicoles. 1 -Utilisation pour évaluer l' éxistant et identifier des marges de progrès, Avicole et Palmipèdes à Foie Gras, vol.15, pp.1047-1053, 2015.

V. Prudêncio-da-silva, H. M. Van-der-werf, S. R. Soares, and M. S. Corson, Environmental impacts of French and Brazilian broiler chicken production scenarios: An LCA approach, J. Environ. Manag, vol.133, pp.222-231, 2014.

D. Sauvant, J. M. Perez, and G. Tran, Tables of composition and nutritional value of feed materials: pigs, poultry, cattle, sheep, goats, rabbits, horses and fish, INRA, p.304, 2004.

H. Steinfeld, P. Gerber, T. Wassenaar, V. Castel, M. Rosales et al., InraPorc: A model and decision support tool for the nutrition of growing pigs, Anim. Feed Sci. Technol, vol.143, pp.387-405, 2006.

H. H. Van-zanten, H. Mollenhorst, J. W. De-vries, C. E. Van-middelaar, H. R. Van-kernebeek et al., Environmental impact of replacing soybean meal with rapeseed meal in diets of finishing pigs, Int. J. Life Cycle Assess, vol.19, pp.1866-1874, 2014.

A. Wilfart, S. Espagnol, S. Dauguet, A. Tailleur, A. Gac et al., ECOALIM: A dataset of environmental impacts of feed ingredients used in french animal production, PLOS ONE, vol.11, p.167343, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01595321

, Dans le projet, une méthodologie de formulation multiobjectif a été développée pour produire des éco-aliments à impacts réduits et à prix maitrisé. Les impacts des aliments calculés à la tonne d'aliment sont ainsi modifiés de ? 6 à ? 14 % en production de porcs charcutiers et de + 4 à ? 18 % en poulet de chair selon l'impact considéré, par rapport à une formulation à moindre coût classique et en considérant la disponibilité actuelle des MP. Dans le même temps, le prix de l'aliment est augmenté en moyenne d'1% en porc charcutier et de 3 % en poulet de chair. En biphase, avec restriction en porc charcutier, les impacts du kg de poids vif en sortie de ferme sont alors réduits de ? 2 % à ? 10 %. En poulet de chair, avec une alimentation classique en 3 phases, les impacts du kg de poids vif en sortie de ferme sont quant à eux réduits de ? 2 à ? 14 % (sauf pour l'occupation des terres qui augmente de 3%), Résumé L'alimentation animale peut représenter de 30 à 95 % des impacts environnementaux des produits animaux en sortie de ferme. Des données d'impacts environnementaux des matières premières ont été publiées mais il n'existait pas de données adaptées aux productions françaises

, Feed impacts were modified by ? 6 to ? 14 % in growing pig production and by + 4 % to -18 % in broiler production depending on the impact considered and relative to the lowest cost formulation and current availability of feed ingredients. Simultaneously, feed price was increased by 1 % on average in pig production and 3 % in broiler production. With restricted 2-phase feeding, the impacts of the kilogram of growing pig when leaving the farms were reduced by ? 2 to -10 %. With 3-phase feeding, the impacts of the kilogram of broiler when leaving the farm were reduced by ? 2 to ? 14 % (except for land occupation which was increased by + 3 %)