S. A. Acheson, H. N. Kirkman, and R. Wolfenden, Equilibrium of 5,6-hydration of NADH and mechanism of ATP-dependent dehydration, Biochemistry, vol.27, pp.7371-7375, 1988.

L. Adams-phillips, A. G. Briggs, and A. F. Bent, Disruption of poly(ADP-ribosyl)ation mechanisms alters responses of Arabidopsis to biotic stress, Plant Physiol, vol.152, pp.267-280, 2010.

L. Adams-phillips, J. Wan, X. Tan, F. M. Dunning, B. C. Meyers et al., Discovery of ADP-ribosylation and other plant defense pathway elements through expression profiling of four different Arabidopsis-Pseudomonas R-avr interactions, Mol. Plant Microbe. Interact, vol.21, pp.646-657, 2008.

G. Agrimi, A. Russo, C. L. Pierri, and F. Palmieri, The peroxisomal NAD þ carrier of Arabidopsis thaliana transports coenzyme A and its derivatives, J. Bioenerg. Biomembr, vol.44, pp.333-340, 2012.

R. Ahlfors, S. Lång, K. Overmyer, P. Jaspers, M. Brosch-e et al., Arabidopsis RADICAL-INDUCED CELL DEATH1 belongs to the WWE protein-protein interaction domain protein family and modulates abscisic acid, ethylene, and methyl jasmonate responses, Plant Cell, vol.16, pp.1925-1937, 2004.

M. F. Aleo, M. L. Giudici, S. Sestini, P. Danesi, G. Pompucci et al., Metabolic fate of extracellular NAD in human skin fibroblasts, J. Cell Biochem, vol.80, pp.360-366, 2001.

E. Allan and A. Trewavas, Quantitative changes in calmodulin and NAD kinase during early cell development in the root apex of Pisum sativum L, Planta, vol.165, pp.493-501, 1985.

G. J. Allen, S. P. Chu, C. L. Harrington, K. Schumacher, T. Hoffmann et al., A defined range of guard cell calcium oscillation parameters encodes stomatal movements, Nature, vol.411, pp.1053-1057, 2001.

D. K. Allen, I. G. Libourel, and Y. Shachar-hill, Metabolic flux analysis in plants: coping with complexity, Plant Cell Environ, vol.32, pp.1241-1257, 2009.

G. J. Allen, S. R. Muir, and D. Sanders, Release of Ca 2þ from individual plant vacuoles by both InsP3 and cyclic ADP-ribose, Science, vol.268, pp.735-737, 1995.

A. P. Alonso, F. D. Goffman, J. B. Ohlrogge, and Y. Shachar-hill, Carbon conversion efficiency and central metabolic fluxes in developing sunflower (Helianthus annuus L.) embryos, Plant J, vol.52, pp.296-308, 2007.

Y. Amor, E. Babiychuk, D. Inz-e, and A. Levine, The involvement of poly(ADP-ribose) polymerase in the oxidative stress responses in plants, FEBS Lett, vol.440, pp.1-7, 1998.

S. A. Andrabi, N. S. Kim, S. W. Yu, H. Wang, D. W. Koh et al., Poly(ADP-ribose) (PAR) polymer is a death signal, Proc. Natl. Acad. Sci. U.S.A, vol.103, pp.18308-18313, 2006.

S. A. Andrabi, G. K. Umanah, C. Chang, D. A. Stevens, S. S. Karuppagounder et al., Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis, Proc. Natl. Acad. Sci. U.S.A, vol.111, pp.10209-10214, 2014.

K. Apel and H. Hirt, Reactive oxygen species: metabolism, oxidative stress, and signal transduction, Annu. Rev. Plant Biol, vol.55, pp.373-399, 2004.

K. Asada, The water-water cycle in CHLOROPLASTS: scavenging of active oxygens and dissipation of excess photons, Annu. Rev. Plant Physiol. Plant Mol. Biol, vol.50, pp.601-639, 1999.

H. Ashihara and W. W. Deng, Pyridine metabolism in tea plants: salvage, conjugate formation and catabolism, J. Plant Res, vol.125, pp.781-791, 2012.

H. Ashihara, C. Stasolla, Y. Yin, N. Loukanina, and T. A. Thorpe, De novo and salvage biosynthetic pathways of pyridine nucleotides and nicotinic acid conjugates in cultured plant cells, Plant Sci, vol.169, pp.107-114, 2005.

H. Ashihara, Y. Yin, W. W. Deng, and S. Watanabe, Pyridine salvage and nicotinic acid conjugate synthesis in leaves of mangrove species, Phytochemistry, vol.71, pp.47-53, 2010.

H. Ashihara, Y. Yin, and S. Watanabe, Nicotinamide metabolism in ferns: formation of nicotinic acid glucoside, Plant Physiol. Biochem, vol.49, pp.275-279, 2011.

E. Babiychuk, M. Van-montagu, and S. Kushnir, Nterminal domains of plant poly(ADP-ribose) polymerases define their association with mitotic chromosomes, Plant J, vol.28, pp.245-255, 2001.

J. E. Backhausen, A. Emmerlich, S. Holtgrefe, P. Horton, G. Nast et al., Transgenic potato plants with altered expression levels of chloroplast NADP-malate dehydrogenase: interactions between photosynthetic electron transport and malate metabolism in leaves and in isolated intact chloroplasts, Planta, vol.207, pp.105-114, 1998.

I. T. Baldwin and T. E. Ohnmeiss, Alkaloidal responses to damage in Nicotiana native to North America, J. Chem. Ecol, vol.19, pp.1143-1153, 1993.

J. M. Barrero, P. Piqueras, M. Gonz-alez-guzm-an, R. Serrano, P. L. Rodr-iguez et al., A mutational analysis of the ABA1 gene of Arabidopsis thaliana highlights the involvement of ABA in vegetative development, J. Exp. Bot, vol.56, pp.2071-2083, 2005.

M. Bartsch, E. Gobbato, P. Bednarek, S. Debey, J. L. Schultze et al., Salicylic acid-independent ENHANCED DISEASE SUSCEPTIBILITY1 signaling in Arabidopsis immunity and cell death is regulated by the monooxygenase FMO1 and the Nudix hydrolase NUDT7, Plant Cell, vol.18, pp.1038-1051, 2006.

P. Belenky, K. L. Bogan, and C. Brenner, NAD þ metabolism in health and disease, Trends Biochem. Sci, vol.32, pp.12-19, 2007.

P. Belenky, R. Stebbins, K. L. Bogan, C. R. Evans, and C. Brenner, Nrt1 and Tna1-independent export of NAD þ precursor vitamins promotes NAD þ homeostasis and allows engineering of vitamin production, PLoS One, vol.6, p.19710, 2011.

F. Berger, C. Lau, M. Dahlmann, and M. Ziegler, Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyl transferase isoforms, J. Biol. Chem, vol.280, pp.36334-36341, 2005.

F. Berger, M. H. Ram-irez-hern-andez, and M. Ziegler, The new life of a centenarian: signalling functions of NAD(P), Trends Biochem. Sci, vol.29, pp.111-118, 2004.

A. K. Berglund, C. Navarrete, M. K. Engqvist, E. Hoberg, Z. Szilagyi et al., Nucleotide pools dictate the identity and frequency of ribonucleotide incorporation in mitochondrial DNA, PLoS Genetics, vol.13, p.1006628, 2017.

P. Bernal-bayard, M. Herv-as, F. J. Cejudo, and J. A. Navarro, Electron transfer pathways and dynamics of chloroplast NADPH-dependent thioredoxin reductase C (NTRC), J. Biol. Chem, vol.287, pp.33865-33872, 2012.

K. Bernhardt, S. Wilkinson, A. P. Weber, and N. Linka, A peroxisomal carrier delivers NAD þ and contributes to optimal fatty acid degradation during storage oil mobilization, Plant J, vol.69, pp.1-13, 2012.

J. G. Berrin, O. Pierrugues, C. Brutesco, B. Alonso, J. L. Montillet et al., Stress induces the expression of AtNADK-1, a gene encoding a NAD(H) kinase in Arabidopsis thaliana, Mol. Genet. Genomics, vol.273, pp.10-19, 2005.

M. J. Bessman, D. N. Frick, and S. F. Handley, The MutT proteins or "Nudix" hydrolases, a family of versatile, widely distributed, "housecleaning" enzymes, J. Biol. Chem, vol.271, pp.25059-25062, 1996.

R. Bhatia and K. C. Calvo, The sequencing expression, purification, and steady-state kinetic analysis of quinolinate phosphoribosyl transferase from Escherichia coli, Arch. Biochem. Biophys, vol.325, pp.270-278, 1996.

A. R. Bianchi and A. De-maio, Synthesis and degradation of poly(ADP-ribose) in plants, Front. Biosci, vol.19, pp.1436-1444, 2014.

R. A. Billington, S. Bruzzone, A. De-flora, A. A. Genazzani, F. Koch-nolte et al., Emerging functions of extracellular pyridine nucleotides, Mol. Med, vol.12, pp.324-327, 2006.

G. Blander and L. Guarente, The Sir2 family of protein deacetylases, Annu. Rev. Biochem, vol.73, pp.417-435, 2004.

K. L. Bogan and C. Brenner, Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD þ precursor vitamins in human nutrition, Annu. Rev. Nutr, vol.28, pp.115-130, 2008.

M. E. Bonicalzi, J. F. Haince, A. Droit, and G. G. Poirier, Regulation of poly(ADP-ribose) metabolism by poly(ADP-ribose) glycohydrolase: where and when?, Cell Mol. Life Sci, vol.62, pp.739-750, 2005.

M. Bonzon, P. Simon, H. Greppin, and E. Wagner, Pyridine nucleotides and redox-charge evolution during the induction of flowering in spinach leaves, Planta, vol.159, pp.254-260, 1983.

H. I. Boshoff, X. Xu, K. Tahlan, C. S. Dowd, K. Pethe et al., Biosynthesis and recycling of nicotinamide cofactors in Mycobacterium tuberculosis. An essential role for NAD in nonreplicating bacilli, J. Biol. Chem, vol.283, pp.19329-19341, 2008.

R. T. Bossi, A. Negri, G. Tedeschi, and A. Mattevi, Structure of FAD-bound L-aspartate oxidase: insight into substrate specificity and catalysis, Biochemistry, vol.41, pp.3018-3024, 2002.

J. E. Bowers, B. A. Chapman, J. Rong, and A. H. Paterson, Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events, Nature, vol.422, pp.433-438, 2003.

A. G. Briggs and A. F. Bent, Poly(ADP-ribosyl)ation in plants, Trends Plant Sci, vol.16, pp.372-380, 2011.

E. G. Brown, Changes in the free nucleotide pattern of pea seeds in relation to germination, Biochem. J, vol.95, pp.509-514, 1965.

S. Bruzzone, I. Moreschi, L. Guida, C. Usai, E. Zocchi et al., Extracellular NAD þ regulates intracellular calcium levels and induces activation of human granulocytes, Biochem. J, vol.393, pp.697-704, 2006.

S. W. Buck, C. M. Gallo, and J. S. Smith, Diversity in the Sir2 family of protein deacetylases, J. Leukoc. Biol, vol.75, pp.939-950, 2004.

A. B?-urkle, Poly(APD-ribosyl)ation, a DNA damagedriven protein modification and regulator of genomic instability, Cancer Lett, vol.163, pp.1-5, 2001.

F. A. Busch, T. L. Sage, A. B. Cousins, and R. F. Sage, C3 plants enhance rates of photosynthesis by reassimilating photorespired and respired CO2, vol.36, pp.200-212, 2013.

N. V. Bykova and I. M. Møller, Involvement of matrix NADP turnover in the oxidation of NAD-linked substrates by pea leaf mitochondria, Physiol. Plant, vol.111, pp.448-456, 2001.

N. V. Bykova, A. G. Rasmusson, A. U. Igamberdiev, P. Gardestr?-om, and I. M. Møller, Two separate transhydrogenase activities are present in plant mitochondria, Biochem. Biophys. Res. Commun, vol.265, pp.106-111, 1999.

P. Caiafa, T. Guastafierro, and M. Zampieri, Epigenetics: poly(ADP-ribosyl)ation of PARP-1 regulates genomic methylation patterns, FASEB J, vol.23, pp.672-678, 2009.

M. Calvin and A. A. Benson, The path of carbon in photosynthesis IV: the identity and sequence of the intermediates in sucrose synthesis, Science, vol.109, pp.140-142, 1949.

W. J. Campbell, L. H. Allen, and G. Bowes, Effects of CO(2) concentration on rubisco activity, amount, and photosynthesis in soybean leaves, Plant Physiol, vol.88, pp.1310-1316, 1988.

L. Canepa, A. M. Ferraris, M. Miglino, and G. F. Gaetani, Bound and unbound pyridine dinucleotides in normal and glucose-6-phosphate dehydrogenase-deficient erythrocytes, Biochim. Biophys. Acta, vol.1074, pp.4-8, 1991.

L. C-ardenas, A. Mart-inez, F. Quinto, and C. , Fast, transient and specific intracellular ROS changes in living root hair cells responding to Nod factors (NFs), Plant J, vol.56, pp.802-813, 2008.

L. C-ardenas, S. T. Mckenna, J. G. Kunkel, and P. K. Hepler, NAD(P)H oscillates in pollen tubes and is correlated with tip growth, Plant Physiol, vol.142, pp.1460-1468, 2006.

D. C. Centeno, S. Osorio, A. Nunes-nesi, A. L. Bertolo, R. T. Carneiro et al., Malate plays a crucial role in starch metabolism, ripening, and soluble solid content of tomato fruit and affects postharvest softening, Plant Cell, vol.23, pp.162-184, 2011.

M. F. Chai, Q. J. Chen, R. An, Y. M. Chen, J. Chen et al., NADK2, an Arabidopsis chloroplastic NAD kinase, plays a vital role in both chlorophyll synthesis and chloroplast protection, Plant Mol. Biol, vol.59, pp.553-564, 2005.

M. F. Chai, P. C. Wei, Q. J. Chen, R. An, J. Chen et al., NADK3, a novel cytoplasmic source of NADPH, is required under conditions of oxidative stress and modulates abscisic acid responses in Arabidopsis, Plant J, vol.47, pp.665-674, 2006.

J. S. Chappie, J. M. Han, G. W. Rife, C. L. Xu, Q. Stevens et al., The structure of a eukaryotic nicotinic acid phosphoribosyltransferase reveals structural heterogeneity among type II PRTases, Structure, vol.13, pp.1385-1396, 2005.

E. N. Chini, C. C. Chini, I. Kato, S. Takasawa, and H. Okamoto, CD38 is the major enzyme responsible for synthesis of nicotinic acid-adenine dinucleotide phosphate in mammalian tissues, Biochem. J, vol.362, pp.125-130, 2002.

R. Chollet, Effect of glycidate on glycolate formation and photosynthesis in isolated spinach chloroplasts, Plant Physiol, vol.57, pp.237-240, 1976.

P. J. Chung, Y. S. Kim, S. H. Park, B. H. Nahm, and J. K. Kim, Subcellular localization of rice histone deacetylases in organelles, FEBS Lett, vol.583, pp.2249-2254, 2009.

R. M. Cicchillo, L. Tu, J. A. Stromberg, L. M. Hoffart, C. Krebs et al., Escherichia coli quinolinate synthetase does indeed harbor a [4Fe-4S] cluster, J. Am. Chem. Soc, vol.127, pp.7310-7311, 2005.

M. Colinas, H. V. Shaw, S. Loub-ery, M. Kaufmann, M. Moulin et al., A Pathway for Repair of NAD(P)H in Plants, J. Biol. Chem, vol.289, pp.14692-14706, 2014.

D. Come, Les obstacles a la germination, Ed Masson Cie, vol.162, 1970.

M. J. Cormier, H. Charbonneau, J. , and H. W. , Plant and fungal calmodulin: Ca 2þ -dependent regulation of plant NAD kinase, Cell Calcium, vol.2, pp.313-331, 1981.

F. J. Corpas, S. Aguayo-trinidad, T. Ogawa, K. Yoshimura, and S. Shigeoka, Activation of NADPH-recycling systems in leaves and roots of Arabidopsis thaliana under arsenic-induced stress conditions is accelerated by knock-out of Nudix hydrolase, vol.19, 2016.

, J. Plant Physiol, vol.192, pp.81-89

E. A. Cossins, C. D. Kirk, H. C. Imeson, and L. L. Zheng, Characterization of a monofunctional 10-formyltetrahydrofolate synthetase and copurification of 5,10-methylenetetrahydrofolate dehydrogenase and 5,10-methenyltetrahydrofolate cyclohydrolase activities, Adv. Exp. Med. Biol, vol.338, pp.707-710, 1993.

R. D'ari and J. Casades-us, Underground metabolism, Bioessays, vol.20, pp.181-186, 1998.

W. Dahmen, B. Webb, and J. Preiss, The deamidodiphosphopyridine nucleotide and diphosphopyridine nucleotide pyrophosphorylases of Escherichia coli and yeast, Arch. Biochem. Biophys, vol.120, pp.440-450, 1967.

Z. Dai, M. Ku, and G. E. Edwards, C4 Photosynthesis (The Effects of Leaf Development on the CO2-Concentrating Mechanism and Photorespiration in Maize), Plant Physiol, vol.107, pp.815-825, 1995.

P. David, N. W. Chen, A. Pedrosa-harand, V. Thareau, M. Evignac et al., A nomadic subtelomeric disease resistance gene cluster in common bean, Plant Physiol, vol.151, pp.1048-1065, 2009.

L. Davidovic, M. Vodenicharov, E. B. Affar, and G. G. Poirier, Importance of poly(ADP-ribose) glycohydrolase in the control of poly(ADP-ribose) metabolism, Exp. Cell Res, vol.268, pp.7-13, 2001.

D. A. Day and J. T. Wiskich, Glycine metabolism and oxalacetate transport by pea leaf mitochondria, Plant Physiol, vol.68, pp.425-429, 1981.

D. Block, M. Van-lijsebettens, and M. , Energy efficiency and energy homeostasis as genetic and epigenetic components of plant performance and crop productivity, Curr. Opin. Plant Biol, vol.14, pp.275-282, 2011.

D. Block, M. Verduyn, C. De-brouwer, D. Cornelissen, and M. , Poly(ADP-ribose) polymerase in plants affects energy homeostasis, cell death and stress tolerance, Plant J, vol.41, pp.95-106, 2005.

D. Block, M. Hannah, M. Van-der-kelen, K. Van-breusegem, and F. , A gene expression signature for the selection of high energy use efficient plants, vol.876, p.365, 2012.

J. De-ingeniis, M. D. Kazanov, K. Shatalin, M. S. Gelfand, A. L. Osterman et al., Glutamine versus ammonia utilization in the NAD synthetase family, PLoS One, vol.7, p.39115, 2012.

G. De-murcia and J. De-murcia, Poly(ADP-ribose) polymerase: a molecular nick-sensor, Trends Biochem. Sci, vol.19, pp.172-176, 1994.

W. Denk, J. H. Strickler, and W. W. Webb, Twophoton laser scanning fluorescence microscopy, Science, vol.248, pp.73-76, 1990.

D. T. Dennis, Y. Huang, and F. B. Negm, Glycolysis, the oxidative pentose phosphate pathway and anaerobic respiration. Plant Metab, p.105, 1997.

J. M. Denu, The Sir2 family of protein deacetylases, Curr. Opin. Chem. Biol, vol.9, pp.431-440, 2005.

L. Dever, K. Bailey, M. Lacuesta, R. Leegood, and P. Lea, The isolation and characterization of mutants of the C-4 plant Amaranthus edulis, Comptes rendus Acad. Sci. III. La Vie, vol.319, pp.951-959, 1996.

D. Martino, M. L. Fioravanti, R. Barbabella, G. Prosseda, G. Colonna et al., Molecular evolution of the nicotinic acid requirement within the Shigella/ EIEC pathotype, Int. J. Med. Microbiol, vol.303, pp.651-661, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01044923

D. Martino, C. Pallotta, and M. L. , Mitochondrialocalized NAD biosynthesis by nicotinamide mononucleotide adenylyltransferase in Jerusalem artichoke (Helianthus tuberosus L.) heterotrophic tissues, Planta, vol.234, pp.657-670, 2011.

P. Dieter and D. Marm-e, A Ca 2þ , Calmodulindependent NAD kinase from corn is located in the outer mitochondrial membrane, J. Biol. Chem, vol.259, pp.184-189, 1984.

C. Dobrota, Energy dependent plant stress acclimation, Rev. Env. Sci. Biotechnol, vol.5, pp.243-251, 2006.

M. Dobrzanska, B. Szurmak, A. Wyslouch-cieszynska, and E. Kraszewska, Cloning and characterization of the first member of the Nudix family from Arabidopsis thaliana, J. Biol. Chem, vol.277, pp.50482-50486, 2002.

V. Doubnerov-a and H. Ry-slav-a, What can enzymes of C4 photosynthesis do for C3 plants under stress?, Plant Sci, vol.180, pp.575-583, 2011.

G. Doucet-chabeaud, C. Godon, C. Brutesco, G. De-murcia, and M. Kazmaier, Ionising radiation induces the expression of PARP-1 and PARP-2 genes in Arabidopsis, Mol. Genet. Genomics, vol.265, pp.954-963, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02371514

W. Du, S. Ren, Q. Suo, M. Yang, D. He et al., Construction of Sirtl shRNA interfering vector and its effects on cell proliferation and apoptosis, Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, vol.28, pp.972-975, 2011.

X. Du, W. Wang, R. Kim, H. Yakota, H. Nguyen et al., Crystal structure and mechanism of catalysis of a pyrazinamidase from Pyrococcus horikoshii, Biochemistry, vol.40, pp.14166-14172, 2001.

C. Dutilleul, S. Driscoll, G. Cornic, R. De-paepe, C. H. Foyer et al., Functional mitochondrial complex I is required by tobacco leaves for optimal photosynthetic performance in photorespiratory conditions and during transients, Plant Physiol, vol.131, pp.264-275, 2003.

C. Dutilleul, M. Garmier, G. Noctor, C. Mathieu, P. Ch-etrit et al., Leaf mitochondria modulate whole cell redox homeostasis, set antioxidant capacity, and determine stress resistance through altered signaling and diurnal regulation, Plant Cell, vol.15, pp.1212-1226, 2003.

C. Dutilleul, C. Lelarge, J. L. Prioul, R. De-paepe, C. H. Foyer et al., Mitochondria-driven changes in leaf NAD status exert a crucial influence on the control of nitrate assimilation and the integration of carbon and nitrogen metabolism, Plant Physiol, vol.139, pp.64-78, 2005.

H. Ekkehard and M. Stitt, Perturbation of photosynthesis in spinach leaf discs by low concentrations of methyl viologen: influence of increased thylakoid energisation on ATP synthesis, electron transport, energy dissipation, light-activation of the Calvin-Benson-cycle enzymes, and contr, Planta, vol.179, pp.51-60, 1989.

H. El-maarouf-bouteau, Y. Sajjad, J. Bazin, N. Langlade, S. M. Cristescu et al., Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination, Plant Cell Environ, vol.38, pp.364-374, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01537946

M. A. Escobar, D. A. Geisler, and A. G. Rasmusson, Reorganization of the alternative pathways of the Arabidopsis respiratory chain by nitrogen supply: opposing effects of ammonium and nitrate, Plant J, vol.45, pp.775-788, 2006.

M. Evenari, D. Koller, and Y. Gutteman, Effects of the environment of the mother plants on the germination by control of seed-coat permeability to water in Ononis sicula, Aust. J. Biol. Sci, vol.19, pp.1007-1016, 1966.

J. D. Faure, M. Vincentz, J. Kronenberger, C. , and M. , Co-regulated expression of nitrate and nitrite reductases, Plant J, vol.1, pp.107-113, 1991.

I. Finkemeier, M. Laxa, L. Miguet, A. J. Howden, and L. J. Sweetlove, Proteins of diverse function and subcellular location are lysine acetylated in Arabidopsis, Plant Physiol, vol.155, pp.1779-1790, 2011.

C. C. Fjeld, W. T. Birdsong, and R. H. Goodman, Differential binding of NAD þ and NADH allows the transcriptional corepressor carboxyl-terminal binding protein to serve as a metabolic sensor, Proc. Natl. Acad. Sci. U.S.A, vol.100, pp.9202-9207, 2003.

J. Foreman, V. Demidchik, J. H. Bothwell, P. Mylona, H. Miedema et al., Reactive oxygen species produced by NADPH oxidase regulate plant cell growth, Nature, vol.422, pp.442-446, 2003.

A. C. Foster, W. C. Zinkand, and R. Schwarcz, Quinolinic acid phosphoribosyltransferase in rat brain, J. Neurochem, vol.44, pp.446-454, 1985.

H. Fournier, Chroniques de la vie sur Terre pendant quatre milliards d, pp.1-124, 2003.

C. H. Foyer, A. J. Bloom, G. Queval, and G. Noctor, Photorespiratory metabolism: genes, mutants, energetics, and redox signaling, Annu. Rev. Plant Biol, vol.60, pp.455-484, 2009.

C. H. Foyer, J. Neukermans, G. Queval, G. Noctor, and J. Harbinson, Photosynthetic control of electron transport and the regulation of gene expression, J. Exp. Bot, vol.63, pp.1637-1661, 2012.

C. H. Foyer and G. Noctor, Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses, Plant Cell, vol.17, pp.1866-1875, 2005.

M. Friedkin and A. L. Lehninger, Esterification of inorganic phosphate coupled to electron transport between dihydrodiphosphopyridine nucleotide and oxygen, J. Biol. Chem, vol.178, pp.611-644, 1949.

G. M. Frost, K. S. Yang, and G. R. Waller, Nicotinamide adenine dinucleotide as a precursor of nicotine in Nicotiana rustica L, J. Biol. Chem, vol.242, pp.887-888, 1967.

M. J. Fryer, L. Ball, K. Oxborough, S. Karpinski, P. M. Mullineaux et al., Control of ascorbate peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organisation of Arabidopsis leaves, Plant J, vol.33, pp.691-705, 2003.

Z. Q. Fu and X. Dong, Systemic acquired resistance: turning local infection into global defense, Annu. Rev. Plant Biol, vol.64, pp.839-863, 2013.

E. I. Galeeva, T. V. Trifonova, A. A. Ponomareva, L. V. Viktorova, and F. V. Minibayeva, Nitrate reductase from Triticum aestivum leaves: regulation of activity and possible role in production of nitric oxide, Biochem. Biokhimiia, vol.77, pp.404-410, 2012.

S. Gallais, M. A. De-crescenzo, and D. L. Martin, Evidence of active NADP(þ) phosphatase in dormant seeds of Avena sativa L, J. Exp. Bot, vol.51, pp.1389-1394, 2000.

S. Gallais, M. A. Pou-de-crescenzo, and D. L. Martin, Pyridine nucleotides and redox charges during germination of non-dormant and dormant caryopses of Avena sativa L, J. Plant Physiol, vol.153, pp.663-669, 1998.

G. Galvez-valdivieso, M. J. Fryer, T. Lawson, K. Slattery, W. Truman et al., The high light response in Arabidopsis involves ABA signaling between vascular and bundle sheath cells, Plant Cell, vol.21, pp.2143-2162, 2009.

P. Gardestr?-om, Adenylate ratios in the cytosol, chloroplasts and mitochondria of barley leaf protoplasts during photosynthesis at different carbon dioxide concentrations, FEBS Lett, vol.212, pp.114-118, 1987.

P. P. Gauthier, R. Bligny, E. Gout, A. Mah-e, S. Nogu-es et al., In folio isotopic tracing demonstrates that nitrogen assimilation into glutamate is mostly independent from current CO 2 assimilation in illuminated leaves of Brassica napus, New Phytol, vol.185, pp.988-999, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00470357

X. Ge, G. J. Li, S. B. Wang, H. Zhu, T. Zhu et al., AtNUDT7, a negative regulator of basal immunity in Arabidopsis, modulates two distinct defense response pathways and is involved in maintaining redox homeostasis, Plant Physiol, vol.145, pp.204-215, 2007.

X. Ge and Y. Xia, The role of AtNUDT7, a Nudix hydrolase, in the plant defense response, Plant Signal Behav, vol.3, pp.119-120, 2008.

P. Geigenberger, Response of plant metabolism to too little oxygen, Curr. Opin. Plant Biol, vol.6, pp.247-256, 2003.

P. Geigenberger and A. R. Fernie, Metabolic control of redox and redox control of metabolism in plants, Antioxid. Redox. Signal, vol.21, pp.1389-1421, 2014.

A. A. Genazzani, J. Bak, and A. Galione, Inhibition of cADPR-hydrolase by ADP-ribose potentiates cADPR synthesis from beta-NAD þ, Biochem. Biophys. Res. Commun, vol.223, pp.502-507, 1996.

S. Y. Gerdes, O. V. Kurnasov, K. Shatalin, B. Polanuyer, R. Sloutsky et al., Comparative genomics of NAD biosynthesis in cyanobacteria, J. Bacteriol, vol.188, pp.3012-3023, 2006.

S. W. Gibson, A. J. Conway, Z. Zheng, T. M. Uchacz, J. L. Taylor et al., Brassica carinata CIL1 mediates extracellular ROS production during auxin-and ABA-regulated lateral root development, J. Plant Biol, vol.55, pp.361-372, 2012.

P. Gieg-e, J. L. Heazlewood, U. Roessner-tunali, A. H. Millar, A. R. Fernie et al., Enzymes of glycolysis are functionally associated with the mitochondrion in Arabidopsis cells, Plant Cell, vol.15, pp.2140-2151, 2003.

A. G. Golubev, The other side of metabolism, Biokhimiia, vol.61, pp.2018-2039, 1996.

M. Gonzalez-guzman, G. A. Pizzio, R. Antoni, F. Vera-sirera, E. Merilo et al., Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid, Plant Cell, vol.24, pp.2483-2496, 2012.

I. A. Graham, Seed storage oil mobilization, Annu. Rev. Plant Biol, vol.59, pp.115-142, 2008.

J. W. Graham, T. C. Williams, M. Morgan, A. R. Fernie, R. G. Ratcliffe et al., Glycolytic enzymes associate dynamically with mitochondria in response to respiratory demand and support substrate channeling, Plant Cell, vol.19, pp.3723-3738, 2007.

S. Greiss and A. Gartner, Sirtuin/Sir2 phylogeny, evolutionary considerations and structural conservation, Mol. Cell, vol.28, pp.407-415, 2009.

G. R. Griffith, J. L. Chandler, and R. Gholson, Studies on the de novo Biosynthesis of NAD in Escherichia coli. The separation of the nadB gene product frome the nadA product and its purification, Eur. J. Biochem, vol.54, pp.239-245, 1975.

F. Gu-erard, P. Etriacq, B. Gaki-ere, and G. Tcherkez, Liquid chromatography/time-of-flight mass spectrometry for the analysis of plant samples: a method for simultaneous screening of common cofactors or nucleotides and application to an engineered plant line, Plant Physiol. Biochem, vol.49, pp.1117-1125, 2011.

D. Gunawardana, H. C. Cheng, and K. R. Gayler, Identification of functional domains in Arabidopsis thaliana mRNA decapping enzyme (AtDcp2), Nucleic Acids Res, vol.36, pp.203-216, 2008.

A. H. Guse and H. C. Lee, NAADP: a universal Ca 2þ trigger, Sci. Signal, vol.1, p.10, 2008.

H. C. Ha and S. H. Snyder, Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion, Proc. Natl. Acad. Sci. U.S.A, vol.96, pp.13978-13982, 1999.

P. H. Hagedorn, H. Flyvbjerg, and I. M. Møller, Modelling NADH turnover in plant mitochondria, Physiol Plant, vol.120, pp.370-385, 2004.

J. Hager, T. K. Pellny, C. Mauve, C. Lelarge-trouverie, R. De-paepe et al., Conditional modulation of NAD levels and metabolite profiles in Nicotiana sylvestris by mitochondrial electron transport and carbon/nitrogen supply, Planta, vol.231, pp.1145-1157, 2010.

M. C. Haigis, R. Mostoslavsky, K. M. Haigis, K. Fahie, D. C. Christodoulou et al., SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells, Cell, vol.126, pp.941-954, 2006.

I. Hanning and H. W. Heldt, On the function of mitochondrial metabolism during photosynthesis in spinach (Spinacia oleracea L.) leaves (partitioning between respiration and export of redox equivalents and precursors for nitrate assimilation products), Plant Physiol, vol.103, pp.1147-1154, 1993.

J. Hao, P. Etriacq, L. De-bont, M. Hodges, and B. Gaki-ere, Characterization of L-aspartate oxidase from Arabidopsis thaliana, Plant Sci, vol.271, pp.133-142, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02621906

N. Hara, K. Yamada, T. Shibata, H. Osago, T. Hashimoto et al., Elevation of cellular NAD levels by nicotinic acid and involvement of nicotinic acid phosphoribosyltransferase in human cells, J. Biol. Chem, vol.282, pp.24574-24582, 2007.

A. D. Harden and W. J. Young, The alcoholic ferment of yeast-juice Part II. The coferment of yeast-juice, Proc. R. Soc. London Ser. B, Contain Pap a Biol Character, vol.78, pp.369-375, 1906.

S. Hashida, T. Itami, K. Takahara, T. Hirabayashi, H. Uchimiya et al., Increasedrate of NAD metabolism shortens plant longevity by accelerating developmental senescence in, 2016.

. Arabidopsis, Plant Cell Physiol, vol.57, pp.2427-2439

S. Hashida, T. Itami, H. Takahashi, K. Takahara, M. Nagano et al., Nicotinate/nicotinamide mononucleotide adenyltransferase-mediated regulation of NAD biosynthesis protects guard cells from reactive oxygen species in ABA-mediated stomatal movement in Arabidopsis, J. Exp. Bot, vol.61, pp.3813-3825, 2010.

S. Hashida, M. Kawai-yamada, and H. Uchimiya, NAD þ accumulation as a metabolic off switch for orthodox pollen, Plant Signal Behav, vol.8, pp.1-3, 2013.

S. Hashida, H. Takahashi, M. Kawai-yamada, and H. Uchimiya, Arabidopsis thaliana nicotinate/nicotinamide mononucleotide adenyltransferase (AtNMNAT) is required for pollen tube growth, Plant J, vol.49, pp.694-703, 2007.

S. Hashida, H. Takahashi, K. Takahara, M. Kawai-yamada, K. Kitazaki et al., NAD þ accumulation during pollen maturation in Arabidopsis regulating onset of germination, Mol. Plant, vol.6, pp.216-225, 2013.

S. Hashida, H. Takahashi, and H. Uchimiya, The role of NAD biosynthesis in plant development and stress responses, Ann. Bot, vol.103, pp.819-824, 2009.

M. Hauben, B. Haesendonckx, E. Standaert, K. Van-der-kelen, A. Azmi et al., Energy use efficiency is characterized by an epigenetic component that can be directed through artificial selection to increase yield, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.20109-20114, 2009.

T. Hayakawa, T. Nakamura, F. Hattori, T. Mae, K. Ojima et al., Cellular localization of NADHdependent glutamate-synthase protein in vascular bundles of unexpanded leaf blades and young grains of rice plants, Planta, vol.193, pp.455-460, 1994.

M. Hayashi, H. Takahashi, K. Tamura, J. Huang, L. H. Yu et al., Enhanced dihydroflavonol-4-reductase activity and NAD homeostasis leading to cell death tolerance in transgenic rice, Proc. Natl. Acad. Sci. U.S.A, vol.102, pp.7020-7025, 2005.

U. W. Heber and K. A. Santarius, Compartmentation and reduction of pyridine nucleotides in relation to photosynthesis, Biochim. Biophys. Acta. Biophys. Incl. Photosynth, vol.109, pp.390-408, 1965.

D. Heineke, B. Riens, H. Grosse, P. Hoferichter, U. Peter et al., Redox transfer across the inner chloroplast envelope membrane, Plant Physiol, vol.95, pp.1131-1137, 1991.

E. Heyno, G. Innocenti, S. D. Lemaire, E. Issakidis-bourguet, and A. Krieger-liszkay, Putative role of the malate valve enzyme NADP-malate dehydrogenase in H 2 O 2 signalling in Arabidopsis, Philos. Trans. R. Soc. Lond., B, Biol. Sci, vol.369, 2014.

B. Hirel and P. J. Lea, The biochemistry, molecular biology and genetic manipulation of primary ammonia assimilation, Photosynthetic Nitrogen Assimilation and Associated Carbon and Respiratory Metabolism, pp.71-92, 2002.

C. Hollender and Z. Liu, Histone deacetylase genes in Arabidopsis development, J. Integr. Plant Biol, vol.50, pp.875-885, 2008.

Y. Hosokawa, E. Mitchell, and R. Gholson, Higher plants contain L-asparate oxidase, the first enzyme of the Escherichia coli quinolinate synthetase system, Biochem. Biophys. Res. Commun, vol.111, pp.188-193, 1983.

Q. Hou and D. Bartels, Comparative study of the aldehyde dehydrogenase (ALDH) gene superfamily in the glycophyte Arabidopsis thaliana and Eutrema halophytes, Ann. Bot, vol.115, pp.465-479, 2014.

R. H. Houtkooper, E. Pirinen, A. , and J. , Sirtuins as regulators of metabolism and healthspan, Nat. Rev. Mol. Cell Biol, vol.13, pp.225-238, 2012.

T. Hruz, O. Laule, G. Szabo, F. Wessendorp, S. Bleuler et al., Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes, Adv. Bioinformatics, p.420747, 2008.

Q. Hu, C. Chen, J. Yan, X. Yang, X. Shi et al., Therapeutic application of gene silencing MMP-9 in a middle cerebral artery occlusioninduced focal ischemia rat model, Exp. Neurol, vol.216, pp.35-46, 2009.

L. Huang, Q. Sun, F. Qin, C. Li, Y. Zhao et al., Down-regulation of a SILENT INFORMATION REGULATOR2-related histone deacetylase gene, OsSRT1, induces DNA fragmentation and cell death in rice, Plant Physiol, vol.144, pp.1508-15019, 2007.

H. Huang and D. J. Tindall, Dynamic FoxO transcription factors, J. Cell Sci, vol.120, pp.2479-2487, 2007.

W. Hummel and H. Gr?-oger, Strategies for regeneration of nicotinamide coenzymes emphasizing self-sufficient closed-loop recycling systems, J. Biotechnol, vol.191, pp.22-31, 2014.

L. Hunt and J. E. Gray, The relationship between pyridine nucleotides and seed dormancy, New Phytol, vol.181, pp.62-70, 2009.

L. Hunt, M. J. Holdsworth, and J. E. Gray, Nicotinamidase activity is important for germination, Plant J, vol.51, pp.341-351, 2007.

L. Hunt, F. Lerner, and M. Ziegler, NAD -new roles in signalling and gene regulation in plants, New Phytol, vol.163, pp.31-44, 2004.

I. Hwang and J. Sheen, Two-component circuitry in Arabidopsis cytokinin signal transduction, Nature, vol.413, pp.383-389, 2001.

A. U. Igamberdiev, N. V. Bykova, and P. Gardestr?-om, Involvement of cyanide-resistant and rotenoneinsensitive pathways of mitochondrial electron transport during oxidation of glycine in higher plants, FEBS Lett, vol.412, pp.265-269, 1997.

A. U. Igamberdiev and P. Gardestr?-om, Regulation of NAD-and NADP-dependent isocitrate dehydrogenases by reduction levels of pyridine nucleotides in mitochondria and cytosol of pea leaves, Biochim. Biophys. Acta, vol.1606, pp.117-125, 2003.

S. Imai, C. M. Armstrong, M. Kaeberlein, and L. Guarente, Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase, Nature, vol.403, pp.795-800, 2000.

K. Ishikawa, T. Ogawa, E. Hirosue, Y. Nakayama, K. Harada et al., Modulation of the poly(ADP-ribosyl)ation reaction via the Arabidopsis ADP-ribose/NADH pyrophosphohydrolase, AtNUDX7, is involved in the response to oxidative stress, Plant Physiol, vol.151, pp.741-754, 2009.

K. Ishikawa, K. Yoshimura, K. Harada, E. Fukusaki, T. Ogawa et al., AtNUDX6, an ADP-ribose/NADH pyrophosphohydrolase in Arabidopsis, positively regulates NPR1-dependent salicylic acid signaling, Plant Physiol, vol.152, pp.2000-2012, 2010.

K. Ishikawa, K. Yoshimura, T. Ogawa, and S. Shigeoka, Distinct regulation of Arabidopsis ADP-ribose/ NADH pyrophosphohydrolases, AtNUDX6 and 7, in biotic and abiotic stress responses, Plant Signal Behav, vol.5, pp.839-841, 2010.

E. Jahns, Ueber das Alkaloïd des indischen, Hanfs. Arch. Pharmazie, vol.225, pp.20130228-483, 1885.

A. Jamai, P. A. Salom-e, S. H. Schilling, A. P. Weber, and C. R. Mcclung, Arabidopsis photorespiratory serine hydroxymethyltransferase activity requires the mitochondrial accumulation of ferredoxin-dependent glutamate synthase, Plant Cell, vol.21, pp.595-606, 2009.

N. Jambunathan and R. Mahalingam, Analysis of Arabidopsis growth factor gene 1 (GFG1) encoding a nudix hydrolase during oxidative signaling, Planta, vol.224, pp.1-11, 2006.

N. Jambunathan, A. Penaganti, Y. Tang, and R. Mahalingam, Modulation of redox homeostasis under suboptimal conditions by Arabidopsis nudix hydrolase 7, BMC Plant Biol, vol.10, p.173, 2010.

Q. Jia, A. Dulk-ras, H. Shen, P. J. Hooykaas, and S. Pater, Poly(ADP-ribose)polymerases are involved in microhomology mediated back-up non-homologous end joining in Arabidopsis thaliana, Plant Mol. Biol, vol.82, pp.339-351, 2013.

E. P. Journet, M. Neuburger, and R. Douce, Role of glutamate-oxaloacetate transaminase and malate dehydrogenase in the regeneration of NAD for glycine oxidation by spinach leaf mitochondria, Plant Physiol, vol.67, pp.467-469, 1981.

W. G. Kaelin and S. L. Mcknight, Influence of metabolism on epigenetics and disease, Cell, vol.153, pp.56-69, 2013.

W. M. Kaiser, A. Kandlbinder, M. Stoimenova, and J. Glaab, Discrepancy between nitrate reduction rates in intact leaves and nitrate reductase activity in leaf extracts: what limits nitrate reduction in situ?, Planta, vol.210, pp.801-807, 2000.

W. M. Kaiser, M. Stoimenova, and H. M. Man, What limits nitrate reduction in leaves? In Photosynthetic Nitrogen Assimilation and Associated Carbon and Respiratory Metabolism, pp.63-70, 2002.

M. R. Kasimova, J. Grigiene, K. Krab, P. H. Hagedorn, H. Flyvbjerg et al., The free NADH concentration is kept constant in plant mitochondria under different metabolic conditions, Plant Cell, vol.18, pp.688-698, 2006.

R. Katahira and H. Ashihara, Profiles of the biosynthesis and metabolism of pyridine nucleotides in potatoes (Solanum tuberosum L.), Planta, vol.231, pp.35-45, 2009.

M. Kato and S. J. Lin, Regulation of NAD þ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae, DNA Repair (Amst), vol.23, pp.49-58, 2014.

A. Katoh and T. Hashimoto, Molecular biology of pyridine nucleotide and nicotine biosynthesis, Front Biosci, vol.9, pp.1577-1586, 2004.

A. Katoh, K. Uenohara, M. Akita, and T. Hashimoto, Early steps in the biosynthesis of NAD in Arabidopsis start with aspartate and occur in the plastid 1, Plant Physiol, vol.141, pp.851-857, 2006.

J. Kauny and P. Etif, NADPH fluorescence in the cyanobacterium Synechocystis sp. PCC 6803: a versatile probe for in vivo measurements of rates, yields and pools, Biochim. Biophys. Acta, vol.1837, pp.792-801, 2014.

S. Kawai, S. Mori, T. Mukai, and K. Murata, Cytosolic NADP phosphatases I and II from Arthrobacter sp. strain KM: implication in regulation of NAD þ /NADP þ balance, J. Basic. Microbiol, vol.44, pp.185-196, 2004.

S. Kawai and K. Murata, Structure and function of NAD kinase and NADP phosphatase: key enzymes that regulate the intracellular balance of NAD(H) and NADP(H), Biosci. Biotechnol. Biochem, vol.72, pp.919-930, 2008.

H. Kaya, R. Nakajima, M. Iwano, M. M. Kanaoka, S. Kimura et al., Ca 2þ -activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth, Plant Cell, vol.26, pp.1069-1080, 2014.

J. Keller, M. Liersch, and H. Grunicke, Studies on the biosynthesis of NAD from nicotinamide and on the intracellular pyridine nucleotide cycle in isolated perfused rat liver, Eur. J. Biochem, vol.22, pp.263-270, 1971.

A. J. Keys, L. F. Bird, M. J. Cornelius, P. J. Lea, R. M. Wallsgrove et al., Photorespiratory nitrogen cycle, Nature, vol.275, pp.741-743, 1978.

R. L. Kilfoil, G. Shtofmakher, G. Taylor, and J. Botvinick, Acetic acid iontophoresis for the treatment of insertional Achilles tendonitis, BMJ Case Rep, p.2014206232, 2014.

J. W. Kim and C. V. Dang, Multifaceted roles of glycolytic enzymes, Trends Biochem. Sci, vol.30, pp.142-150, 2005.

C. D. Kirk, L. Chen, H. C. Imeson, and E. A. Cossins, A 5, 10-methylenetetrahydrofolate dehydrogenase: 5. 10-methenyltetrahydrofolate cyclohydrolase protein from Pisum sativum, Phytochemistry, vol.39, pp.1309-1314, 1995.

S. M. Klaus, A. Wegkamp, W. Sybesma, J. Hugenholtz, J. F. Gregory et al., A nudix enzyme removes pyrophosphate from dihydroneopterin triphosphate in the folate synthesis pathway of bacteria and plants, J. Biol. Chem, vol.280, pp.5274-5280, 2005.

G. Kocsy, I. Tari, R. Vankov-a, B. Zechmann, Z. Guly-as et al., Redox control of plant growth and development, Plant Sci, vol.211, pp.77-91, 2013.

K. K?-onig, Multiphoton microscopy in life sciences, J. Microsc, vol.200, pp.83-104, 2000.

J. K?-onig, M. Baier, F. Horling, U. Kahmann, G. Harris et al., The plant-specific function of 2-Cys peroxiredoxin-mediated detoxification of peroxides in the redox-hierarchy of photosynthetic electron flux, Proc. Natl. Acad. Sci. U.S.A, vol.99, pp.5738-5743, 2002.

A. C. K?-onig, M. Hartl, P. A. Pham, M. Laxa, P. J. Boersema et al., The Arabidopsis class II sirtuin is a lysine deacetylase and interacts with mitochondrial energy metabolism, Plant Physiol, vol.164, pp.1401-1414, 2014.

A. Kornberg, The participation of inorganic pyrophosphate in the reversible enzymatic synthesis of diphosphopyridine nucleotide, J. Biol. Chem, vol.176, p.1475, 1948.

S. Koster, B. Upmeier, D. Komossa, and W. Barz, Nicotinic-acid conjugation in plants and plant-cell cultures of potato (Solanum tuberosum). Zeitschrift fur Naturforsch C-A, J Biosci, vol.44, pp.623-628, 1989.

A. Kozaki and G. Takeba, Photorespiration protects C3 plants from photooxidation, Nature, vol.384, pp.557-560, 1996.

D. M. Kramer, T. J. Avenson, and G. E. Edwards, Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions, Trends Plant. Sci, vol.9, pp.349-357, 2004.

E. Kraszewska, The plant Nudix hydrolase family, Acta. Biochim. Pol, vol.55, pp.663-671, 2008.

H. A. Krebs, The role of fumarate in the respiration of Bacterium coli commune, Biochem. J, vol.31, pp.2095-2124, 1937.

S. Kr?-omer and H. W. Heldt, On the role of mitochondrial oxidative phosphorylation in photosynthesis metabolism as studied by the effect of oligomycin on photosynthesis in protoplasts and leaves of barley (Hordeum vulgare), Plant Physiol, vol.95, pp.1270-1276, 1991.

T. Kupke, J. A. Caparr-os-mart-in, K. J. Salazar, and F. A. Culi-añez-maci-a, Biochemical and physiological characterization of Arabidopsis thaliana AtCoAse: a Nudix CoA hydrolyzing protein that improves plant s plant development, Physiol Plant, vol.135, pp.365-378, 2009.

S. Kuraishi, N. Arai, T. Ushijima, and T. Tazaki, Oxidized and reduced nicotinamide adenine dinucleotide phosphate levels of plants hardened and unhardened against chilling injury, Plant Physiol, vol.43, pp.238-242, 1968.

J. M. Kwak, I. C. Mori, Z. M. Pei, N. Leonhardt, M. A. Torres et al., NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis, EMBO J, vol.22, pp.2623-2633, 2003.

M. Lacuesta, L. V. Dever, A. Munoz-rueda, and P. J. Lea, A study of photorespiratory ammonia production in the C4 plant Amaranthus edulis, using mutants with altered photosynthetic capacities, Physiol Plant, vol.99, pp.447-455, 1997.

R. S. Lamb, M. Citarelli, and S. Teotia, Functions of the poly(ADP-ribose) polymerase superfamily in plants, Cell Mol. Life Sci, vol.69, pp.175-189, 2012.

R. Lassig, T. Gutermuth, T. D. Bey, K. R. Konrad, and T. Romeis, Pollen tube NAD(P)H oxidases act as a speed control to dampen growth rate oscillations during polarized cell growth, Plant J, vol.78, pp.94-106, 2014.

C. Lau, C. D?-olle, T. I. Gossmann, L. Agledal, M. Niere et al., Isoform-specific targeting and interaction domains in human nicotinamide mononucleotide adenylyltransferases, J. Biol. Chem, vol.285, pp.18868-18876, 2010.

D. L. Laval-martin, I. A. Carr-e, S. J. Barbera, and L. N. Edmunds, Rhythmic changes in the activities of NAD kinase and NADP phosphatase in the achlorophyllous ZC mutant of Euglena gracilis Klebs (strain Z), Arch. Biochem. Biophys, vol.276, pp.433-441, 1990.

C. P. Leckie, M. R. Mcainsh, G. J. Allen, D. Sanders, and A. M. Hetherington, Abscisic acid-induced stomatal closure mediated by cyclic ADP-ribose, Proc. Natl. Acad. Sci. U.S.A, vol.95, pp.15837-15842, 1998.

H. C. Lee, Cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate (NAADP) as messengers for calcium mobilization, J. Biol. Chem, vol.287, pp.31633-31640, 2012.

H. C. Lee and R. Aarhus, ADP-ribosyl cyclase: an enzyme that cyclizes NAD þ into a calcium-mobilizing metabolite, Cell Regul, vol.2, pp.203-209, 1991.

M. Leist, B. Single, G. K?-unstle, C. Volbracht, H. Hentze et al., Apoptosis in the absence of poly-(ADP-ribose) polymerase, Biochem. Biophys. Res. Commun, vol.233, pp.518-522, 1997.

W. Y. Li, X. Wang, R. Li, W. Q. Li, C. et al., Genome-wide analysis of the NADK gene family in plants, PLoS One, vol.9, pp.1-15, 2014.

C. L. Linster, E. Van-schaftingen, and A. D. Hanson, Metabolite damage and its repair or pre-emption, Nat. Chem. Biol, vol.9, pp.72-80, 2013.

A. Liszkay, E. Van-der-zalm, and P. Schopfer, Production of reactive oxygen intermediates (O 2 À , H 2 O 2 , and . OH) by maize roots and their role in wall loosening and elongation growth, Plant Physiol, vol.136, pp.3114-3123, 2004.

Q. Liu, R. Graeff, I. A. Kriksunov, H. Jiang, B. Zhang et al., Structural basis for enzymatic evolution from a dedicated ADP-ribosyl cyclase to a multifunctional NAD hydrolase, J. Biol. Chem, vol.284, pp.27637-27645, 2009.

Y. J. Liu, A. Nunes-nesi, S. V. Wallstr?-om, I. Lager, A. M. Michalecka et al., A redox-mediated modulation of stem bolting in transgenic, 2009.

, Nicotiana sylvestris differentially expressing the external mitochondrial NADPH dehydrogenase, Plant Physiol, vol.150, pp.1248-1259

T. Liu, T. Song, X. Zhang, H. Yuan, L. Su et al., Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis, Nat. Commun, vol.5, p.4686, 2014.

C. Liu, Q. Wu, W. Liu, Z. Gu, W. Wang et al., Poly(ADP-ribose) polymerases regulate cell division and development in Arabidopsis roots, J. Integr. Plant Biol, vol.59, pp.459-474, 2017.

W. Li, F. Zhang, Y. Chang, T. Zhao, M. E. Schranz et al., Nicotinate O-glucosylation is an evolutionarily metabolic trait important for seed germination under stress conditions in Arabidopsis thaliana, Plant Cell, vol.27, pp.1907-1924, 2015.

W. Li, F. Zhang, R. Wu, L. Jia, G. Li et al., A novel N-methyltransferase in Arabidopsis appears to feed a conserved pathway for nicotinate detoxification among land plants and is associated with lignin biosynthesis, Plant Physiol, vol.174, pp.1492-1504, 2017.

J. E. Lunn, Compartmentation in plant metabolism, J. Exp. Bot, vol.58, pp.35-47, 2007.

X. Ma, S. Lv, C. Zhang, Y. , and C. , Histone deacetylases and their functions in plants, Plant Cell Rep, vol.32, pp.465-478, 2013.

A. P. Macho, F. Boutrot, J. P. Rathjen, and C. Zipfel, ASPARTATE OXIDASE plays an important role in Arabidopsis stomatal immunity, Plant Physiol, vol.159, pp.1845-1856, 2012.

U. Maciejewska and A. Kacperska, Changes in the level of oxidized and reduced pyridine nucleotides during cold acclimation of winter rape plants, Physiol. Plant, vol.69, pp.687-691, 1987.

G. Magni, A. Amici, M. Emanuelli, G. Orsomando, N. Raffaelli et al., Structure and function of nicotinamide mononucleotide adenylyltransferase, Curr. Med. Chem, vol.11, pp.873-885, 2004.

D. F. Mann and R. U. Byerrum, Activation of the de novo pathway for pyridine nucleotide biosynthesis prior to ricinine biosynthesis in castor beans, Plant Physiol, vol.53, pp.603-609, 1974.

J. Mano, E. Belles-boix, E. Babiychuk, D. Inz-e, Y. Torii et al., Protection against photooxidative injury of tobacco leaves by 2-alkenal reductase. Detoxication of lipid peroxide-derived reactive carbonyls, Plant Physiol, vol.139, pp.1773-1783, 2005.

A. Y. Marbaix, G. No?-el, A. M. Detroux, D. Vertommen, E. Van-schaftingen et al., Extremely conserved ATP-or ADP-dependent enzymatic system for nicotinamide nucleotide repair, J. Biol. Chem, vol.286, pp.41246-41252, 2011.

D. Marino, C. Dunand, A. Puppo, P. , and N. , A burst of plant NADPH oxidases, Trends Plant Sci, vol.17, pp.9-15, 2012.

J. P. Maroco, M. S. Ku, and G. E. Edwards, Oxygen sensitivity of C4 photosynthesis: evidence from gas exchange and chlorophyll fluorescence analyses with different C4 subtypes, Plant Cell Environ, vol.20, pp.1525-1533, 1997.

T. Maruta, T. Ogawa, M. Tsujimura, K. Ikemoto, T. Yoshida et al., Loss-of-function of an Arabidopsis NADPH pyrophosphohydrolase, AtNUDX19, impacts on the pyridine nucleotides status and confers photooxidative stress tolerance, Sci. Rep, vol.6, p.37432, 2016.

A. Matsui and H. Ashihara, Nicotinate riboside salvage in plants: presence of nicotinate riboside kinase in mungbean seedlings, Plant Physiol. Biochem, vol.46, pp.104-108, 2008.

A. Matsui, Y. Yin, K. Yamanaka, M. Iwasaki, A. et al., Metabolic fate of nicotinamide in higher plants, Physiol Plant, vol.131, pp.191-200, 2007.

A. Mattevi, G. Tedeschi, L. Bacchella, A. Coda, A. Negri et al., Structure of L-aspartate oxidase: implications for the succinate dehydrogenase/fumarate reductase oxidoreductase family, Structure, vol.7, pp.745-756, 1999.

G. Maulucci, D. Troiani, S. L. Eramo, F. Paciello, M. V. Podda et al., Time evolution of noise induced oxidation in outer hair cells: role of NAD(P)H and plasma membrane fluidity, Biochim. Biophys. Acta, vol.1840, pp.2192-2202, 2014.

A. G. Mclennan, The Nudix hydrolase superfamily, Cell. Mol. Life Sci, vol.63, pp.123-143, 2006.

R. Medda, A. Padiglia, A. Lorrai, B. Murgia, A. F. Agr-o et al., Purification and properties of a nucleotide pyrophosphatase from lentil seedlings, J. Protein. Chem, vol.19, pp.209-214, 2000.

J. Michalska, H. Zauber, B. B. Buchanan, F. J. Cejudo, and P. Geigenberger, NTRC links built-in thioredoxin to light and sucrose in regulating starch synthesis in chloroplasts and amyloplasts, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.9908-9913, 2009.

B. J. Miflin, Studies on the sub-cellular location of particulate nitrate and nitrite reductase, glutamic dehydrogenase and other enzymes in barley roots, Planta, vol.93, pp.160-170, 1970.

G. Miller, K. Schlauch, R. Tam, D. Cortes, M. A. Torres et al., The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli, Sci. Signal, vol.2, p.45, 2009.

C. Miyake, Alternative electron flows (water-water cycle and cyclic electron flow around PSI) in photosynthesis: molecular mechanisms and physiological functions, Plant Cell Physiol, vol.51, pp.1951-1963, 2010.

G. B. Monshausen, T. N. Bibikova, M. A. Messerli, C. Shi, and S. Gilroy, Oscillations in extracellular pH and reactive oxygen species modulate tip growth of Arabidopsis root hairs, Proc. Natl. Acad. Sci. U.S.A, vol.104, pp.20996-21001, 2007.

G. B. Monshausen, T. N. Bibikova, M. H. Weisenseel, and S. Gilroy, Ca 2þ regulates reactive oxygen species production and pH during mechanosensing in Arabidopsis roots, Plant Cell, vol.21, pp.2341-2356, 2009.

G. B. Moorhead, S. E. Meek, P. Douglas, D. Bridges, C. S. Smith et al., Purification of a plant nucleotide pyrophosphatase as a protein that interferes with nitrate reductase and glutamine synthetase assays, Eur. J. Biochem, vol.270, pp.1356-1362, 2003.

K. C. Morris-blanco, C. H. Cohan, J. T. Neumann, T. J. Sick, and M. A. Perez-pinzon, Protein kinase C epsilon regulates mitochondrial pools of Nampt and NAD following resveratrol and ischemic preconditioning in the rat cortex, J. Cereb. Blood Flow Metab, vol.34, pp.1024-1056, 2014.

M. Mortarino, A. Negri, G. Tedeschi, T. Simonic, S. Duga et al., L-Aspartate oxidase from Escherichia coli. I. Characterization of coenzyme binding and product inhibition, Eur. J. Biochem, vol.239, pp.418-426, 1996.

B. Moser, K. H. Winterhalter, and C. Richter, Purification and properties of a mitochondrial NAD þ glycohydrolase, Arch. Biochem. Biophys, vol.224, pp.358-364, 1983.

K. M?-uller, A. C. Carstens, A. Linkies, M. A. Torres, and G. Leubner-metzger, The NADPH-oxidase AtrbohB plays a role in Arabidopsis seed after-ripening, New Phytol, vol.184, pp.885-897, 2009.

K. M?-uller, A. Linkies, G. Leubner-metzger, and A. R. Kermode, Role of a respiratory burst oxidase of Lepidium sativum (cress) seedlings in root development and auxin signalling, J. Exp. Bot, vol.63, pp.6325-6334, 2012.

Y. Munekage, M. Hashimoto, C. Miyake, K. Tomizawa, T. Endo et al., Cyclic electron flow around photosystem I is essential for photosynthesis, Nature, vol.429, pp.579-582, 2004.

F. J. Muñoz, E. Baroja-fern-andez, M. T. Mor-an-zorzano, N. Alonso-casaj-us, and J. Pozueta-romero, Cloning, expression and characterization of a Nudix hydrolase that catalyzes the hydrolytic breakdown of ADP-glucose linked to starch biosynthesis in Arabidopsis thaliana, Plant Cell Physiol, vol.47, pp.926-934, 2006.

N. M. Murthy, S. Ollagnier-de-choudens, Y. Sanakis, S. E. Abdel-ghany, C. Rousset et al., Characterization of Arabidopsis thaliana SufE2 and SufE3: functions in chloroplast iron-sulfur cluster assembly and NAD synthesis, J. Biol. Chem, vol.282, pp.18254-18264, 2007.

S. Nasu, F. Wicks, and R. Gholson, L-Aspartate oxidase, a newly discovered enzyme of Escherichia coli is the B protein of Quinolinate Synthetase, J. Biol. Chem, vol.257, pp.626-632, 1982.

L. Navazio, M. A. Bewell, A. Siddiqua, G. D. Dickinson, A. Galione et al., Calcium release from the endoplasmic reticulum of higher plants elicited by the NADP metabolite nicotinic acid adenine dinucleotide phosphate, Proc. Natl. Acad. Sci. U.S.A, vol.97, pp.8693-8698, 2000.

L. Navazio, P. Mariani, and D. Sanders, Mobilization of Ca 2þ by cyclic ADP-ribose from the endoplasmic reticulum of cauliflower florets, Plant Physiol, vol.125, pp.2129-2138, 2001.

J. Nestler, S. Liu, T. J. Wen, A. Paschold, C. Marcon et al., Roothairless5, which functions in maize (Zea mays L.) root hair initiation and elongation encodes a monocotspecific NADPH oxidase, Plant J, vol.79, pp.729-740, 2014.

M. Neuburger, D. A. Day, and R. Douce, Transport of NAD in percoll-purified potato tuber mitochondria: inhibition of NAD influx and efflux by N-4-azido-2-nitrophenyl-4-aminobutyryl-3'-NAD, Plant Physiol, vol.78, pp.405-410, 1985.

M. Neuburger and R. Douce, Slow passive diffusion of NAD þ between intact isolated plant mitochondria and suspending medium, Biochem. J, vol.216, pp.443-450, 1983.

T. D. Niehaus, L. G. Richardson, S. K. Gidda, M. Elbadawi-sidhu, J. K. Meissen et al., Plants utilize a highly conserved system for repair of NADH and NADPH hydrates, Plant Physiol, vol.165, pp.52-61, 2014.

A. Nikiforov, C. D?-olle, M. Niere, and M. Ziegler, Pathways and subcellular compartmentation of NAD biosynthesis in human cells: from entry of extracellular precursors to mitochondrial NAD generation, J. Biol. Chem, vol.286, pp.21767-21778, 2011.

G. Noctor, Metabolic signalling in defence and stress: the central roles of soluble redox couples, Plant Cell Environ, vol.29, pp.409-425, 2006.

G. Noctor and C. H. Foyer, A re-evaluation of the ATP: NADPH budget during C3 photosynthesis: a contribution from nitrate assimilation and its associated respiratory activity?, J. Exp. Bot, vol.49, pp.1895-1908, 1998.

G. Noctor, G. Queval, and B. Gaki-ere, NAD(P) synthesis and pyridine nucleotide cycling in plants and their potential importance in stress conditions, J. Exp. Bot, vol.57, pp.1603-1620, 2006.

A. Nunes-nesi, F. Carrari, A. Lytovchenko, and A. R. Fernie, Enhancing crop yield in Solanaceous species through the genetic manipulation of energy metabolism, Biochem. Soc. Trans, vol.33, pp.1430-1434, 2005.

S. L. Oei, J. Griesenbeck, M. Ziegler, and M. Schweiger, A novel function of poly(ADP-ribosyl)ation: silencing of RNA polymerase II-dependent transcription, Biochemistry, vol.37, pp.1465-1469, 1998.

S. L. Oei and M. Ziegler, ATP for the DNA ligation step in base excision repair is generated from poly(ADPribose), J. Biol. Chem, vol.275, pp.23234-23239, 2000.

T. Ogawa, K. Ishikawa, K. Harada, E. Fukusaki, K. Yoshimura et al., Overexpression of an ADP-ribose pyrophosphatase, AtNUDX2, confers enhanced tolerance to oxidative stress in Arabidopsis plants, Plant J, vol.57, pp.289-301, 2009.

T. Ogawa, Y. Ueda, K. Yoshimura, and S. Shigeoka, Comprehensive analysis of cytosolic Nudix hydrolases in Arabidopsis thaliana, J. Biol. Chem, vol.280, pp.25277-25283, 2005.

T. Ogawa, K. Yoshimura, H. Miyake, K. Ishikawa, D. Ito et al., Molecular characterization of organelle-type Nudix hydrolases in Arabidopsis, Plant Physiol, vol.148, pp.1412-1424, 2008.

K. Ohashi, S. Kawai, and K. Murata, Secretion of quinolinic acid, an intermediate in the kynurenine pathway, for utilization in NAD þ biosynthesis in the yeast Saccharomyces cerevisiae, Eukaryotic Cell, vol.12, pp.648-653, 2013.

J. Ohlrogge and J. Browse, Lipid biosynthesis, Plant Cell, vol.7, pp.957-970, 1995.

K. Olejnik and E. Kraszewska, Cloning and characterization of an Arabidopsis thaliana Nudix hydrolase homologous to the mammalian GFG protein, Biochim. Biophys. Acta, vol.1752, pp.133-141, 2005.

S. Ollagnier-de-choudens, L. Loiseau, Y. Sanakis, F. Barras, and M. Fontecave, Quinolinate synthetase, an iron-sulfur enzyme in NAD biosynthesis, FEBS Lett, vol.579, pp.3737-3743, 2005.

N. J. Oppenheimer and N. O. Kaplan, Glyceraldehyde-3-phosphate dehydrogenase catalyzed hydration of the 5-6 double bond of reduced beta-nicotinamide adenine dinucleotide (betaNADH). Formation of beta-6-hydroxy-1,4,5,6-tetrahydronicotinamide adenine dinucleotide, Biochemistry, vol.13, pp.626-4694, 1974.

K. Oracz, H. El-maarouf-bouteau, I. Kranner, R. Bogatek, F. Corbineau et al., The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signaling during germination, Plant Physiol, vol.150, pp.494-505, 2009.

C. Osmond and S. Grace, Perspectives on photoinhibition and photorespiration in the field: quintessential inefficiencies of the light and dark reactions of photosynthesis, J. Exp. Bot, vol.47, pp.604-604, 1996.

C. Ozment, J. Barchue, L. J. Delucas, and D. Chattopadhyay, Structural study of Escherichia coli NAD synthetase: overexpression, purification, crystallization, and preliminary crystallographic analysis, J. Struct. Biol, vol.127, pp.279-282, 1999.

F. Palmieri, B. Rieder, A. Ventrella, E. Blanco, P. T. Do et al., Molecular identification and functional characterization of Arabidopsis thaliana mitochondrial and chloroplastic NAD þ carrier proteins, J. Biol. Chem, vol.284, pp.405-31259, 2009.

R. Pandey, A. M?-uller, C. A. Napoli, D. A. Selinger, C. S. Pikaard et al., Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes, Nucleic Acids Res, vol.30, pp.5036-5055, 2002.

T. K. Pellny, V. Locato, P. D. Vivancos, J. Markovic, L. De-gara et al., Pyridine nucleotide cycling and control of intracellular redox state in relation to poly (ADP-ribose) polymerase activity and nuclear localization of glutathione during exponential growth of Arabidopsis cells in culture, Mol. Plant, vol.2, pp.442-456, 2009.

T. K. Pellny, O. Van-aken, C. Dutilleul, T. Wolff, K. Groten et al., Mitochondrial respiratory pathways modulate nitrate sensing and nitrogendependent regulation of plant architecture in Nicotiana sylvestris, Plant J, vol.54, pp.976-992, 2008.

T. Penfound and J. W. Foster, NAD-dependent DNA-binding activity of the bifunctional NadR regulator of Salmonella typhimurium, J. Bacteriol, vol.181, pp.648-655, 1999.

P. Erez-ruiz, J. M. Sp-inola, M. C. Kirchsteiger, K. Moreno, J. Sahrawy et al., Rice NTRC is a high-efficiency redox system for chloroplast protection against oxidative damage, Plant Cell, vol.18, pp.2356-2368, 2006.

B. Petrack, P. Greengard, A. Craston, and H. J. Kalinsky, Nicotinamide deamidase in rat liver and the biosynthesis of NAD, Biochem. Biophys. Res. Commun, vol.13, pp.472-477, 1963.

P. P-etriacq, L. De-bont, J. Hager, L. Didierlaurent, C. Mauve et al., Inducible NAD overproduction in Arabidopsis alters metabolic pools and gene expression correlated with increased salicylate content and resistance to Pst-AvrRpm1, Plant J, vol.70, pp.650-665, 2012.

P. P-etriacq, L. De-bont, G. Tcherkez, and B. Gaki-ere, NAD Not just a pawn on the board of plant-pathogen interactions, Plant Signal Behav, vol.8, pp.1-11, 2013.

P. P-etriacq, J. H. Stassen, and J. Ton, Spore density determines infection strategy by the plant-pathogenic fungus Plectosphaerella cucumerina, Plant Physiol, vol.170, pp.2325-2339, 2016.

P. P-etriacq, J. Ton, O. Patrit, G. Tcherkez, B. Gaki-ere et al., Etude de la biosynth ese du NAD chez les plantes: Cons equences physiologiques de sa manipulation chez Arabidopsis thaliana, Plant Physiol, vol.172, pp.1465-1479, 2011.

M. Pfister, A. Ogilvie, C. P. Da-silva, A. Grahnert, A. H. Guse et al., NAD degradation and regulation of CD38 expression by human monocytes/ macrophages, Eur. J. Biochem, vol.268, pp.5601-5608, 2001.

P. A. Pham, V. Wahl, T. Tohge, L. R. De-souza, Y. Zhang et al., Analysis of knockout mutants reveals non-redundant functions of poly(ADP-ribose)polymerase isoforms in Arabidopsis, Plant Mol. Biol, vol.89, pp.319-338, 2015.

C. V. Piattoni, S. A. Guerrero, and A. A. Iglesias, A differential redox regulation of the pathways metabolizing glyceraldehyde-3-phosphate tunes the production of reducing power in the cytosol of plant cells, Int. J. Mol. Sci, vol.14, pp.8073-8092, 2013.

A. Podg-orska, M. Ostaszewska, P. Gardestr?-om, A. G. Rasmusson, and B. Szal, In comparison with nitrate nutrition, ammonium nutrition increases growth of the frostbite1 Arabidopsis mutant, Plant Cell Environ, vol.38, pp.224-237, 2014.

N. Pollak, C. D?-olle, and M. Ziegler, The power to reduce: pyridine nucleotides-small molecules with a multitude of functions, Biochem J, vol.402, pp.205-218, 2007.

N. Pollak, M. Niere, and M. Ziegler, NAD kinase levels control the NADPH concentration in human cells, J. Biol. Chem, vol.282, pp.33562-33571, 2007.

G. Popov, M. Fraiture, F. Brunner, and G. Sessa, Multiple Xanthomonas euvesicatoria type III effectors inhibit flg22-triggered immunity, Mol. Plant Microbe. Interact, vol.29, pp.651-660, 2016.

M. Potock-y, M. A. Jones, R. Bezvoda, N. Smirnoff, Y. et al., Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth, New Phytol, vol.174, pp.742-751, 2007.

J. Preiss and P. Handler, Biosynthesis of diphosphopyridine nucleotide I. Identification of intermediates, J. Biol. Chem, vol.233, pp.488-492, 1958.

J. Preiss and P. Handler, Biosynthesis of diphosphopyridine nucleotide II. Enzymatic aspects, J. Biol. Chem, vol.233, pp.493-500, 1958.

A. Pugin, J. M. Frachisse, E. Tavernier, R. Bligny, E. Gout et al., Early events induced by the elicitor cryptogein in tobacco cells: involvement of a plasma membrane NADPH oxidase and activation of glycolysis and the pentose phosphate pathway, Plant Cell, vol.9, pp.2077-2091, 1997.

G. Queval and G. Noctor, A plate reader method for the measurement of NAD, NADP, glutathione, and ascorbate in tissue extracts: application to redox profiling during Arabidopsis rosette development, Anal. Biochem, vol.363, pp.58-69, 2007.

S. Rachmilevitch, A. B. Cousins, and A. J. Bloom, Nitrate assimilation in plant shoots depends on photorespiration, Proc. Natl. Acad. Sci. U.S.A, vol.101, pp.11506-11510, 2004.

G. W. Rafter, S. Chaykin, and E. G. Krebs, The action of glyceraldehyde-3-phosphate dehydrogenase on reduced diphosphopyridine nucleotide, J. Biol. Chem, vol.208, pp.799-811, 1954.

A. S. Raghavendra and K. Padmasree, Beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation, Trends Plant Sci, vol.8, pp.546-553, 2003.

P. W. Rankin, E. L. Jacobson, R. C. Benjamin, J. Moss, and M. K. Jacobson, Quantitative Studies of Inhibitors of ADP-ribosylation in vitro and in vivo, J. Biol. Chem, vol.264, pp.4312-4317, 1989.

A. G. Rasmusson and I. M. Møller, NADP-utilizing enzymes in the matrix of plant mitochondria, Plant Physiol, vol.94, pp.1012-1018, 1990.

A. G. Rasmusson, K. L. Soole, and T. E. Elthon, Alternative NAD(P)H dehydrogenases of plant mitochondria, Annu. Rev. Plant Biol, vol.55, pp.23-39, 2004.

A. G. Rasmusson and S. V. Wallstr?-om, Involvement of mitochondria in the control of plant cell NAD(P)H reduction levels, Biochem. Soc. Trans, vol.38, pp.661-666, 2010.

S. Rawsthorne, Carbon flux and fatty acid synthesis in plants, Prog. Lipid Res, vol.41, pp.182-196, 2002.

J. Reidl, S. Schl?-or, A. Kraiss, J. Schmidt-brauns, G. Kemmer et al., NADP and NAD utilization in Haemophilus influenzae, Mol. Microbiol, vol.35, pp.1573-1581, 2000.

S. Reumann, R. Heupel, and H. Heldt, Compartimentation studies on spinach leaf peroxisomes. 2. Evidence for the transfer of reductant from the cytosol to the peroxisomal compartment via a malate shuttle, Planta, vol.193, pp.167-173, 1994.

C. Richter, NADP þ phosphatase: a novel mitochondrial enzyme, Biochem. Biophys. Res. Commun, vol.146, pp.253-257, 1987.

A. S. Richter, E. Peter, M. Rothbart, H. Schlicke, J. Toivola et al., Posttranslational influence of NADPH-dependent thioredoxin reductase C on enzymes in tetrapyrrole synthesis, Plant Physiol, vol.162, pp.63-73, 2013.

D. Rissel, P. P. Heym, K. Thor, W. Brandt, L. A. Wessjohann et al., No silver bullet -canonical poly(ADP-ribose) polymerases (PARPs) are no universal factors of abiotic and biotic stress resistance of Arabidopsis thaliana, Front. Plant Sci, vol.8, p.224, 2017.

D. Rissel, J. Losch, and E. Peiter, The nuclear protein poly(ADP-ribose) polymerase 3 (AtPARP3) is required for seed storability in Arabidopsis thaliana, Plant Biol. (Stuttg), vol.16, pp.1058-1064, 2014.

S. P. Rius, P. Casati, A. A. Iglesias, and D. F. Gomez-casati, Characterization of Arabidopsis lines deficient in GAPC-1, a cytosolic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase, Plant Physiol, vol.148, pp.1655-1667, 2008.

M. Rizzi and H. Schindelin, Structural biology of enzymes involved in NAD and molybdenum cofactor biosynthesis, Curr. Opin. Struct. Biol, vol.12, pp.709-720, 2002.

C. Rousset, M. Fontecave, and S. Ollagnier-de-choudens, The [4Fe-4S] cluster of quinolinate synthase from Escherichia coli: investigation of cluster ligands, FEBS Lett, vol.582, pp.2937-2944, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00374819

J. M. Ruiz, E. Garc?-a, P. C. Lefebre, L. R. Rivero, R. M. Romero et al., Proline metabolism and NAD kinase activity in greenbean plants subjected to cold-shock, Phytochemistry, vol.59, pp.473-478, 2002.

S. M. Ryan, K. A. Cane, K. D. Deboer, S. J. Sinclair, R. Brimblecombe et al., Structure and expression of the quinolinate phosphoribosyltransferase (QPT) gene family in Nicotiana, Plant Sci, vol.188, pp.102-110, 2012.

I. J. Ryrie and K. J. Scott, Metabolic regulation in diseased leaves II. Changes in nicotinamide nucleotide coenzymes in barley leaves infected with powdery mildew, Plant Physiol, vol.43, pp.687-692, 1968.

I. J. Ryrie and K. J. Scott, Nicotinate, quinolinate and nicotinamide as precursors in the biosynthesis of nicotinamide-adenine dinucleotide in barley, Biochem J, vol.115, pp.679-685, 1969.

M. Sagi and R. Fluhr, Production of reactive oxygen species by plant NADPH oxidases, Plant Physiol, vol.141, pp.336-340, 2006.

H. Sakuraba, H. Tsuge, K. Yoneda, N. Katunuma, and T. Ohshima, Crystal structure of the NAD biosynthetic enzyme quinolinate synthase, J. Biol. Chem, vol.280, pp.26645-26648, 2005.

J. S-anchez, P. Duque, and C. , ABA activates ADPR cyclase and cADPR induces a subset of ABA-responsive genes in Arabidopsis, Plant J, vol.38, pp.381-395, 2004.

D. Sanders, J. Pelloux, C. Brownlee, and J. F. Harper, Calcium at the crossroads of signaling, Plant Cell, vol.14, pp.401-417, 2002.

N. A. Savidov, Z. A. Alikulov, and S. H. Lips, Identification of an endogenous NADPH-regenerating system coupled to nitrate reduction in vitro in plant and fungal crude extracts, Plant Sci, vol.133, pp.33-45, 1998.

R. Scheibe, Quantitation of the thiol group involved in the reductive activation of NADP-malate dehydrogenase, Biochim. Biophys. Acta, vol.788, pp.241-247, 1984.

R. Scheibe, Malate valves to balance cellular energy supply, Physiol Plant, vol.120, pp.21-26, 2004.

R. Scheibe, J. E. Backhausen, V. Emmerlich, and S. Holtgrefe, Strategies to maintain redox homeostasis during photosynthesis under changing conditions, J. Exp. Bot, vol.56, pp.1481-1489, 2005.

R. Scheibe and J. P. Jacquot, NADP regulates the light activation of NADP-dependent malate dehydrogenase, Planta, vol.157, pp.548-553, 1983.

I. Schomburg, A. Chang, and D. Schomburg, Standardization in enzymology-Data integration in the world's enzyme information system BRENDA, Perspect. Sci, vol.1, pp.23-38, 2014.

J. H. Schippers, A. Nunes-nesi, R. Apetrei, J. Hille, A. R. Fernie et al., The Arabidopsis onset of leaf death5 mutation of quinolinate synthase affects nicotinamide adenine dinucleotide biosynthesis and causes early ageing, Plant Cell, vol.20, pp.2909-2925, 2008.

M. Schmid, T. S. Davison, S. R. Henz, U. J. Pape, M. Demar et al., A gene expression map of Arabidopsis thaliana development, Nat. Genet, vol.37, pp.501-506, 2005.

P. Schulz, K. Jansseune, T. Degenkolbe, M. Eret, H. Claeys et al.,

M. A. , Poly(ADP-ribose)polymerase activity controls plant growth by promoting leaf cell number, PLoS One, vol.9, p.90322, 2014.

P. Schulz, J. Neukermans, K. Van-der-kelen, P. M?-uhlenbock, F. Van-breusegem et al., Chemical PARP inhibition enhances growth of Arabidopsis and reduces anthocyanin accumulation and the activation of stress protective mechanisms, PLoS One, vol.7, p.37287, 2012.

L. Schwenen, D. Komoßa, and W. Barz, Metabolism and degradation of nicotinic acid in parsley (Petroselinum hortense) cell suspension cultures and seedlings, Zeitschrift f? ur Naturforschung C, vol.41, pp.148-157, 1986.

J. Selinski, N. K?-onig, B. Wellmeyer, G. T. Hanke, V. Linke et al., The plastidlocalized NAD-dependent malate dehydrogenase is crucial for energy homeostasis in developing Arabidopsis thaliana seeds, Mol. Plant, vol.7, pp.170-186, 2014.

J. Selinski and R. Scheibe, Lack of malate valve capacities lead to improved N-assimilation and growth in transgenic A. thaliana plants, Plant Signal. Behav, vol.9, p.29057, 2014.

A. T. Setterdahl, P. T. Chivers, M. Hirasawa, S. D. Lemaire, E. Keryer et al., Effect of pH on the oxidation-reduction properties of thioredoxins, Biochemistry, vol.42, pp.14877-14884, 2003.

W. Shen, Y. Wei, M. Dauk, Y. Tan, D. C. Taylor et al., Involvement of a glycerol-3-phosphate dehydrogenase in modulating the NADH/ NAD þ ratio provides evidence of a mitochondrial glycerol-3-phosphate shuttle in Arabidopsis, Plant Cell, vol.18, pp.422-441, 2006.

W. Shen, Y. Wei, M. Dauk, Z. Zheng, and J. Zou, Identification of a mitochondrial glycerol-3-phosphate dehydrogenase from Arabidopsis thaliana: evidence for a mitochondrial glycerol-3-phosphate shuttle in plants, FEBS Lett, vol.536, pp.92-96, 2003.

Q. Shi, C. Li, and F. Zhang, Nicotine synthesis in Nicotiana tabacum L. induced by mechanical wounding is regulated by auxin, J. Exp. Bot, vol.57, pp.2899-2907, 2006.

M. M. Shimizu and P. Mazzafera, A role for trigonelline during imbibition and germination of coffee seeds, Plant Biol, vol.2, pp.605-611, 2000.

N. P. Shull, S. L. Spinelli, and E. M. Phizicky, A highly specific phosphatase that acts on ADP-ribose 1''-phosphate, a metabolite of tRNA splicing in Saccharomyces cerevisiae, Nucleic Acids Res, vol.33, pp.650-660, 2005.

J. Sinclai, K. J. Murphy, C. D. Birch, and J. D. Hamill, Molecular characterization of quinolinate phosphoribosyltransferase (QPRtase) in Nicotiana, Plant Mol. Biol, vol.44, pp.603-617, 2000.

L. M. Smyth, J. Bobalova, M. G. Mendoza, C. Lew, and V. N. Mutafova-yambolieva, Release of beta-nicotinamide adenine dinucleotide upon stimulation of postganglionic nerve terminals in blood vessels and urinary bladder, J. Biol. Chem, vol.279, pp.48893-48903, 2004.

M. Song, S. Bail, and M. Kiledjian, Multiple Nudix family proteins possess mRNA decapping activity, RNA, vol.19, pp.390-399, 2013.

L. Sorci, I. Blaby, J. De-ingeniis, S. Gerdes, N. Raffaelli et al., Genomicsdriven reconstruction of acinetobacter NAD metabolism: insights for antibacterial target selection, J. Biol. Chem, vol.285, pp.39490-39499, 2010.

E. V. Soriano, Y. Zhang, K. L. Colabroy, J. M. Sanders, E. C. Settembre et al., Active-site models for complexes of quinolinate synthase with substrates and intermediates, 2013.

, Acta. Crystallogr. D Biol. Crystallogr, vol.69, pp.1685-1696

F. Sparla, A. Costa, F. Lo-schiavo, P. Pupillo, and P. Trost, Redox regulation of a novel plastid-targeted beta-amylase of Arabidopsis, Plant Physiol, vol.141, pp.840-850, 2006.

G. Spielbauer, L. Li, L. R?-omisch-margl, P. T. Do, R. Fouquet et al., Chloroplast-localized 6-phosphogluconate dehydrogenase is critical for maize endosperm starch accumulation, J. Exp. Bot, vol.64, pp.2231-2242, 2013.

G. Sriram, D. B. Fulton, V. V. Iyer, J. M. Peterson, R. Zhou et al., Quantification of compartmented metabolic fluxes in developing soybean embryos by employing biosynthetically directed fractional (13)C labeling, two-dimensional [(13)C, (1)H] nuclear magnetic resonance, and comprehensive isotopomer balancing, Plant Physiol, vol.136, pp.3043-3057, 2004.

L. R. Stein and S. I. Imai, The dynamic regulation of NAD metabolism in mitochondria, Trends Endocrinol. Metab, vol.23, pp.420-428, 2012.

M. Stitt, Limitation of photosynthesis by carbon metabolism: I. Evidence for excess electron transport capacity in leaves carrying out photosynthesis in saturating light and CO(2) Plant Physiol, vol.81, pp.1115-1122, 1986.

M. Stitt, R. M. Lilley, and H. W. Heldt, Adenine nucleotide levels in the cytosol, chloroplasts, and mitochondria of wheat leaf protoplasts, Plant Physiol, vol.70, pp.971-977, 1982.

C. St?-ohr, F. Strube, G. Marx, W. R. Ullrich, and P. Rockel, A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite, Planta, vol.212, pp.835-841, 2001.

L. Sun, Y. Li, W. Miao, T. Piao, Y. Hao et al., NADK2 positively modulates abscisic acid-induced stomatal closure by affecting accumulation of H 2 O 2 , Ca 2þ and nitric oxide in Arabidopsis guard cells, Plant Sci, vol.262, pp.81-90, 2017.

R. Sunkar, D. Bartels, and H. H. Kirch, Overexpression of a stress-inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance, Plant J, vol.35, pp.452-464, 2003.

A. F. Swindall, J. A. Stanley, Y. , and E. S. , PARP-1: friend or foe of DNA damage and repair in tumorigenesis, Cancers (Basel), vol.5, pp.943-958, 2013.

B. Szal, Z. Dabrowska, G. Malmberg, P. Gardestr?-om, and A. M. Rychter, Changes in energy status of leaf cells as a consequence of mitochondrial genome rearrangement, Planta, vol.227, pp.697-706, 2008.

B. Szurmak, A. Wys?ouch-cieszy-nska, M. Wszelaka-rylik, W. Bal, and M. Dobrza-nska, A diadenosine diadenosine 5',5''-P1P4 tetraphosphate (Ap4A) hydrolase from Arabidopsis thaliana that is activated preferentially by Mn 2þ ions, Acta. Biochim. Pol, vol.55, pp.151-160, 2008.

M. Taira, U. Valtersson, B. Burkhardt, and R. A. Ludwig, Arabidopsis thaliana GLN2-encoded glutamine synthetase is dual targeted to leaf mitochondria and chloroplasts, Plant Cell, vol.16, pp.2048-2058, 2004.

L. Taiz and E. Zeiger, Plant Physiology, p.782, 2008.

U. Takahama, M. Shimizu-takahama, and U. Heber, The redox state of the NADP system in illuminated chloroplasts, Biochim. Biophys. Acta. Bioenerg, vol.637, pp.530-539, 1981.

S. Takahashi, H. Bauwe, and M. Badger, Impairment of the photorespiratory pathway accelerates photoinhibition of photosystem II by suppression of repair but not acceleration of damage processes in Arabidopsis, Plant Physiol, vol.144, pp.487-494, 2007.

H. Takahashi, K. Takahara, S. Hashida, T. Hirabayashi, T. Fujimori et al., Pleiotropic modulation of carbon and nitrogen metabolism in Arabidopsis plants overexpressing the NAD kinase2 gene, Plant Physiol, vol.151, pp.100-113, 2009.

H. Takahashi, A. Watanabe, A. Tanaka, S. Hashida, M. Kawai-yamada et al., Chloroplast NAD kinase is essential for energy transduction through the xanthophyll cycle in photosynthesis, Plant Cell Physiol, vol.47, pp.1678-1682, 2006.

E. Talts, V. Oja, H. R?-amma, B. Rasulov, A. Anijalg et al., Dark inactivation of ferredoxin-NADP reductase and cyclic electron flow under far-red light in sunflower leaves, Photosyn. Res, vol.94, pp.109-120, 2007.

M. Taniguchi, Y. Taniguchi, M. Kawasaki, S. Takeda, T. Kato et al., Identifying and characterizing plastidic 2-oxoglutarate/malate and dicarboxylate transporters in Arabidopsis thaliana, Plant Cell Physiol, vol.43, pp.706-717, 2002.

J. B. Tarr and J. Arditti, Niacin biosynthesis in seedlings of Zea mays, Plant Physiol, vol.69, pp.553-536, 1982.

D. S. Tawfik, Messy biology and the origins of evolutionary innovations, Nat. Chem. Biol, vol.6, pp.692-696, 2010.

G. Tcherkez, A. Mah-e, P. Gauthier, C. Mauve, E. Gout et al., In folio respiratory fluxomics revealed by 13C isotopic labeling and H/D isotope effects highlight the noncyclic nature of the tricarboxylic acid "cycle" in illuminated leaves, Plant Physiol, vol.151, pp.620-630, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00448349

G. Tedeschi, A. Negri, M. Mortarino, F. Ceciliani, T. Simonic et al., L aspartate oxidase from Escherichia coli II. Interaction with C4 dicarboxylic acids and identification of a novel L-aspartate: fumarate oxidoreductase activity, Eur. J. Biochein, vol.426, pp.1115-426, 1996.

G. Tedeschi, A. Negri, F. Ceciliani, A. Mattevi, and S. Ronchi, Structural characterization of L-aspartate oxidase and identification of an interdomain loop by limited proteolysis, Eur. J. Biochem, vol.260, pp.896-903, 1999.

G. Tedeschi, S. Ronchi, T. Simonic, C. Treu, A. Mattevi et al., Probing the active site of L-aspartate oxidase by site-directed mutagenesis: role of basic residues in fumarate reduction, Biochemistry, vol.40, pp.4738-4744, 2001.

T. Tezuka and Y. Yamamoto, Photoactivation of NAD kinase through phytochrome: phosphate donors and cofactors, Plant Physiol, vol.56, pp.728-730, 1975.

V. V. Titok, O. V. Rusinova, and L. V. Khotyleva, Changes of nicotinamide coenzymes and adenylate energy charge in leaves of hybrid and parental tomato forms in anin vitro culture, Biol. Plant, vol.37, pp.507-513, 1995.

S. Todisco, G. Agrimi, A. Castegna, and F. Palmieri, Identification of the mitochondrial NAD þ transporter in Saccharomyces cerevisiae, J. Biol. Chem, vol.281, pp.1524-1531, 2006.

M. A. Torres and J. L. Dangl, Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development, Curr. Opin. Plant Biol, vol.8, pp.397-403, 2005.

M. A. Torres, J. L. Dangl, and J. D. Jones, Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response, Proc. Natl. Acad. Sci. U.S.A, vol.99, pp.517-522, 2002.

W. L. Turner, J. C. Waller, B. Vanderbeld, and W. A. Snedden, Cloning and characterization of two NAD kinases from Arabidopsis. identification of a calmodulin binding isoform, Plant Physiol, vol.135, pp.1243-1255, 2004.

B. Upmeier, J. E. Thomzik, and W. Barz, Nicotinic acid-N-glucoside in heterotrophic parsley cell suspension cultures, Phytochemistry, vol.27, pp.151-3493, 1988.

C. Valerio, A. Costa, L. Marri, E. Issakidis-bourguet, P. Pupillo et al., Thioredoxinregulated beta-amylase (BAM1) triggers diurnal starch degradation in guard cells, and in mesophyll cells under osmotic stress, J. Exp. Bot, vol.62, pp.545-655, 2011.

M. R. Van-linden, C. D?-olle, I. K. Pettersen, V. A. Kulikova, M. Niere et al., Subcellular distribution of NAD þ between cytosol and mitochondria determines the metabolic profile of human cells, J. Biol. Chem, vol.290, pp.27644-27659, 2015.

C. W. Van-roermund, M. G. Schroers, J. Wiese, F. Facchinelli, S. Kurz et al., The peroxisomal NAD carrier from Arabidopsis imports NAD in exchange with AMP, Plant Physiol, vol.171, pp.2127-2139, 2016.

S. Vanderauwera, M. De-block, N. Van-de-steene, B. Van-de-cotte, M. Metzlaff et al., Silencing of poly(ADP-ribose) polymerase in plants alters abiotic stress signal transduction, Proc. Natl. Acad. Sci. U.S.A, vol.104, pp.15150-15105, 2007.

M. Vescovi, M. Zaffagnini, M. Festa, P. Trost, F. Lo-schiavo et al., Nuclear accumulation of cytosolic glyceraldehyde-3-phosphate dehydrogenase in cadmiumstressed Arabidopsis roots, Plant Physiol, vol.162, pp.333-346, 2013.

G. Vigani and G. Zocchi, The fate and the role of mitochondria in Fe-deficient roots of strategy I plants, Plant Signal. Behav, vol.5, pp.375-379, 2009.

M. Vincentz and M. Caboche, Constitutive expression of nitrate reductase allows normal growth and development of Nicotiana plumbaginifolia plants, EMBO J, vol.10, pp.1027-1035, 1991.

A. Vishwakarma, L. Bashyam, B. Senthilkumaran, R. Scheibe, and K. Padmasree, Physiological role of AOX1a in photosynthesis and maintenance of cellular redox homeostasis under high light in Arabidopsis thaliana, Plant Physiol. Biochem, vol.81, pp.44-53, 2014.

H. Von-euler, Fermentation of Sugars and Fermentative Enzymes, Nobel Lect Nobel Foun, 1930.

R. Wagner, F. Feth, and K. G. Wagner, Regulation in tobacco callus of enzyme activities of the nicotine pathway: II. The pyridine-nucleotide cycle, Planta, vol.168, pp.408-413, 1986.

R. Wagner, F. Feth, and K. G. Wagner, The pyridine-nucleotide cycle in tobacco: enzyme activities for the recycling of NAD, Planta, vol.167, pp.226-232, 1986.

R. Wagner and K. G. Wagner, The pyridine-nucleotide cycle in tobacco enzyme activities for the de-novo synthesis of NAD, Planta, vol.165, pp.532-537, 1985.

J. C. Waller, P. K. Dhanoa, U. Schumann, R. T. Mullen, and W. A. Snedden, Subcellular and tissue localization of NAD kinases from Arabidopsis: compartmentalization of de novo NADP biosynthesis, Planta, vol.231, pp.305-317, 2010.

G. R. Waller, K. S. Yang, R. K. Gholson, L. A. Hadwiger, and S. Chaykin, The pyridine nucleotide cycle and its role in the biosynthesis of ricinine by Ricinus communis L, J. Biol. Chem, vol.241, pp.4411-4418, 1966.

S. V. Wallstr?-om, I. Florez-sarasa, W. L. Ara-ujo, M. Aidemark, M. Fern-andez-fern-andez et al., Suppression of the external mitochondrial NADPH dehydrogenase, NDB1, in Arabidopsis thaliana affects central metabolism and vegetative growth, Mol. Plant, vol.7, pp.356-368, 2014.

C. Wang, F. Gao, J. Wu, J. Dai, C. Wei et al., Arabidopsis putative deacetylase AtSRT2 regulates basal defense by suppressing PAD4, EDS5 and SID2 expression, Plant Cell Physiol, vol.51, pp.1291-1299, 2010.

G. Wang and E. Pichersky, Nicotinamidase participates in the salvage pathway of NAD biosynthesis in Arabidopsis, Plant J, vol.49, pp.1020-1029, 2007.

H. Wang, H. Wolosker, J. Pevsner, S. H. Snyder, and D. J. Selkoe, Regulation of rat magnocellular neurosecretory system by D-aspartate: evidence for biological role(s) of a naturally occurring free D-amino acid in mammals, J. Endocrinol, vol.167, pp.247-252, 2000.

O. Warburg and W. Christian, Pyridin, der wasser-stoff? ubertragende Bestandteil von G? arungsfermenten, Helv. Chim. Acta, vol.19, pp.79-88, 1936.

N. G. Warren, B. A. Body, and H. P. Dalton, An improved reagent for mycobacterial nitrate reductase tests, J. Clin. Microbiol, vol.18, pp.546-549, 1983.

U. Willeke, V. Heeger, M. Meise, H. Neuhann, I. Schindelmeiser et al., Mutually exclusive occurrence and metabolism of trigonelline and nicotinic acid arabinoside in plant cell cultures, Phytochemistry, vol.181, pp.105-110, 1979.

A. Wingler, P. J. Lea, W. P. Quick, and R. C. Leegood, Photorespiration: metabolic pathways and their role in stress protection, Philos. Trans. R. Soc. Lond., B, Biol. Sci, vol.355, pp.1517-1529, 2000.

H. Winter, D. G. Robinson, and H. W. Heldt, Subcellular volumes and metabolite concentrations in spinach leaves, Planta, vol.193, pp.530-535, 1994.

H. Wolosker, A. D'aniello, and S. Snyder, d-Aspartate disposition in neuronal and endocrine tissues: ontogeny, biosynthesis and release, Neuroscience, vol.100, pp.183-189, 2000.

K. C. Woo, F. A. Boyle, I. U. Flugge, and H. W. Heldt, N-ammonia assimilation, 2-oxoglutarate transport, and glutamate export in spinach chloroplasts in the presence of dicarboxylates in the light, Plant Physiol, vol.85, pp.621-625, 1987.

Y. Wu, J. Kuzma, E. Mar-echal, R. Graeff, H. C. Lee et al., Abscisic acid signaling through cyclic ADP-ribose in plants, Science, vol.278, pp.2126-2130, 1997.

J. Wu, S. Neimanis, and U. Heber, Photorespiration is more effective than the Mehler reaction in protecting the photosynthetic apparatus against photoinhibition, Bot. Acta, vol.104, pp.283-291, 1991.

X. Wu, M. Oh, E. M. Schwarz, C. T. Larue, M. Sivaguru et al., Lysine acetylation is a widespread protein modification for diverse proteins in Arabidopsis, Plant Physiol, vol.155, pp.1769-1778, 2011.

L. W. Wu, D. Y. Ren, S. K. Hu, M. Li, G. J. Dong et al., Down-regulation of a nicotinate phosphoribosyltransferase gene, OsNaPRT1, leads to withered leaf tips, Plant Physiol, vol.171, pp.1085-1098, 2016.

X. Xia, Y. Wang, Y. Zhou, Y. Tao, W. Mao et al., Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber, Plant Physiol, vol.150, pp.801-814, 2009.

Y. Yamamoto, Pyridine nucleotide content in the higher plant. effect of age of tissue, Plant Physiol, vol.38, pp.45-54, 1963.

H. Yamasaki and Y. Sakihama, Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species, FEBS Lett, vol.468, pp.89-92, 2000.

Z. Yang, A. Savchenko, A. Yakunin, R. Zhang, A. Edwards et al., Aspartate dehydrogenase, a novel enzyme identified from structural and functional studies of TM1643, J. Biol. Chem, vol.278, pp.8804-8808, 2003.

Y. Yin and H. Ashihara, Involvement of rapid nucleotide synthesis in recovery from phosphate starvation of Catharanthus roseus cells, J. Exp. Bot, vol.58, pp.1025-1033, 2007.

Y. Yin, A. Matsui, M. Sakuta, A. , and H. , Changes in pyridine metabolism profile during growth of trigonelline-forming Lotus japonicus cell cultures, Phytochemistry, vol.69, pp.2891-2898, 2008.

Y. Yin, F. Shimano, A. , and H. , Involvement of rapid nucleotide synthesis in recovery from phosphate starvation of Catharanthus roseus cells, J. Exp. Bot, vol.58, pp.1025-1033, 2007.

W. Ying, P. Garnier, and R. A. Swanson, NAD þ repletion prevents PARP-1-induced glycolytic blockade and cell death in cultured mouse astrocytes, Biochem. Biophys. Res. Commun, vol.308, pp.809-813, 2003.

A. Yoshida and V. Dave, Inhibition of NADPdependent dehydrogenases by modified products of NADPH, Arch. Biochem. Biophys, vol.169, pp.298-303, 1975.

K. Yoshimura, T. Ogawa, M. Tsujimura, K. Ishikawa, and S. Shigeoka, Ectopic Expression of the Human MutT-Type Nudix Hydrolase, hMTH1, Confers Enhanced Tolerance to Oxidative Stress in Arabidopsis, Plant Cell Physiol, vol.55, pp.1534-1543, 2014.

K. Yoshimura, T. Ogawa, Y. Ueda, and S. Shigeoka, , 20071.

, -triphosphate pyrophosphohydrolase, is responsible for eliminating oxidized nucleotides in Arabidopsis, Plant Cell Physiol, vol.48, pp.1438-1449

K. Yoshimura and S. Shigeoka, Versatile physiological functions of the Nudix hydrolase family in Arabidopsis, Biosci. Biotechnol. Biochem, vol.79, pp.354-366, 2015.

B. Zagdanska and J. Kozdoj, Water stress-induced changes in morphology and anatomy of flag leaf of spring wheat, Acta. Soc. Bot. Pol, vol.63, pp.61-66, 1994.

I. Zelitch, N. P. Schultes, R. B. Peterson, P. Brown, and T. P. Brutnell, High glycolate oxidase activity is required for survival of maize in normal air, Plant Physiol, vol.149, pp.195-204, 2009.

R. G. Zhai, M. Rizzi, and S. Garavaglia, Nicotinamide/nicotinic acid mononucleotide adenylyltransferase, new insights into an ancient enzyme, Cell Mol. Life Sci, vol.66, pp.2805-2818, 2009.

T. Zhang, J. G. Berrocal, J. Yao, M. E. Dumond, R. Krishnakumar et al., Regulation of poly(ADPribose) polymerase-1-dependent gene expression through promoter-directed recruitment of a nuclear NAD þ synthase, J. Biol. Chem, vol.287, pp.12405-12416, 2012.

X. Zhang, M. Li, M. Ruan, Y. Xia, K. Wu et al., Isolation of AtNUDT5 gene promoter and characterization of its activity in transgenic Arabidopsis thaliana, Appl. Biochem. Biotechnol, vol.169, pp.1557-1565, 2013.

X. Zhang and Z. Mou, Extracellular pyridine nucleotides induce PR gene expression and disease resistance in Arabidopsis, Plant J, vol.57, pp.302-312, 2009.

X. Zhang and Z. Mou, Expression of the human NAD(P)-metabolizing ectoenzyme CD38 compromises systemic acquired resistance in Arabidopsis, Mol. Plant Microbe. Interact, vol.25, pp.1209-1218, 2012.

Q. Zhang, D. W. Piston, and R. H. Goodman, Regulation of corepressor function by nuclear NADH, Science, vol.295, pp.1895-1897, 2002.

F. Zhang, L. Wang, E. E. Ko, K. Shao, and H. Qiao, Histone deacetylases SRT1 and SRT2 interact with ENAP1 to mediate ethylene-induced transcriptional repression, Plant Cell, vol.30, pp.153-166, 2018.

H. Zhang, Y. Zhao, and D. X. Zhou, Rice NAD þdependent histone deacetylase OsSRT1 represses glycolysis and regulates the moonlighting function of GAPDH as a transcriptional activator of glycolytic genes, Nucleic Acids Res, vol.45, pp.12241-12255, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02629084

X. Zheng, E. Hayashibe, A. , and H. , Changes in trigonelline (N-methylnicotinic acid) content and nicotinic acid metabolism during germination of mungbean (Phaseolus aureus) seeds, J. Exp. Bot, vol.56, pp.1615-1623, 2005.

X. Zheng, Y. Koyama, C. Nagai, A. , and H. , Biosynthesis, accumulation and degradation of theobromine in developing Theobroma cacao fruits, J .Plant Physiol, vol.161, pp.363-369, 2004.

X. Zhong, H. Zhang, Y. Zhao, Q. Sun, Y. Hu et al., The rice NAD(þ)-dependent histone deacetylase OsSRT1 targets preferentially to stressand metabolism-related genes and transposable elements, PLoS One, vol.8, p.66807, 2013.

X. Zhu, S. P. Long, and D. R. Ort, What is the maximum efficiency with which photosynthesis can convert solar energy into biomass?, Curr. Opin. Biotechnol, vol.19, pp.153-159, 2008.

W. Zielinska, H. Barata, and E. N. Chini, Metabolism of cyclic ADP-ribose: zinc is an endogenous modulator of the cyclase/NAD glycohydrolase ratio of a CD38-like enzyme from human seminal fluid, Life Sci, vol.74, pp.1781-1790, 2004.

P. Zimmermann, M. Hirsch-hoffmann, L. Hennig, and W. Gruissem, GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox 1, Plant Physiol, vol.136, pp.2621-2632, 2004.