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A multiplatform metabolomic approach to
characterize fecal signatures of negative
postnatal events in chicks: a pilot study
Stéphane Beauclercq1, Antoine Lefèvre2, Frédéric Montigny2, Anne Collin1, Sophie Tesseraud1, Christine Leterrier3,
Patrick Emond2,4,5 and Laurence A. Guilloteau1*

Abstract

Background: Negative experiences in early life can induce long-lasting effects on the welfare, health, and
performance of farm animals. A delayed placement of chicks in rearing houses has negative effects on their
performance, and results in fecal-specific odors detectable by rats. Based on this observation, the volatile organic
compounds (VOCs) and metabolites from the feces of 12-day-old chickens were screened for early markers of
response to negative events using gas-chromatography and liquid-chromatography coupled with mass
spectrometry (GC-MS, LC-HRMS).

Results: The low reproducibility of solid-phase micro-extraction of the VOCs followed by GC-MS was not suitable for
marker discovery, in contrast to liquid extraction of metabolites from freeze-dried feces followed by GC-MS or LC-HRMS
analysis. Therefore, the fecal metabolome from 12-day-old chicks having experienced a normal or delayed placement
were recorded by GC-MS and LC-HRMS in two genotypes from two experiments. From both experiments, 25 and 35
metabolites, respectively explaining 81% and 45% of the difference between delayed and control chickens, were
identified by orthogonal partial least-squares discriminant analysis from LC-HRMS and GC-MS profiling.

Conclusion: The sets of molecules identified will be useful to better understand the chicks’ response to negative
events over time and will contribute to define stress or welfare biomarkers.

Keywords: Biomarker, Chick, Feces, GC-MS, LC-HRMS, Negative postnatal event

Background
The perinatal period is a critical period for livestock ani-
mals. Recent studies have highlighted that the stress ex-
perienced during the perinatal period has long-term
consequences on the health and the welfare of broilers
[1]. After hatching, the chicks can be exposed to various
factors such as temperature variations, confinement, and
movement or vibrations during transportation without
access to water and feed for up to 3 d. This postnatal en-
vironment can influence the behavior of adult broilers
[2], their performance (i.e. body weight, feed conversion
ratio, Pectoralis major muscle weight) [3, 4], their sus-
ceptibility to diseases that could lead to death [5], which
impacts animal welfare with economic and social issues

to be considered for the sustainability of poultry rearing
industry. Therefore, the early detection of persisting re-
sponses to stressful events has become a major challenge
for appropriate animal health and welfare management.
The terminology of stressful or negative events was used
to qualify the postnatal treatment lived by chicks
whether it resulted in long lasting effects or not.
Easy, non-invasive methods to detect a persisting re-

sponse to stressful events are currently lacking in
poultry. However, new perspectives are opening up with
the development of research on body odor related to
physiological status or health issues, and metabolomics
research more generally. For instance, the analysis of
volatile organic compounds (VOC) can help, among
others, in the diagnosis of colorectal cancer (blood,
urine, feces, and breath) [6], irritable bowel syndrome
(breath) [7], psychological stress (skin) in humans [8] as
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well as Campylobacter (feces) infection in chickens [9].
The analysis of small polar or lipophilic non-volatile
molecules by nuclear magnetic resonance or mass spec-
trometry metabolomics is another powerful means to
non-invasively detect subtle phenotypic changes, which
are critical for farm management, but this method has
rarely been applied in livestock studies [10]. However,
some advances have recently been achieved in chickens
to predict or to have a better understanding of quality or
digestive physiology issues using blood, muscle, and di-
gestive content metabolomes [11–13].
Exposures to stressful situations alter the gut micro-

biota composition and impact the composition of the
feces as well as their odor, which in the case of rodents
can be distinguished by conspecifics and cause avoidance
[14, 15]. The smelling ability of rats holds promise as a
tool for detecting stress or health issues and has inspired
the development of electronic noses. For example,
trained rats are at least as sensitive as the conventional
Ziehl-Neelsen stain for detecting tuberculosis in sputum
[16]. Metabolomes are currently not exploited for stress
diagnosis in mammals or birds, with the exception of
measuring glucocorticoid metabolites in blood or feces
[17, 18], despite their usefulness in assessing the conse-
quences of stressful events on the global metabolism.
An experimental model reproducing adverse perinatal

conditions in chicks was previously developed and the
potential of rats to distinguish exposed chicks based on
their fecal odors was tested with success [14]. In fact,
Bombail et al. highlighted a behavior change in the rats
in the presence of chicken feces collected 12 d after the
birds had been exposed to a negative postnatal experi-
ence, which may confirm the existence of stress-specific
odors in poultry [14].
The aim of the present pilot study was thus to evaluate

the potential of fecal VOC and metabolites in chicks at 12
d as early signatures of a negative postnatal experience.
Due to the low reproducibility of VOC capture, the fecal
metabolome acquired by GC-MS and LC-HRMS contain-
ing fewer volatile molecules was chosen for study. The
chick fecal metabolomes (i.e. fecal matter and urine) were
studied in two different genotypes of broilers to identify a
potential typical metabolic signature that could be associ-
ated with a negative postnatal experience. This is part of a
first attempt to identify potential biomarkers of value for
early signatures of this experience.

Methods
All chemicals were bought from Sigma Aldrich (Saint-
Quentin Fallavier, France) unless otherwise specified.

Birds and sample collection
Chicks randomly selected were either directly placed in
the experimental rearing facility after their withdrawal

from the incubator (control group or C) or subjected to
a delay period before their placement (delayed group or
D) to be compared for the analysis of the consequences
of this negative experience as described previously [19].
The delayed group was deprived of feed and water and
put in transportation boxes under irregular movement
and variable room temperature: 32 °C (30min), 21 °C (90
min), 32 °C (30min), and then at 21 °C with alternated cy-
cles of box movement (M) and immobility (I) for 24 h
after hatching. One cycle was 45min (M), 15min (I), 30
min (M), 30min (I) [19]. The D and C chicks were there-
after reared together in separated pens (1m × 3m) in the
same room at the Pôle d’Expérimentation Animale de
Tours (PEAT) (INRA Centre Val de Loire, France) in floor
pens in standard temperature and light conditions (16 h
light and 8 h darkness) with ad libitum access to water
and feed (metabolizable energy = 12.8 MJ/kg, crude pro-
tein = 22%).
The chicks (males and females) originated from

Hubbard Classic genotype (Quintin, France) in experi-
ment 1 and from the Ross 308 (Aviagen, Angers, France)
genotype in experiment 2, which are both standard
fast-growing broiler lines [20]. The Hubbard Classic co-
hort was composed of 13 males (6 delayed and 7 con-
trols) and 12 females (6 delayed and 6 controls), and the
Ross 308 cohort included 11 males (6 delayed and 5
controls) and 12 females (6 delayed and 6 controls). The
feces (including urine) of control (C) and delayed fed
(D) chicks were sampled individually within sterile petri
dishes in clean buckets at 12 d of age (11 d after delayed
placement), 2 h after lighting was on, then packaged in
closed 2 mL glass vials and frozen (− 80 °C) before VOC
or fecal metabolite extraction. Chicken body weight was
measured at 12 d of age.

Fecal volatilome
The VOC extraction parameters were optimized using a
pool of feces from 180 chicks from the Hubbard Classic
control group.

Solid-phase microextraction (SPME)
Headspace SPME [21] was performed on 400 mg of fresh
feces enclosed in a 2-mL glass vial. The extraction
protocol was optimized by testing 4 extraction tempera-
tures (20 °C, 40 °C, 60 °C, and 80 °C) and 3 exposure
times (30 min, 1 h, 2 h) using 100 μm polydimethylsilox-
ane (PDMS) non-bonded fiber. Furthermore, 5 other
SPME fibers (30 μm PDMS, 7 μm PDMS, 75 μm car-
boxen (CAR)/PDMS, 65 μm PDMS/divinylbenzene, and
85 μm polyacrylate) from Supelco (Bellefonte, PA) were
tested for the maximum number of VOC recovered. The
optimal extraction parameters were 1 h at 60 °C under
magnetic agitation using the 85 μm polyacrylate fiber,
which is designed for capturing polar semi-volatile
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molecules (MW 80–300). The analytical variability of
VOC extraction and GC-MS analysis was assessed by cal-
culating the variation of total feature intensities among 3
replicate samples.

GC-MS analyses
A Shimadzu GC-MS system (Kyoto, Japan) was used. It
was composed of an AOC-20S auto-sampler, an
AOC-20i auto-injector, a gas chromatograph 2010, and a
QP-2010-Plus mass spectrometer. The VOC samples
were desorbed from the fibers in the injection port at
250 °C and separated on a Zebron capillary ZB-5, 15
m × 0.25 mm i.d., 0.25 μm film thickness GC column
(Phenomenex, Torrance, CA). The oven temperature
was set at 50 °C for 1 min, ramped to 250 °C at 10 °C/
min and then held for 5 min. Helium was used as the
carrier gas and set at 1.2 mL/min. The ion source and
interface temperature were 200 °C and 250 °C, respect-
ively. The mass spectra of all GC peaks were generated
by electron impact (EI) at 70 eV and recorded in a posi-
tive total ion monitoring mode scanning the 35–500m/z
range (event time = 0.2).

Fecal metabolome
Specific preanalytical protocols were adapted from
Diémé et al. including metabolome extraction followed
by chemical derivatization for GC-MS analysis [22].

GC-MS
Ten mg of freeze-dried chick feces were put into 2 mL
acidified salt water (120 mmol/L HCl, 0.9% NaCl),
followed by vortexing and centrifugation (3,000×g, 20 °C).
The metabolites were further extracted from the mix by 2
mL of ethyl acetate. The organic phase was recovered and
evaporated in a SpeedVac (Thermo Fisher Scientific,
Waltham, MA) at room temperature. Each sample was
derivatized by the addition of 70 μL of a mixture of
N,O-bistrifluoroacetamide (BSTFA) and trimethylchloro-
silane (TMCS; BSTFA/TMCS: 99/1), and 30 μL of aceto-
nitrile for 40min at 80 °C in a sand bath. A volume of
1 μL of the derivatized mixture was injected in the
GC-MS system previously described with the oven
temperature set at 80 °C for 3 min, ramped to 250 °C at
5 °C/min and then held for 25 min. The carrier gas (He)
flow was set at 1.0 mL/min. The instrumental stability
and extraction reproducibility were evaluated by mul-
tiple injections (n = 6) of a quality control (QC) sample
obtained from the extraction of 10 mg from a pool of
all samples analyzed.

LC-HRMS
Three mg of freeze-dried chick feces were put into
500 μL of a methanol/water mix (8:2) and vortexed for 2
min. The mixes were centrifuged (15,000× g, 15min, 4 °C)

to sediment solid particles, then 450 μL of the supernatant
was recovered and put in glass tubes for further solvent
evaporation in a SpeedVac at room temperature. The resi-
dues were then reconstituted with 200 μL methanol/water
(1:1) followed by centrifugation (20,000× g, 10min, 4 °C)
before Ultra-High-Performance Liquid Chromatography
(UHPLC) separation and mass spectrometry analysis.
LC-HRMS analysis was performed on a UHPLC Ultimate
3000 system (Dionex, Sunnyvale, CA), coupled to a
Q-Exactive mass spectrometer (Thermo Fisher Scientific)
and operated in positive (ESI+) and negative (ESI–)
ionization modes. Chromatography was carried out with a
1.7-μm XB – C18 (150mm× 2.10mm, 100 Å) UHPLC
column (Kinetex, Phenomenex, Torrance, CA) heated at
40 °C. The solvent system comprised mobile phase A
[water + 0.1% (v/v) formic acid], and mobile phase B
[methanol + 0.1% (v/v) formic acid]; the gradient operated
at a flow rate of 0.4 mL/min over a run time of 24 min.
The multistep gradient was programmed as follows: 0–
1.5 min, 32–45% A; 1.5–5 min, 45–52% A; 5–8 min,
52–58% A; 8–11 min, 58–66% A; 11–14 min, 66–70%
A; 14–18 min, 70–75% A; 18–21 min, 75–97% A; 21–
24 min, 97% A. The autosampler (Ultimate WPS-3000
UHPLC system, Dionex, Sunnyvale, CA) temperature
was set at 4 °C, and the injection volume for each sam-
ple was 5 μL. Heated ESI source parameters were a
spray voltage of 3.5 kV, capillary temperature of 350 °C,
heater temperature of 250 °C, sheath gas flow of 35 ar-
bitrary units (AU), auxiliary gas flow of 10 AU, spare
gas flow of 1 AU, and tube lens voltage of 60 V for C18.
During the full-scan acquisition, which ranged from 58
to 870m/z, the instrument operated at 70,000 reso-
lution (m/z = 400), with an automatic gain control tar-
get of 1 × 106 charges and a maximum injection time of
250 ms. The instrumental stability was evaluated by mul-
tiple injections (n = 6) of a QC sample obtained from a
pool of 10 μL of all samples analyzed. This QC sample
was injected once at the beginning of the analysis, every
10 sample injections, and at the end of the run.

Data processing and spectral assignment
GC-MS
Each chromatogram obtained was processed for smooth-
ing, library matching, and area calculation using the
GC-MS Solution Postrun Analysis software (Shimadzu,
Japan) as described in Emond et al. [23]. To minimize
process errors, each integrated peak was manually
checked for each sample and features with greater than
30% variability in QC samples were rejected [24]. Com-
pounds were identified from their electron impact mass
spectra by comparison to our in-house library (250 mol-
ecules) combined with the NIST spectral mass library
(NIST 05), HMDB [25], and ChemSpider. This annota-
tion reached level 2 on the scale of confidence in
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metabolite identification, as defined by the Chemical
Analysis Working Group of the Metabolomics Standards
Initiative [26]. The feature areas were normalized by div-
iding each one by the total area of the chromatogram
and by the weight of each dried sample.

LC-HRMS
A library of standard compounds (Mass Spectroscopy
Metabolite Library of standards MS ML®, IROA tech-
nologies) was analyzed with the same gradient of mobile
phases and in the same conditions as those used to
analyze feces samples. The annotation of selected fea-
tures was validated from retention time, and high-reso-
lution mass molecular. Targeted molecules (367
molecules detected in ESI+, 255 in ESI-) were selected
and integrated into Xcalibur 2.2 (Thermo Fisher Scien-
tific, San Jose, CA) as described by Bitar et al. [27]. This
annotation reached level 1 on the scale of confidence in
metabolite identification [26]. Each peak area was nor-
malized to the total peaks area of each chromatogram
and by the weight of each dried sample. Peaks with
greater than 30% variability in QC samples were rejected
as unsuitable for further investigation.

Chemometry and statistical analysis
The effects of the delayed placement on body weight
were analysed by ANOVA after having checked the nor-
mality of data distribution (XLSTAT software, Addinsoft,
Paris, France).
Principal Component Analyses (PCA) were performed

on the variance unit scaled data sets from the GC-MS
and LC-HRMS fecal metabolome analyses as an explora-
tory unsupervised analysis. Individuals outside of the
95% confidence interval of the Hotelling’s T-square in
the GC-MS and LC-HRMS experiments were consid-
ered to be outliers and excluded from the subsequent
analyses [28].
An orthogonal projection to latent structures discrimin-

ant analysis (OPLS-DA) was performed using the SIMCA
13 Software (version 13.0, Umetrics, Umeå, Sweden) on
the two data sets (i.e., GC-MS, LC-HRMS). All data were
scaled to unit variance to maximize the separation be-
tween the delayed and control groups. OPLS-DA is a
method of supervised classification that predicts the cat-
egorical factor Y (C or D group) by explanatory quantita-
tive variables X (metabolites). OPLS-DA modeling was
chosen instead of partial least squares discriminant ana-
lysis (PLS-DA) for its inclusion of orthogonal components
containing variations that do not contribute to the dis-
crimination between the control and delayed groups. Vari-
ation in the spectral data X is divided into one predictive
component containing variations correlated with the class
identifier Y and single or multiple orthogonal components
containing variations orthogonal to the predictive

component that do not contribute to discrimination be-
tween the defined groups [29]. The minimum number of
features needed for optimal classification of the OPLS-DA
models was determined by iteratively excluding the vari-
ables with low regression coefficients and wide confidence
intervals derived from jackknifing combined with low
variable importance in the projection (VIP) until max-
imum improvement of the quality of the models. The me-
tabolite with the lowest P-value (Welch’s means
equality t-test) was conserved in the model if the same
metabolite was detected in the positive and negative
ionization mode for LC-HRMS. The model quality was
evaluated after 7-fold cross validation by cumulative
R2Y (goodness of fit), cumulative Q2 (goodness of pre-
diction), and CV-ANOVA (cross validation-analysis of
variance). CV-ANOVA is a diagnostic tool for assessing
the reliability of OPLS-DA models; the returned
P-value is indicative of the statistical significance of the
fitted model [30]. The contribution of each predictor in
the model was evaluated through the variable score con-
tribution (i.e. the differences, in scaled units, for all the
terms in the model, between the outlying observation and
the normal observation, multiplied by the absolute value
of the normalized weight) and the importance in the
model (VIP). Subsequently, the OPLS-DA models, as de-
scribed above, were fitted on the GC-MS and LC-HRMS
data sets, considering the genotypes (i.e. Hubbard Classic,
Ross 308) independently.
The biochemical information about the metabolites

retained in the OPLS-DA models that was used to de-
velop the discussion was partly extracted from the
HMDB database [25] and KEGG [31].

Results
Effect of delayed placement on chicken growth
The body weight of chicks at 12 d of age was signifi-
cantly impacted by the genotype (P = 0.001) and by the
delayed placement in rearing facilities for both genotypes
(P< 0.0001) (Fig. 1). There were significant reductions by
9.7% and 9.8% of the average body weight between the
control (C) and the delayed (D) for Hubbard Classic and
Ross 308 genotypes, respectively. Those differences were
conserved until slaughter (34 d) as previously reported
[19]. In these experimental conditions, the delayed
placement did not affect the welfare and the prevalence
of health disorders [19]. The feces from all the animals
were sampled individually for fecal volatilome and me-
tabolome analyses at 12 d of age for the control and de-
layed chick groups.

Fecal volatilome
The extraction time and temperature were tested on a
pool of feces from the Hubbard Classic genotype chicks
using 100 μm polydimethylsiloxane SPME fiber designed
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to capture volatile molecules (red, MW 60–275). It ap-
peared from those tests that the capture of VOCs in the
head space at 60 °C for 1 h resulted in a GC-MS chro-
matogram containing 49 peaks. Using the same extrac-
tion conditions, the number of peaks was increased to
56 and 93 using 65 μm polydimethylsiloxane/divinylben-
zene fiber (blue) and 85 μm polyacrylate fiber (white), re-
spectively. Those fibers are designed to capture volatiles,
amines, and nitro-aromatic compounds (MW 50–300),
and polar semi-volatile molecules (MW 80–300), re-
spectively. It appeared from those developments that the
best experimental conditions for capturing VOCs were
1 h at 60 °C using the 85 μm polyacrylate SPME fiber.
The chromatogram acquired using the optimized cap-
ture method on 3 replicates of feces from Hubbard Clas-
sic control group chicks contained on average 100
features corresponding to around 30 identified mole-
cules (Additional file 1: Table S1). However, the capture
was not reproducible because the feature total area vari-
ance was 46% for the 3 replicates. The head space SPME
on chick feces was not suitable for quantitative analyses
because of lack of reproducibility.

Fecal metabolome
PCA analyses of the LC-HRMS and GC-MS metabolo-
mics data showed that the QC samples were clustered,
which validates the stability of the analysis quality during
the analysis campaign (data not shown). The PCA plots
also revealed that one sample could be considered to be
an outlier (Hubbard Classic, female, delayed) and thus

was removed from the subsequent analysis. Further-
more, those PCA highlighted that the genotype of the
chicks (i.e. Hubbard Classic and Ross 308) has a higher
impact on the fecal metabolome than the sex or the
postnatal experience effect (Additional file 1: Figure S1),
although both genotypes are selected for rapid growth
and lean tissue deposition [20].
A total of 91 and 139 molecules out of the 255 and

367 metabolites present in our in-house data base were
detected by LC-HRMS in ESI– and ESI+, respectively, in
the Hubbard Classic and Ross 308 chicks. GC-MS,
which is more suitable for quantifying volatile non-polar
metabolites, allowed the detection of 114 metabolites in
both genotypes.

Fecal markers of a previous negative experience
The LC-HRMS and GC-MS data were fitted to 2
OPLS-DA models, a multivariate supervised classifica-
tion method aiming to identify 2 sets of metabolites dis-
criminating the C and D chick groups and shared by
both genotypes.
The consensus model for both genotypes based on the

LC-HRMS data (ESI– and ESI+) was composed of 1 pre-
dictive and 2 orthogonal components and included 25
metabolites. This model explained 81% of the differences
between the 2 groups (R2Ycum) and clearly separated the
delayed and control chicks (Fig. 2). The predictive ability
of this model (Q2

cum) and its CV-ANOVA were 0.73 and
6.78 × 10− 10, respectively. The consensus model based on
GC-MS data (1 predictive + 1 orthogonal component)

Fig. 1 Effect of delayed placement on chicken body weight. The histograms indicated the mean and standard deviation of the delayed (D) and
the control (C) groups at 12 d of age. The statistical analysis of the different effects is indicated on the figure
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containing 35 metabolites was less explicative (R2Ycum =
45%) and predictive (Q2

cum = 0.2, CV-ANOVA= 0.053)
than the LC-HRMS model (Fig. 3). The importance of the
metabolites in both models (VIP) and their contributions
are presented in Figs. 2 and 3. Only one metabolite (keto-
leucine) was present in both models.
The OPLS-DA model adjusted to the metabolomics

data (LC-HRMS or GC-MS) based on separately-analyzed
Hubbard Classic or Ross 308 chick feces had equivalent or
better explicative and predictive abilities for the groups
and included fewer metabolites (i.e. 21–17) than the con-
sensus models (Additional file 1: Figures S2 and S3). Only
one metabolite (succinate) was common to the consensus,

Hubbard Classic, and Ross 308 OPLS-DA models in
GC-MS, which may result from different ways to deal with
negative experience between the 2 genotypes.

Discussion
Fecal volatilome
The setup of SPME extraction conditions is tricky and
species-dependent. For example, as reported by Reade et
al., the optimal extraction methods are different between
human and murine feces samples [32]. To our know-
ledge only one study of the chicken fecal volatilome has
been previously done using frozen feces (60 °C, 1 h cap-
ture with carboxen/polydimethylsiloxane SPME fiber),

Fig. 2 Discriminant LC-HRMS fecal metabolites (ESI+ and ESI-) and score plot based on OPLS-DA model. In the score plot, the individuals from
the delayed (D) and control (C) groups are represented by orange triangles and light blue circles, respectively. The bar plot represents the
contributions of the variables (a negative contribution score indicates a contribution of the variable to the delayed group while a positive score is
indicative of a contribution to the control group) and their importance in projection (VIP) in the OPLS-DA model. The “+” or “–” signs after the
metabolite names correspond to the LC-HRMS ionization mode. The descriptive and predictive performance characteristics of the models are
R2Ycum = 0.81 and Q2

cum = 0.73
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but it did not include reproducibility information [9].
Moreover, the composition of the feces may be different
between chickens and chicks. The first step was thus to
define the optimal conditions to analyze the fecal volati-
lome. It appeared from our developments that the best
experimental conditions for capturing VOCs were 1 h at

60 °C, as proposed in Garner et al., using the 85 μm
polyacrylate SPME fiber [9]. The head space SPME on
chick feces was not suitable for quantitative analyses be-
cause of lack of reproducibility. Liquid extraction on
freeze-dried feces followed by LC-HRMS or GC-MS was
preferred because of higher reproducibility. To illustrate

Fig. 3 Discriminant GC-MS fecal metabolites and score plot based on OPLS-DA model. In the score plot, the individuals from the delayed (D) and
control (C) groups are represented by orange triangles and light blue circles, respectively. The bar plot represents the contributions of the
variables (a negative contribution score indicates a contribution of the variable to the delayed group while a positive score is indicative of a
contribution to the control group) and their importance in projection (VIP) in the OPLS-DA model. The descriptive and predictive performance
characteristics of the models are R2Ycum = 0.45 and Q2

cum = 0.2
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this point, the variance of the 250 LC-HRMS features
under analysis varied 14% between the 6 replicates from
the pool of feces previously described.

Fecal markers of a previous negative experience
The OPLS-DA models were a first attempt to
characterize the fecal signature of postnatal negative
events in chicks. Even if the relative reduction in body
weight was similar between the Hubbard Classic and
Ross 308 chicks, it appeared that the metabolic profiles
related to negative postnatal events were different be-
tween the two genotypes (Additional file 1: Figures S2
and S3). The only metabolites (succinate) that was
present in consensus and separate models cannot ex-
plain the rat behavior changes observed in a previous ex-
periment as it is a non-volatile compound. From the
Hubbard Classic (the chicks used in the Bombail et al.
rat trial [14]) feces, only 2 volatile compounds were in-
cluded in the OPLS-DA: cadaverine (LC-HRMS; vapor
pressure = 1.0 ± 0.3 mmHg at 25 °C) and guaiacol
(GC-MS; vapor pressure = 0.2 ± 0.4 mmHg at 25 °C).
Cadaverine is a foul-smelling diamine formed by the de-
carboxylation of lysine by gut microbiota, while guaiacol
is a phenolic product of lignin (grain cell walls [33] or
ingested wood shavings from the litter) degradation.

Biological integration of the consensus models
The consensus OPLS-DA model that was predictive of
the postnatal conditions based on the fecal metabolome
analyzed by LC-HRMS contained mainly amino acids
or their by-products which may come from the diet or
the gut microbiota metabolism: citrulline (arginine me-
tabolism), phosphoserine, asparagine, acetylphenylala-
nine, 5-oxoproline (cyclic sub-product of glutamate),
adenosylmethionine (methionine metabolism), and
acetylglutamate. Nucleosides and the products of their
catabolism were also present in the model (xanthosine,
inosine, guanosine, adenosine, cytosine) as well as fla-
vonoid/phenol and other compounds from the diet:
4-hydroxyphenylacetate [34], 4-coumarate (phenylpro-
panoids related to lignin biosynthesis and flavonoid
production), erythritol (polyol), trigonelline (alkaloid
produced by the metabolism of niacin present in soy-
beans [35]; soy is a major component of poultry feeds
for protein supply), and 3,4-dihydroxyphenylacetate
(phenolic acid formed from fermentation of soy flavon-
oid). The OPLS-DA model based on GC-MS was less
explicative and predictive than the LC-HRMS one. It
contained mainly organic acids (3-hydroxypropionate,
3-hydroxybutyrate, 3-hydroxyisobutyrate, lactate, suc-
cinate) and fatty acids (palmitate, linoleate, myristate,
stearate, arachidate, lignocerate). The extraction using
methanol/water for LC-HRMS and ethyl acetate for

GC-MS may explain the difference between the set of
metabolites retained in the two OPLS-DA models.
The identification of the metabolic pathways impacted

by the negative postnatal experience using fecal metabo-
lomics is rather complex because feces represent the
final products of complex interactions involving the gut
physiology, the gut immunity, the gut microbiota, the
diet, genetics, and the environment [36]. Added to this,
urine (in the form of uric acid) and feces are mixed in
chickens. For example, the lactate (one of the strongest
contributors to the delayed group in GC-MS) could be
related to endogenous (cellular energy metabolism) or
bacterial metabolism. The OPLS-DA models consensus
to both genotypes and fitted to LC-HRMS and GC-MS
included metabolites that may be related to an adaptive
response to negative events as well as to differences in
energy metabolism and microbiota composition between
the delayed (D) and control (C) chick groups. Those 3
hypotheses will be discussed in the following paragraphs.
The metabolites cited and their spectrum acquisition
method as well as their contribution to the OPLS-DA
models (i.e. negative values are indicative of a contribu-
tion of the metabolite to the D group and positive values
to the C group) will be indicated.
One adrenergic hormone and neurotransmitter from

the catecholamine family, norepinephrine (LC, 0.25),
contributed less to the fecal metabolome of the delayed
group. Norepinephrine is a neurotransmitter produced
by the sympathetic nervous system, adrenal glands, and
also by some gut bacteria [37, 38]. It is the primary
neurotransmitter found in the gut of most animals and
known to be secreted in response to stress, but also to
regulate the behavior response to stressful stimuli in
chicken [39]. Vanillomandelate (GC, 0.47), a product of
norepinephrine catabolism, contributed less to the de-
layed group as well as 3,4-dihydroxyphenylacetate (LC,
0.66) and homovanilate (GC, 0.58), the intermediate and
the final product of dopamine catabolism, respectively.
Dopamine, another catecholamine synthetized in the
brain and kidneys or released by gut bacteria [37, 38],
plays a role in reward processing, but its release is also
increased by stress [40, 41]. The lower level of catechol-
amine and its metabolites in the feces of the delayed
chicks at 12 d of age suggested that the delayed birds
have a lower basal release of catecholamine in standard
rearing conditions compared to the control birds, which
may be related to an adaptive response over time to a
negative postnatal experience. To evaluate this hypoth-
esis, it would be valuable to measure the expression of
stress response-related genes and proteins in adrenal
glands and the corticosteronemia at the baseline and in
response to an acute stress after ACTH treatment [42].
This could be an adaptive process used by the delayed
birds to attenuate their stress response as this is
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reported for the domesticated birds compared to their
wild counterparts [43]. Furthermore, the contribution of
3 metabolites known for their antioxidant effects [44, 45],
i.e. citrulline (LC, − 1.40), taurine (LC, − 0.76), and adeno-
sylmethionine (LC, − 0.12) was higher in the delayed
groups, also suggesting an adaptive response of the D
chickens to negative postnatal events. The redox balance
and the antioxidant status would be interesting to investi-
gate in both delayed and control chickens.
During the first 24 h post-hatching, the energy metab-

olism of the 2 groups of chicks (D and C) was different
and those differences may be conserved during their
growth. The blood glucose and triglyceride levels were
lower in the D group chicks at day one (unpublished
data). The yolk sac is the main source of energy (via fatty
acid oxidation) during embryonic development until ex-
ogenous feed is given in the brooder house [46]. There-
fore, the delayed chicks consumed the rest of the
nutrients contained in the internalized yolk sac (mostly
fatty acids and proteins) for 24 h post-hatching while the
control group had direct access to exogenous feed rich
in carbohydrates (unpublished data). The consensus
OPLS-DA models based on the fecal metabolome at 12
d suggested the persistence of a difference in energy me-
tabolism between the 2 groups, at least concerning me-
tabolism in the gut. The major indicator of this
difference was the contribution of 3-hydroxybutyrate
(GC, − 1.16) to the D group of chicks, which indicated a
metabolic activity related to ketogenic amino acid
degradation, and lipid β-oxidation in this group.
3-hydroxybutyrate is an important metabolic substrate
for energy production in starvation response [47]. Keto-
genic amino acid catabolism can also be illustrated by
the contribution of ketoleucine (LC, − 0.19; GC, − 0.01)
to the D chick excreta discrimination in the OPLS-DA
model. This suggested a remaining effect of post-hatch-
ing starvation or an adaptive effect to lipid-rich sub-
strates 12 d after the treatment. On the other hand, the
digestive utilization of some lipids (medium to long car-
bon chain) by the D group was lower as evidenced by
the negative contribution of palmitate (GC, − 0.65), lino-
leate (GC, − 0.56), myristate (GC, − 0.60), stearate (GC,
− 0.53) and lignocerate (GC, − 0.81) to the OPLS-DA
models. This may be also related to long-term effects of
early food deprivation on hepatic lipid metabolism as re-
ported in early feed restriction program [48]. In contrast,
some amino acids contributed less to the fecal metabo-
lome of the D group of chicks, namely asparagine (LC,
0.39), and phosphoserine (LC, 0.62), suggesting they may
have been metabolized and/or used for energy purposes.
Interestingly, 3-hydroxyisobutyrate (GC, − 1.16), a prod-
uct of valine catabolism and a good gluconeogenic sub-
strate [49], contributed to the fecal metabolome of the D
group of chicks, suggesting enhanced amino acid

catabolism that led to glucose production. Therefore, it
seems that the group of D chicks exhibits a metabolic
adaptation for energy production and utilization com-
pared to the control group and that this adaptation may
last more than 10 d after the 24 h post-hatch fasting. Be-
side this, biliverdin (LC, 0.67) contributed less to the fecal
metabolome, including urine, of the D group. This com-
pound results from the degradation of heme from
hemoglobin in mammals and birds [50, 51]. This difference
could be related to persisting changes in hepatic or renal
function [52], in response to an early negative experience.
The contribution of guanosine (LC, 0.90; purine nu-

cleoside), xanthosine (LC, 1.37), inosine (LC, 1.08), and
adenosine (LC, 0.50) was higher in feces from the con-
trol chicks compared to the D chicks. Moreover, the
xanthosine and the inosine were both in the VIP top 3
of the LC-HRMS OPLS-DA models, which suggests the
importance of the pathways related to purine metabol-
ism in the group of control chicks. The cytosine (LC,
0.39) also contributed to the fecal metabolome of the
control group. However, it is impossible to determine if
those molecules came from endogenous or gut micro-
biota metabolism. Indeed, some metabolites produced
by gut microbiota explained the differences between de-
layed and control birds: 2-hydroxy-3-methylpentanoate
(GC, − 0.56), and 2-hydroxy-4-methylpentanoate (GC, −
0.63), which are products of isoleucine and leucine catab-
olism, respectively, by Clostridium difficile for example
[53, 54], and lactate (GC,–0.91; product of gut microbiota
such as Lactobacillus acidophilus in relation with intes-
tinal health [55]). These elements may suggest that the
negative postnatal experience (i.e. fasting and stressful
conditions) had an impact on the composition of the gut
microbiota and the associated metabolome, the next step
to investigate.

Conclusion
The fecal volatilome was not informative due to the lack
of reproducibility of the extraction by SPME and injection
into the GC-MS in this pilot study, which may be im-
proved by the automatization of the processes. In contrast,
liquid extraction of freeze-dried feces followed by
LC-HRMS or GC-MS was reproducible, and the OPLS-
DA model fitted on those data highlights persisting differ-
ences in adaptive response, energy metabolism, and
microbiota composition for the delayed chicks in response
to the negative postnatal experience. Further integrative
analyses are needed to characterize these differences in
target tissues as brain, adrenal glands, liver for adaptive re-
sponse and energy metabolism, and gut for microbiota
composition. These conclusions bear out the interest of a
multiplatform metabolomic approach to characterize the
fecal signatures, and possibly of other biological tissues, of
response to postnatal negative events.
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Additional file

Additional file 1: Table S1. Fecal VOCs annotated after headspace
solid-phase microextraction (capture 1 h at 60 °C, 85 μm polyacrylate
fiber) coupled with GC-MS. This volatilome was acquired on a pool of
Hubbard control group chick feces. Figure S1. Score plots following
principal component analysis for LC-HRMS (a, b, c) and GC-MS (d, e, f)
fecal metabolomics. The first components (t [1]) explained 32% and 37%
of the fecal metabolome variability while the second one (t [2]) explained
10 and 15% of variability in LC-HRMS and GC-MS, respectively. In the “a”
and “d” score plots, Hubbard (H) individuals are represented in turquoise
and Ross (R) individuals in purple. The sex of the chicks: male (M, blue)
and female (F, red) are represented in the “b” and “e” score plots. The
individuals from the delayed group (D, orange triangle) and control group
(C, light blue circle) are represented in the “c” and “f” plots. Figure S2.
OPLS-DA models adjusted to Hubbard (a) and Ross (b) chick fecal
metabolomes at 12 d of age analyzed by LC-HRMS. The individuals from
the delayed group (D, orange triangle) and control group (C, light blue
circle) are represented in the score plots at the top of the figure. The fecal
metabolites included in the Hubbard and Ross OPLS-DA models are
tabulated with their variable importance in projection (VIP) and their
contribution in the models. A negative contribution score indicates a
contribution of the variable to the delayed group while a positive score is
indicative of a contribution to the control group. The performance
characteristics of each OPLS-DA model are under the metabolites tables
(p = predictive component, o = orthogonal component). Figure S3.
OPLS-DA models adjusted on Hubbard (a) and Ross (b) chick fecal
metabolomes at 12 d of age analyzed by GC-MS. The individuals
from the delayed group (D, orange triangle) and control group
(C, light blue circle) are represented in the score plots at the top of
the figure. The fecal metabolites included in the Hubbard and Ross
OPLS-DA models are tabulated with their variable importance in projection
(VIP) and their contribution in the models. A negative contribution score
indicates a contribution of the variable to the delayed group while a positive
score is indicative of a contribution to the control group. The performance
characteristics of each OPLS-DA model are under the metabolites tables
(p = predictive component, o = orthogonal component). (PDF 1250 kb)
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