Advanced spectroscopy-based phenotyping offers a potential solution to the ash dieback epidemic - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Accéder directement au contenu
Article Dans Une Revue Scientific Reports Année : 2018

Advanced spectroscopy-based phenotyping offers a potential solution to the ash dieback epidemic

Résumé

Natural and urban forests worldwide are increasingly threatened by global change resulting from human-mediated factors, including invasions by lethal exotic pathogens. Ash dieback (ADB), incited by the alien invasive fungus Hymenoscyphus fraxineus, has caused large-scale population decline of European ash (Fraxinus excelsior) across Europe, and is threatening to functionally extirpate this tree species. Genetically controlled host resistance is a key element to ensure European ash survival and to restore this keystone species where it has been decimated. We know that a low proportion of the natural population of European ash expresses heritable, quantitative resistance that is stable across environments. To exploit this resource for breeding and restoration efforts, tools that allow for effective and efficient, rapid identification and deployment of superior genotypes are now sorely needed. Here we show that Fourier-transform infrared (FT-IR) spectroscopy of phenolic extracts from uninfected bark tissue, coupled with a model based on soft independent modelling of class analogy (SIMCA), can robustly discriminate between ADB-resistant and susceptible European ash. The model was validated with populations of European ash grown across six European countries. Our work demonstrates that this approach can efficiently advance the effort to save such fundamental forest resource in Europe and elsewhere.
Fichier principal
Vignette du fichier
2018_Villari_ScientificReports_8_17448_openaccess_1.pdf (1.5 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-02623741 , version 1 (26-05-2020)

Licence

Paternité

Identifiants

Citer

Caterina Villari, Arnaud Dowkiw, Rasmus Enderle, Marjan Ghasemkhani, Thomas Kirisits, et al.. Advanced spectroscopy-based phenotyping offers a potential solution to the ash dieback epidemic. Scientific Reports, 2018, 8, ⟨10.1038/s41598-018-35770-0⟩. ⟨hal-02623741⟩
28 Consultations
31 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More