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Abstract

Biological hydrogen production was investigated@@amtinuous acidogenic reactors fed with sucrose
at 30°C without pH control. In the first experimainphase, three reactors were compared: a
structured fixed-bed (FB), a granular UASB (UG) anitbcculent UASB (UF-1). They were run at
3.3 h HRT and 33 gCOD1d* OLR. Hydrogen production occurred throughout theegimental
period with an average effluent pH of only 2.8. Hi&s UG and UF-1 reactors presented volumetric
hydrogen production rates (VHPR) of 95 + 69, 4574a8d 54 + 32 mLKL h?, respectively; and H
yields (HY) of 1.5+ 0.8,0.8 £ 0.6 and 1.2 + 0.0lht, mol™* SuCrosgnsumes respectively. The UF-1
reactor showed intermediate VHPR and HY, but ndinieg trend, contrary to what was observed in
the FB reactor. Thus, aiming at continuous and-eng H production, a flocculent UASB was
applied in the second experimental phase. In thés@, the HRT of the acidogenic reactor, which was
named UF-2, was raised to 4.6 h, resulting in aR®f.25 gCOD [*d*. The VHPR and the HY
increased considerably to 175 + 44 mUH'h™ and 3.4 + 0.7 molHmol™* sucrosgnsumed

respectively. These improvements were accompariggdater sucrose removal, higher suspended

biomass concentration, less production of lactateraore of acetate, and high ethanol concentration.
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Contradicting the current published literature dhtd reports strong inhibition of;hbroduction by

dark fermentation at pH less than 4.0, the UF-2toegresented stable, long-term ptoduction with
satisfactory yields at pH 2.7 on average. 16S rBdguencing revealed that two sequences assigned
asEthanoligenenandClostridiumaccounted for over 70% of the microbiota in adl tbactors. The
non-necessity of adding alkalizing agents and tieeessful H production under very acid

conditions, demonstrated in this study, open afied of investigation in biological hydrogen

production by dark fermentation towards a moreasnable and feasible technology.

Keywords: acidogenic reactor; acid-tolerant bacteria; biobgén; dark fermentation; hydrogen; pH

1. Introduction

In recent years, more attention has been givelnet@otential for hydrogen production by dark
fermentation (DF). Hydrogen is produced concomiyantth volatile fatty acids (VFA) through
acidogenesis during anaerobic treatment, andats/egy is a way of extracting additional energy in
wastewater treatment plants. The technology isestillving and stable, long-termylgroduction is
challenging due to changes in bacterial metabaltbyays and the concomitant existence gf H
producing and kHconsuming microorganisms inside the acidogenictoea. Current efforts are
towards optimization of the operating parameters. feactor designs, environmental conditions,

bacterial consortia, substrates) in order to aeh@&esustainable Hhet production.

In the DF processes, no more than 4 mol ppét mol of hexose is attainable due to the prodnaif
products other than gas. The foregoing notwithstaydisual H yields are lower, due to the
utilization of the substrate in a variety of patlygahat produce less or ng Bind for biomass growth,

also due to microbial Ftonsumption.

Environmental pH plays a crucial role in hydrogégids. A neutral pH, besides being onerous to
maintain, can favour methanogen growth and berdetrial to the achievement of phase separation.

2
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On the other hand, pH values less than 4.5 lealdnges in the metabolic pathways, towards the
production of compounds more reduced than the \#edv/énts such as acetone and alcohols, and
lactic acid) (Bahkt al, 1982; Lay, 2000; Mizunet al., 2000; Kimet al,, 2004); increased
concentrations of undissociated forms of organidsaavhich affect microbial growth (Dabroek al.,
1992; Yokoiet al. 1995; Cheret al. 2005; Ruggeret al, 2015); possible inhibition of hydrogenase
activity (Micolucciet al, 2014; Ghimireet al.,, 2015; Ruggeret al, 2015; Roy and Das, 2016) as
well as ferredoxin’s capacity to donate electransglie protons (Ruggeet al, 2015). In general, the
desirable pH for hydrogen-producing reactors raffiges 4.5 to 6.5. However, even in this pH range,
H,-consuming microorganisms such as homoacetogedi¢lanxidizing methanogens can be found

(Leeet al, 2010).

The main drawback to controlling the pH in aciddgeractors lies in the increased costs. Due to the
constant C@and acid production, the addition of alkalis te teactors is usually needed. Ghingte
al. (2015) state that the use of an excessive anwyt regulators can decrease the economics and

sustainability of the process, as well as incrélsesalt concentration of the DF effluents.

The capacity of acid-tolerant facultative or anberdacteria to produce,Hinder extremely acid
conditions (pH<3.5) has not yet been investigateacidogenic reactors, but only in other
environments. In the study by Noguehial (2010), it was found that live culturesiEdcherichia coli
survived at external pH values of 2.5 and 2.0 duée activity of the [NiFe]-hydrogenase Hyd-3.

The reduction of Hinto H, to control the internal pH in extremely acidic @omments such as the
stomach is a strategy also reportedHeticobater pylori(Bhattacharyyat al, 2000). The capacity to
grow in very acid environments has been demonstifareother H-producing bacteria, such as
Sarcina ventriculiandClostridium acidisoli S. ventriculiis a bacterium found in various
environments (soil, mud, rabbit and guinea pig stomcontents, elephant dung, human feces and the
surface of cereal seeds) and can grow at pH o2 5.¢Canale-Parola, 1986). However, Goodwin and
Zeikus (1987) found that its metabolism shiftedrirb,-acetate to ethanol production when the pH

decreased from 7.0 to 3.0. Kuhmtral (2000) first isolatecClostridium akagiiandClostridium



84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

acidisoli from acid soils (pH ~3.0) and cultured them at3#-7.1 and 3.6-6.9, respectively. Their
capacity to produce Hrom carbohydrates was demonstrated at pH 5.%ahdut it was not

assayed for other pH values.

Bearing in mind that the application of DF fos kecovery is only feasible if the environmental
balance is beneficial and the economic costs gretkea minimum, and, that there is a potential for
H, production by acid-tolerant bacteria, the acidogesactors were run without addition of pH
regulators in the present study. As reactor desighthe biomass retention mechanism (biofilm, flocs
or granules) affect the biological dynamics, angthet hydrogen production, different

configurations of reactors were evaluated.

2. Material and methods

2.1. Reactor configurations and inoculum

An up-flow structured fixed-bed reactor, a granW#&SB reactor and a flocculent UASB reactor
were used. The reactors were made of acrylic, gawiernal diameters of 6.3 cm, and with total and
working volumes of approx. 2.5 and 2.2 L, respadyi(Figure 1). The source of inoculum was
granular sludge from a single stage UASB reactating poultry slaughterhouse wastewater
(Pereiras, Sao Paulo, Brazil). The granules wenepéetely disrupted with a blender prior to
inoculating the structured fixed-bed and flocculdSB reactors. The structured fixed-bed reactor
design (Picanget al, 2001), as an alternative to the packed-bedoggmtevents channelling and
clogging. Polyethylene cylinders were chosen astipport material in the structured fixed-bed
reactor (porosity = 82%), as Ferraz Jumbal (2015) found that the reactor filled with polygine
obtained higher Hproduction and yield, also greater abundance,gdrdducing bacteria, as

compared to the reactors filled with expanded atagl and porous ceramics.
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Figure 1 — Schematic diagram of the acidogenic reactors. 1: distribution chamber, 2: reactional zone, 3:

headspace, 4: biogas sampling, 5: biogas outlet

The initial concentration of total volatile soliBVS) was 15 g/l. No sludge pretreatment was used.
This allows the survival of non-spore forming-producers and makes the inoculation more practical

and viable.

2.2. Substrate

The reactors were fed with sucrose-based wastewatgposed of demerara sugar (Native®) and a
nutrient’s solution in the following concentratiofag L"): demerara sugar (4450), NE (170),
CaCl- 2H,0 (8), KH,PO, (37), MgSQ: 4H,0 (9), FeC}-4H,0 (2), CoC}-6H,0 (2), MnCh-4H,0

(0.5), CuC}-2H,0 (0.03), ZnCl (0.05), HBO; (0.05), (NH4)M0;0,4 4H,0 (0.09), NaSeQ: 5H,0

(0.1), NiCh: 6H,0 (0.05), EDTA (1), HCI 36% (L LY.

2.3. Operating conditions

In the first experimental phase, in which differegdictors were evaluated (Table 1), the mean
hydraulic retention time (HRT) was 3.3 h. This esponded to an organic loading rate (OLR) of 33.1

gCoD L'd™.

One configuration was chosen to be applied in thé experimental phase, in order to keep the
investigation on continuous hydrogen productiorthis phase, a different start-up was appliederaft
inoculation, the reactor was operated at HRT in2i8e6.1 h range for 80 days. It was verified that
higher hydrogen production was obtained at HRT betw4 and 5 h (data not shown). Thereafter, the

HRT was adjusted to 4.6 h in Phase 2. This corredgbto an OLR of 25.0 gCOD'H™.
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According to the design and/or inoculum structurd t the experimental phase, the reactors were
named as follows: (i) structured fixed-bed readt®; (ii) granular UASB reactor: UG; (iii)
flocculent UASB reactors applied in experimentahgds 1 and 2: UF-1 and UF-2, respectively (Table

1).

Table 1 — Reactor configurations and operating conditions

React Reactor Inoculum Biomass Experimental HRT OLR
eactor
design structure retention phase -h  -gcobL'd?
Structured  Disaggregated Biofilm
FB . 1 3.3 33.1
fixed-bed granules and flocs
Intact
UG UASB Granules 1 3.3 33.1
granules
Disaggregated
UF-1 UASB Flocs 1 3.3 33.1
granules
Disaggregated
UF-2 UASB Flocs 2 4.6 25.0
granules

The reactors were fed continuously and the temperatas maintained at 30+2 °C. The affluent pH

was naturally neutral, 6.5 on average, and thenpiHe reactors was not controlled.

2.4. Analyses

The biogas flow rate was measured using Milligagmter gas meters (Ritter®). The composition, in
terms of H, CH, and CQ, was analysed using Shimadzu GC-2010 gas chronagtogvith the
following specifications: thermal conductivity deter; argon as carrier gas; Carboxen 1010 capillary
column; initial detector and injector temperatus&200 and 230 °C, respectively; oven temperature

of 130-135 °C; flow rate of 12 mL minand, sample volume of 3Q0.

Sucrose (glucose and fructose) and organic a@adsqJ formic, acetic, propionic, isobutyric, butyr
isovaleric, valeric) were determined using Shima8ygstem UV/DAD (210 nm) high performance
liquid chromatography (HPLC) with Refractive Ind@x series) detectors, Aminex HPX-87H

column, 0.005M HSQ, solution as eluent, flow of 0.5 mL minoven temperature of 43 °C, and 100

6
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uL of sample injection. Ethanol was determined uShgnadzu GC-2010 gas chromatograph with a
flame ionization detector (FID), flow of 1.5 mL rfiwith ultra-pure hydrogen as the carrier gas,

injector and detector temperature of 250 °C and°Z80espectively.

Total COD of the affluent, soluble COD of the effhi (filtered in 1.2um membrane) and volatile
suspended solids (VSS) concentration in the efflueme analysed according to APHAal (2005).

The pH was measured using a pHmeter (Hach equipment

Statistical analyses were done using Statisticeofi8vare. Normal distribution of the results was
checked using the Shapiro-Wilk test before applyirgother tests. The 95% confidence level was

adopted for all tests.

2.5. Theoretical calculations of the percentagacidified sucrose and of hydrogen yield, by the

different metabolic routes

The simplified stoichiometric equations (Equatidng, 3, 4, 5) were used to calculate the molado rat
between sucrose consumed and acids produced ($sli¢acid]) and between hydrogen gas and acids
produced ([H]/[acid]). These equations show calculated acidifacrose (in mmolt) = S (in mmol
sucrose mmdl acid) x acid concentration (in mmol acid). It i®wn that S = 0.25 via lactate, 0.25

via acetate and/or formate, 0.25 via propionat Oia butyrate, and 0.50 via valerate. The
percentage of acidified sucrose for each acigiseispective calculated acidified sucrose divided b

the total calculated acidified sucrose.

To determine the HY percentage, the maximum yieldomsumption by each route was calculated, as
follows: theoretical HY (in mmol Hmmor* SUCI0SEnsumed = H (in mmol B mmol* acid) x acid
yield (in mmol acid mmot SUCrOSgnsumey. It is shown that H = 0 via lactate, 2 via acetand/or

formate, -1 via propionate, 2 via butyrate, andialvalerate. The HY percentage is the theoretical
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HY from each acid divided by the sum of the thdoettHY from acetate and/or formate and

butyrate.

Via lactate: 1 GH»,01; + 1 HO = 4 CHCH(OH)COO + 4 H (Eq. 1)

Via acetate and/or formate*: L, 8,,0,, + 5 HO =4 CHCOO +4 H +4 CQ + 8 K, (Eq. 2)

*In the mixed-acid fermentation, Equation 2 derifresn the sum of the reaction of acetate and

formate formation (1 GH,,0:1 + 5 HO = 4 CHOO + 4 CHCOO + 8 H + 4 H,) followed by the

reaction of formate cleavage (4 CHO®4 H =4 CQ + 4 H,). Since [formate] ~0, only [acetate]

was included in the calculations.

Via propionate: 1 GH»,0;; + 4 H, = 4 CHCH,COO + 4 H + 3 H,O (Eq. 3)

Via butyrate: 1 GH01; + H,0 = 2 CHCH,CH,COO + 2 H' + 4 CQ + 4 H (Eq. 4)

Via valerate: 1 GH,,0,1 + 2 H, = 2 CHCH,CH,CH,COO + 2 H' + 2 CQ + 3 HO (Eq. 5)

2.6 Molecular analysis

Biomass were collected from different heights fribim FB, UG, UF-1 and UF-2 reactors by the end

of operation. Cells were separated by centrifuga@®00 g, 10 min, 4 °C). Genomic DNA was
extracted and purified using the protocol of Gitif§i et al. (2000). The amount and purity of DNA in
the extracts were measured by spectrophotometipi(eaNanoQuant M200, Tecan). The extracted
DNA was stored at -20 °C until further use. The tBSIA gene V4-5 region was amplified with the
forward primer CTTTCCCTACACGACGCTCTTCCGATCTGTGYCAGELSCCGCGGTA and the
reverse primer GGAGTTCAGACGTGTGCTCTTCCGATCTCCCCGYRRICMTTTRAGT plus

the respective linkers over 30 amplification cy@desn annealing temperature of 65 °C. In a second
PCR reactor of 12 cycles, an index sequence wasdadthe resulting PCR products were purified
and loaded onto the lllumina MiSeq cartridge faguencing of paired 375-380 bp reads. Sequencing-

8



215  related work was done at the GeT PlaGe sequeneimgicof the genotoul life science network in

216  Toulouse, France (get.genotoul.fr). Forward anémsy sequences were retained after assembly and
217  quality checking using a slightly modified versiofithe Standard Operation Procedure for MiSeq
218 data by Kozich et al. (2013) in Mothur version 1Bgchloss et al., 2009). SILVA SSU Ref NR 99,
219 release 128, was used for alignment and as taxenmutline (Pruesse et al., 2012). The sequences
220  found in this study were submitted to the GenBatcéssion numbers MF612196-MF613645). For
221  the construction of a phylogenetic tree, the mbshdant sequences found in the reactors were then
222 compared with the available sequences in the GdnBatabase using the BLAST program (Altschul
223 etal., 1990). Phylogenetic analyses of the seqsewere performed using the Molecular

224  Evolutionary Genetic Analysis (MEGA7) software (Kanet al., 2016). Evolutionary distances were
225  based on the Kimura model (Kimura, 1980) and teeemstruction on the Neighbor-Joining method
226 with bootstrap values calculated from 500 replicates.

227

228 3. Resultsand Discussion

229

230  3.1. Volumetric hydrogen production rate and biog@®position

231

232 Figure 2 shows the volumetric hydrogen productite (VHPR) and effluent pH of the FB, UG and
233 UF-1 reactors. The mean effluent pH values were28and 2.9 in the FB, UG and UF-1 reactors,
234 respectively. As no buffers, acids or bases wede@dpH reduction resulted from the production of
235  organic acids and carbon dioxide. Despite the lblwhydrogen production occurred throughout the
236  experimental period.

237

238 Figure 2 — Volumetric hydrogen production rate and pH in the first experimental phase: (a) FB reactor, (b) UG
239 reactor, (c) UF-1 reactor.

240

241  Punctual increases in pH, accompanied by redudfisncrose removal, organic acid ang H

242 production, were observed. This was more noticealtlee UF-1 reactor, when pH values were
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above 3.4 on days 30, 80 and 133 (Figure 2). Tilvedborganic acid concentrations in effluent were
also reported on these days and sucrose remowaertly was null on days 80 and 133. On days 23,
29, 59, 60, 79 and 130, there were feeding problarttee UF-1 reactor due to clogging of tubes. It
was likely that feeding reduction or interrupti@u Ito biomass decay, as could be inferred by the
lower visible turbidity of the medium and reductioreffluent VSS concentrations after these events.
Nevertheless, pH above 3.0 accompanied by a daligtieduced sucrose conversion, was also
observed in the UG reactor notably on days 32,6186, and in the FB reactor on day 85.

Consequently, effluent pH was increased due tdidillof medium with non-consumed affluent.

The VHPR were equivalent to: 95 + 69 mLH'h" in the FB reactor, 45 + 37 ml,H.*h™ in the UG
reactor, and 54 + 32 mLH.h? in the UF-1 reactor. The non-parametric Kruskaflig ANOVA

by Ranks test showed statistically significantefi®nces regarding,hproduction (p-value = 0.006).
Further analysis of multiple comparisons of meanksdor all groups showed that Hroduction in
reactors UG and UF-1 was not significantly difféar@nvalue = 0.575)As shown in Figure 2,
although the FB reactor achieved the highest VHPReabeginning of the operation, it tended to
decrease during the experimental period. This dicbocur in the UG and UF-1 reactors. The UF-1
reactor showed superior stability during the engiggod of operation, as indicated by its VHPR data

These were the only data that presented normaitdison.

A possible explanation for the higher initial VHRRthe FB reactor could be the lower biomass
wash-out, owing to the presence of the support maht8iomass was observed to be "trapped" in the
polyethylene cylinders, although it did not forrtheck biofilm. The flocs formed in the sludge bed a
the bottom of the FB reactor were visually lardgert those from the UF-1 reactor. This was probably
due to the shear stress and physical selectioreddwsthe support material, which retained larger
particles, while the smaller ones passed easitutiir the pores. Low interspecies distances arg a ke
point of efficient interspecies hydrogen transfetween acetogenic bacteria and hydrogenotrophic
methanogenic archaea in anaerobic aggregatednisaind granules (MacLeod et al., 1990; Davey
and O'toole, 2000; Hulshoff Pol et al., 2004; FakhzZwirello et al. 2013). As stated by Dinamarca

10



271  etal. (2011), this mechanism also can play a agiekole in non-methanogenic mixed cultures,

272 through hydrogen transfer between hydrogen produaed consumers, limiting sustainable hydrogen
273 production due to homoacetogenesis. Therefordeiptesent study, the biomass agglutination in
274  larger flocs, granules and biofilm could have hagdverse effect on long-term.H\cetate

275  formation was observed to increase from day 7HeénRB reactor. However, this was not followed by
276  anincrease in hydrogen production, which can b@dioator of homoacetogenic activity. Penteado
277  etal. (2013) studied seven structured fixed-bedtaes having different sources of inoculum, fed

278  with sucrose. VHPR decreased over time in all eractind it was observed that HY decreased as the
279  percentage of acetic acid produced by homoacetsgemereased. In addition, the filling in the FB
280 and UG reactors with support material and granuéspectively, may have hindered the escape of
281  the produced biogas, increasing thepidrtial pressure in the medium, which inhibitsoiten

282  production (Sikorat al, 2013).

283

284  The granules inside the UG reactor were originddlgk colored with an average diameter of 2.1 mm.
285  They became whitened and smaller, with an averageeader of 1.5 mm by the end of operation.

286  Floc formation and suspended biomass growth wereaserved. On the 138ay of operation, the
287 UG reactor lost most of its biomass due to a reafa@ekwash-out of the granules. The granule

288 flotation likely occurred due to the adherence ad Qubbles to their surfaces, and reduction of thei
289  inner densities. This assumption is based on tttdliat the environmental conditions were not

290 favourable for the maintenance of the methanog®aigcoorganisms, leading to biomass decay in the
291 inner layers of the granules. Then, in the outgetds, the granules became most colonized by

292  acidogenic bacteria that survived in the acid emment. The increasing substitution of mixed-

293  consortia granules by specific acidogenic baciegale the UG reactor probably had a positive ¢ffec
294  on H, production, as indicated by the increased VHPReatnd of operation (Figure 2).

295

296 Inthe UF-1 reactor, it is probable that fastemiéss decay and washing-out occurred at the

297  beginning of the operation due to the larger cdrgadace of the biomass with the medium and the
298 initial absence of a biomass retention mechanidrs may be the reason that ptoduction started

11
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later in this reactor and with less intensity. Resfeal (2012) also observed a delay ipptoduction

in the reactors inoculated with disintegrated glaswirhis production started after about 40-70 &our
of continuous operation, compared to the reactarsulated with intact granules, in which H
production started within the first 12 hours. Oa tther hand, the selection of bacteria resistant t
the adverse conditions (low pH and high organidsaconcentration) as well as the increasing
biomass concentration due to the self-flocculagibanomenon provided a superior stability to the
UF-1 reactor. The higher selectivity of the desibedteria from the disaggregated granules was
verified by Reyegt al (2012), who found that this form of inoculatiasulted in greater specific

hydrogenogenic activity compared to that from ibgrenules.

The effluent VSS concentrations were (in mY:189.9 + 68.4, 101.7 + 95.9 and 90.9+63.4 in tBe F
UG and UF-1 reactors, respectively. In each reatitereffluent VSS concentration correlated
positively with the VHPR according to the Spearman-parametric testi(= 5%). The values of the
R correlation coefficients were 0.45 (p = 0.00@B»6 (p = 0.0014) and 0.40 (p = 0.0198) for the FB,

UG and UF-1 reactors, respectively.

For the application in the second experimental @hide UG reactor was considered less
advantageous as it had the lowest VHPR and HY FBheeactor, however, showed the highest
VHPR and HY mean values, although with a tendeawsatd performance decrease over time. The
UF-1 reactor showed intermediate VHPR and HY valbasno declining trend was observed. From
the 80" day of operation, the Hjield in the UF-1 reactor also showed progressiygovement,
contrasted to the FB reactor. Thus, aiming at cootis and long-termAproduction, this
configuration seemed to be the most adequate athosg studied. It is also pertinent that the
flocculated UASB reactor design has the greatetstnpial to use the entire reactor volume to be
filled with active biomass, thus maximizing theata space utility and virtually increasing cell
density in the reactor, without formation of clasirobial associations such as biofilms and

granules. For these reasons, this configurationclvasen for the second experimental phase.
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The flocculated UASB applied in Phase 2 was ideutibs the UF-2 reactor and was operated at a
higher HRT (4.6 h) and lower OLR (25.0 gCODdY). It obtained constant and stablg H
production, and achieved significant improvemerdrdhe previous experimental phase (Figure 3).
The VHPR was very satisfactory, corresponding 6444 mLH L™*h™. Continuous acid and GO
production in the reactor led to strong acidifioatdf the effluent, and pH was self-adjusted tagal
consistently less than 3.0, with an average valie7o(Figure 3). The KHproduction in the UF-2
reactor presented normal distribution and wassstedily higher, according to Kolmogorov-Smirnov

test (p-value < 0.001), compared to the other ceact

Figure 3 — Volumetric hydrogen production rate and pH in the second experimental phase: UF-2 reactor

The growth of suspended biomass was much moreeadiie than in the reactors during Phase 1,
achieving an effluent concentration of 295 + 275488 L. There was also a significant correlation

of VSS with VHPR at the 5% significance level (Spean R = 0.33).

The biogas of the FB, UG, UF-1 and UF-2 reactoes@nted a pHcontent equal to (%): 59.6 £ 11.0,
62.1 £10.8,62.2+7.1 and 59.8 + 5.9, respedtivEhe percentage of hydrogen in the biogas was not
significantly different, according to the Kruskalafi's ANOVA (FB, UG, UF-1 reactors) and the
Kolmogorov-Smirnov tests (UF-2 reactor vs. FB, WE-1 reactors). Methane was not detected in
the biogas in any of the reactors. This leadsea8sumption that the environmental conditions
established by the pH self-adjustment and low HRFensufficient to completely inhibit
methanogenesiQperating with extreme pH values seems to be ariexff strategy for avoiding
methanogenic activity, as verified by Wang et 201(5), studying hydrogen production in waste

activated sludge at pH 10.

3.2. Hydrogen vield and sucrose removal
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The results of sucrose removal and HY are plottdabx and whisker graphics (Figures 4 and 5), that
show the distribution of data into quartiles, highting the mean (X). The lines extending vertigall

indicate variability outside the upper and loweadiles.

Figure 4 — Sucrose removal

Figure 5 — H, yield

The mean sucrose removal in the UF-2 reactor wés\8hile, in the FB, UG and UF-1 reactors, it
was 64, 67 and 56%, respectively (Figure 4). Howeagthe OLR applied in the UF-2 reactor was
less than in the other reactors, the mean volumetiGrose removal rate was in the same range as the
other reactors: 2.22, 2.38, 1.91 and 2.16 mmolosagf.sumed *h ™t in the FB, UG, UF-1 and UF-2
reactors, respectively. Thus, the substantial asgen VHPR obtained in the UF-2 reactor was
mainly due to the improvement in the yeld. The mean HY of 1.50, 0.76 and 1.19 mghkbl™
sucrosg,nsumedobtained in the FB, UG and UF-1 reactors, respelgti was surpassed by a level of
3.35 mol B mol™* sucrosgsumecobtained in the UF-2 reactor (Figure 5). Statidtanalyses revealed
that K, yield in Phase 1 differed significantly among tteas (Kruskall-Wallis ANOVA, p-value =
0.002); however, the difference between the FBUWRd reactors was not significant (multiple
comparisons of mean ranks, p-value = 0.413). Nbghss, Hyield obtained in the UF-2 reactor was
statistically higher than that obtained in the B and UF-1 reactors (Kolmogorov-Smirnov test, p-

value<0.001).

Table 2 shows the organic acid concentrations tlaagercentages of respective acidified sucrose and
H, yield. Comparing the effluent organic acid compgoaiof the UF-2 reactor to the other reactors, it
was concluded that there was a shift from lesstadb more acetate production, thus accounting for
UF-2 reactor superior performance. Lactate prodadtivolves the consumption of NADH and
pyruvate, reducing the potential production eftit both the NADH-pathway and, mainly, substrate

competition due to pyruvate consumption. On thewbiand, the acetate production represented by
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the reactions in Equation 2 is desired for boths@Iidial- and Enterobacterial-type fermentation
(mixed acid fermentation), as the acetate routeiges the highest Hyield in Clostridial-type
fermentation and acetate is produced along witmébde in Enterobacterial-type fermentation. Since
H, can be produced from formate cleavage, acetaigsites that the formate route took place in the
mixed acid fermentation. Also, the concentratiohgropionate and valerate, which are produced at

the expense of Htonsumption, were lower in the UF-2 reactor.

Table 2 — Organic acid concentrations and the respective percentages of acidified sucrose and H; yield

Parameter Reactor lactate formate acetate propionate butyrate Valerate
FB 5.8 (¢5.5) 0.2 (0.2) 3.9 (¥3.9) 1.8 (+3.0) 1.0 (+1.6) 0.6 (+0.5)
mean (sd) - UG 8.0(x7.5) 0.1(x0.1) 3.7(x2.0) 43(57) 1.7 (+2.0) 0.5(x0.4)
mmol L * UF-1 70(+6.8) 0.1(x0.1) 3.2(x1.9) 22(+3.2) 0.7(x1.0) 0.6 (x0.4)
UF-2 3.6 (¥1.3) 0.2 (x0.1) 7.8 (¥2.7) 1.1 (x0.6) 1.1 (x0.6) 0.4 (x0.2)
calculated FB 42 (+33) 26 (+20) 11 (+17) 14 (+20) 7 (#5)
acidified UG 44 (+33) 20 (+10) 18 (¥21) 14 (+12) 5 (+3)
sucrose (sd) - UF-1 44 (£32) 24 (£14) 16 (+22) 9 (¥13) 7 (#4)
% UF-2 25 (+8) 50 (+7) 7 (+3) 14 (+4) 5 (+2)
FB 0 (+0) 74 (+26) -13 (+28) 26 (+26) -6 (+4)
calculated HY UG 0 (x0) 75 (¥19) -27 (£33) 25 (+19) -5 (+3)
(sd) - % UF-1 0 (x0) 81 (¥19) -25 (£38) 19 (x19) -8 (¥5)
UF-2 0 (x0) 88 (+3) -6 (+3) 12 (+3) -2 (+1)

The reduced OLR and possible higher biomass coratint (indicated by higher VSS
concentrations) in the UF-2 reactor resulted indoapecific organic loading (food/ microorganism
ratio). Thus, the efficiency of the substrate cosv® was increased, which was verified by the

greater sucrose removal.

The overloading in Phase 1 seemed to be the metior faccounting for reduced hydrogen vyields.
According to Cohen et al. (1984), lactate pathveagriergetically less favourable and its formation i

acid digestion could be associated with an imba&d®tween electron donating and electron
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accepting reactions, in conditions of high accélitsilof the substrate, such as low HRT and shock
loading. Apart from the influence of organic loaglion metabolic routes, theactobacillusgenus was

found in greater relative abundance in the reactbBhase 1 (section 3.3).

Propionate concentration was higher in the UG med@table 2). Butyrate production was similar
among the reactors, suggesting that activity obthigrate-producers, was not severely affected by
the different conditions. Since propionate prodartis not likely to occur under very acid condigon
(Wang et al., 2006), it was likely that the ba@exirangement in the granules kept the medium pH in
microcolonies higher than in the external environtnallowing the activity of propionate-producing

microorganisms.

The results presented in Table 2 are only for corspa, based on the equations shown in section 2.5.
Many other pathways could have taken place in¢hetors. The calculated acidified sucrose
corresponded to 55%, 66%, 64% and 39% of the comdwucrose in the FB, UG, UF-1 and UF-2
reactors, respectively. Naturally, part of the ssercould have been used for cellular growth.
Moreover, it is likely that other pathways leadinghydrogen formation were also present. The mean
calculated HY in the FB, UG, UF-1 and UF-2 reaciees equivalent to 1.00, 0.78, 0.85 and 1.62
mmolH, mmol*sucrose sumes respectively, which corresponded to 67%, 103%% ahd 48% of the

measured HY, respectively.

Ethanol was measured in the effluent from the UE&tor. Unfortunately, this measurement was not
performed in the other reactors, due to techniaathlpms. The average concentration was 11 mmol L
! which accounted for 27% of total soluble CODufit, while COD from organic acids and sucrose
were 33% and 24%, respectively. In the FB, UG aRedlUeactors COD from organic acids and
sucrose accounted for a greater proportion, beisgectively: 33% and 41% (FB), 45% and 37%
(UG), 32% and 53% (UF-1) of total soluble COD effit. From COD balance analysis, it was
inferred that ethanol concentrations in the regobdPhase 1 did not reach such high levels as were
reached in the UF-2 reactor.
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The high concentrations of ethanol in the UF-2 t@ais contrary to what was first expected, because
ethanol is a more reduced compound than organis acid its formation is usually associated with
HY reduction. Nevertheless, some pathways are pexpéor ethanol formation along with hydrogen
(Xu et al., 2008; Lee et al., 2009). Equation 6vehthe reaction proposed by Hwang et al. (2004) for
bacterial conversion of glucose into ethanol, aeedad hydrogen. Although the ethanol-acetate
pathway yields less hydrogen than the acetate-gtiigquation 2), the hydrogen yield could be 4.0
mol of H, per mol of sucrose consumed (which is in the raaugeved in the UF-2 reactor),
considering sucrose as substrate. Since the hyaroglel per mol of acetate produced is the same of
as shown in Equation 2 (H = 2 mmoj Mimol* acetate), the assumption of this reaction woutd no
change the HY percentage values depicted in Tahid@reas the acidified sucrose percentage would
be higher from acetate (S = 0.50 mmol sucrose mmottate). However, as ethanol was not analysed
in all effluents, however, it was not possible ¢oc@unt for it in the estimations presented in Table
Ethanol formation is in agreement with the findimngsequencing analyses (section 3.3), that

revealed an abundance of microorganisms affiliatitldl Ethanoligenens harbinense

CeH1206 + H,O — CH;CH,OH + CHCOQO + H' + 2H, + 2CQ, (Eq. 6)

3.3 Structure and composition of the microbial camity in the FB, UG, UF-1 and UF-2 reactors

There were 123838 partial 16S ribosomal DNA genguseces obtained from the microbial

sequencing, of which 94-99% were assigned to tlyuphFirmicutes in the reactors versus 17% in
the inoculum. Sequences assigned to the domainaBeclwere 9.6% of the inoculum and less than
0.1% of the reactors, indicating that the condgiapplied in this study dispensed with an inoculum
pretreatment. Based on the operational taxonomits y®TU), the Shannon-diversity index was

reduced from 4.0 in the inoculum to 1.2, 1.3, Indl 8.7 in the FB, UG, UF-1 and UF-2 reactors,
respectively, by the end of operation. The selfdggghed harsh environment likely played a key role
in the reduction of biomass diversity. An annotabdndance relative description is given in Table 3
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Representative sequences (abundance of more of tequ®%) were selected from the acidogenic

reactors to infer a phylogenetic tree (Figure 6).

According to the results of 16 rDNA sequencing, th@n emerging classes were related to Bacilli
and Clostridia, which represented approximately 28%b 74%, respectively, of the total sequences in
the reactors of Phase 1, and 1% and 99% of thé setguences in the UF-2 reactor. Only two
sequences, represented by OTU0002 and OTUO0003uraech for more than 70% of the total
bacteria (Table 3). The alignment of the sequerid®@TaJ0002 Ethanoligenesin BLAST revealed

an identity of 99% to th&thanoligenens harbinenstrain YUAN-3. The same procedure applied to
OTUO0003 revealed it is 98% affiliated witBlostridium acidisoli(Figure 6). These results are in
agreement with the literature that reports the itgbibf both Ethanoligenens harbinensand
Clostridium acidisolito grow and produce hydrogen under very acid d¢mmdi; specifically, pH
below 4.0 (Kuhner et al. 2000; Xing et al., 200&r&sia et al., 2017; Zhao et al., 2017). However,

this has never been demonstrated for pH below 3.0.

Although the microbial structure is very similar @mg the reactors of Phase 1, it is not possible to
conclude that biomass retention mechanism doesaffett microbial composition, because the
samples were only analyzed by the end of opera#endiscussed in section 3.1, considerable
suspended biomass grew in the FB and UG reactwrdatter as a consequence of granule wash-out
and disruption. In the UF-2 reactor, the relatiberadance of sequences affiliated withharbinense
was the highest, corresponding to 81%. From thesadts, it is inferred thd. harbinenselayed the
most relevant role in the reactor performance. Hawethe differences in terms of relative abundance
should be interpreted with caution, considering tih@ 16S sequencing technique is subjected to
errors in terms of quantification (Haas et al., PQ%he efficiency of DNA extraction can interfere
with the results, and the microorganisms found weoé necessarily active. While most of
Clostridium includingC. acidisoliare able to sporulate (Kuhner et al., 20@hanoligenenss not

(Xing et al., 2006). Therefore, the high relatimuadance of sequences relatedCtostridium does
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483 not mean that they were active in the same prapuortAlso, the absolute abundance of each
484  microorganism is very relevant to the performantehe reactors, since the efficiency of sucrose
485  consumption was associated with increased produatid yield of hydrogen (section 3.2).

486
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487

Table 3 — Comparative study of 16S rDNA sequencing (V4-5 region) using SINA (v1.2.11). Relative abundance > 1% is shown for the FB, UG, UF-1 and UF-

488 2 reactors; and > 5% for the inoculum
Domain OTU Phylum Class Order Family Genus Inoculum *  FB uG UF-1 UF-2
OTU0002 Firmicutes Clostridia Clostridiales Ruminococcaceae Ethanoligenens 0% 40% 43% 41% 81%
OTU0003 Firmicutes Clostridia Clostridiales Clostridiaceae_1 unclassified 0% 31% 31% 35% 15%
OTU0009 Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus 0% 27%  20% 13% 0%
0OTU0023 Firmicutes Bacilli Bacillales Sporolactobacillaceae  Sporolactobacillus 0% 0% 3% 2% 1%
Bacteria OTU0001 Firmicutes Bacilli Lactobacillales Lactobacillaceae unclassified 0% 0% 0% 7% 0%
OTU0171 Firmicutes Negativicutes Selenomonadales Veillonellaceae Pectinatus 0% 0% 0% 0% 1%
OTU0008 Bacteroidetes vadinHA17 unclassified unclassified unclassified 16% 0% 0% 0% 0%
OTU0014 Bacteroidetes vadinHA17 unclassified unclassified unclassified 6% 0% 0% 0% 0%
0TU0146 Firmicutes Clostridia Clostridiales Family XI Tissierella 5% 0% 0% 0% 0%
Otu002 Euryarchaeota Methanomicrobia Methanosarcinales Methanosaetaceae Methanosaeta 85% 0% 0% 0% 0%
Archaca Otu004 Euryarchaeota Methanobacteriales Methanobacteriaceae Methanobacterium Methanobacterium 5% 0% 0% 0% 0%
489 * Domain Bacteria and Archaea represented 90.4% and 9.6% of total sequences, respectively, in the inoculum.
490
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Figure 6 — Consensus phylogenetic tree based on 16S rDNA for bacteria domain obtained from the highly
abundant OTUs found in the reactors. The tree is drawn to scale, with branch lengths in the same units as those
of the evolutionary distances used to infer the phylogenetic tree. There was a total of 373 positions in the final

dataset. Outgroup: Methanosarcina acetivorans.

C. acidisoliwas isolated from acidic peat-bog soil and wasvgrat pH 3.6-6.9, with no distinct
optimum between pH 3.6-6.6, in a temperature raofgb-37 °C, with an optimum of 25-30 °C
(Kuhner et al., 2000). At pH 4.0, 5.5 and 6.5, gke fermentation yielded lactate, acetate, butyrate
H, and CQ as end-products. At pH 5.5, the molar ratio etdllactate, acetate and butyrate produced
was 6.4, 4.1 and 3.6, respectively, and the HY &smmolH mmol* glucoseg,nsumes LEE €t al.
(2009) found great abundance of a species affiliatéth Clostridium sp HPB-16, which is
phylogenetically close t€. acidisoli during batch fermentation with hydrogen producti final pH

of 3.5. Acetate and butyrate were the dominant recg@roducts. These authors assumed that
hydrogen was formed by the pyruvate decarboxyldtoredoxin-hydrogenase pathway, which is the

common mechanism for;Hormation by theClostridiumandEthanoligenenspecies.

Xing et al. (2006) isolatedE. harbinenseYUAN-3 from anaerobic activated sludge of molasses
wastewater. They found that it grows in the pH =8c¢-9.0 at 20-44 °C, and the optima for growing
were pH 4.5-5.0 and 35 °C. Acetate, ethanol, hyainognd carbon dioxide were formed as end
products of glucose fermentation. At 35 °C a hydrogield up to 2.8 moliHmol™ glucose was
achieved, along with production of 1.1 mol ethaamadl 0.7 mol acetate per mol of glucose. In the UF-
2 reactor, the mean production was 1.1 mol ethpeomol of sucrose (= 0.6 per mol of hexose) and
0.8 mol acetate per mol of sucrose (= 0.4 mol per oh hexose). The differences in the yields of
ethanol and acetate were expected because thentatioa in the UF-2 reactor was carried out by a
microbial consortium, which means that many mortéhways were possible, and relatively high
amounts of lactate were formed (section 3.2). Nbedess, the molar proportion of ethanol and

acetate is similar between the UF-2 reactor (=ethénol: acetate) and that reported by Xing et al.
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(2006) (= 1.6 ethanol: acetate). Since the maxiraghieved hydrogen yield with the pure culture of
E. harbinenséXing et al. 2006) was higher than the theoretygald depicted in Equation 6 (section
3.2), it is probable that this bacterium is abl@toduce hydrogen and ethanol by pathways othar tha
ethanol-acetate fermentation. Xu et al. (2008) &smd an HY higher than 2 mojHnolglucose
with the Ethanoligenens harbinensB49 strain. They suggested oxidative decarboxymatof
pyruvate as the possible route for the hydrogemlymtion observed, in accordance with Lee et al.
(2009). However, the ethanol-type hydrogen producthechanism b¥. harbinensas still unclear

(Zhao et al., 2017).

Lactobacillussp. ranged from 20% to 27% in the reactors of €Aasnd was less than 1% in the UF-
2 reactor. The most representative sequentaabbacilluswas affiliated withL. nagelii (Figure 6),
which is characterized as producing lactic acianfrglucose without gas formation (Edwartsal,
2000). Then, it is probable that the presencd.aftobacillusin the FB, UG and UF-1 reactors
contributed to higher lactic acid formation andslésydrogen yield, due to the reduction of pyruvate
availability for the H-producing pathways (section 3.2). The excretiorextracellular polymeric
substances (EPS) by lactic acid bacteria protéems tagainst hostile environments and favors the
formation of flocs and biofilm (Rafrafi et al. 201 3vhich may have implied competitive advantages

at higher OLR.

The presence dPectinatus sp(OTU0171) in the UF-2 reactor probably is assedawith alcoholic

fermentation, because this genus is usually foarmker spoilage (Chihib and Tolozan, 1999).

3.4. Interaction among performance evaluation patars

Table 4 shows the overall results obtained, indigahe minimums, maximums, means, standard

deviations (SD) and coefficients of variation (CV).

Table 4 — Performance evaluation parameters of all reactors
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Parameter Reactor Minimum Maximum Mean SD Ccv

FB 4.9 259.3 94.9 68.6 2%
VHPR - UG 4.0 171.4 44,7 37.5 84%
mLH» Lt UF-1 0.4 114.0 53.7 32.2 60%
UF-2 92.3 300.8 175.2 43.9 25%
FB 40.5 85.4 59.6 11.0 18%
H, in biogas - UG 38.6 82.1 62.1 10.8 17%
% UF-1 47.5 77.5 62.2 7.1 11%
UF-2 48.4 75.9 59.8 5.9 10%
FB 0.10 3.16 1.50 0.83 55%
HY -

UG 0.06 2.47 0.76 0.56 74%

molH » mol *
UF-1 0.11 3.05 1.19 0.71 60%

SUCIOS€ consumed

UF-2 1.63 4.94 3.35 0.68 20%
FB 0.0 100.0 64.3 23.0 36%
Sucrose UG 18.7 95.7 66.8 21.4 32%
removal - % UF-1 0.0 90.8 53.1 19.1 36%
UF-2 56.1 99.7 80.3 9.9 12%

547

548 The VHPR and HY improvements in the UF-2 reacterrateworthy, with respect to the others.

549  These improvements were attributed mainly to thd HRRreasing from 3.3 to 4.6 h and, therefore,
550 the OLR decreasing from 33.1 to 25.0 gCORIL, since these were the only operational parameters
551  changed intentionally. Several operating indicatmsompanied the UF-2 improvement in H

552 production. These indicators include: increased ¥&®entration; higher sucrose removal; less

553  production of lactate and more of acetate, and pighuction of ethanol; pH always below 3.0; and,
554  longer chains of rods. Figure 7 presents a proposete| of the relationship among these parameters
555  that led to higher Hproduction in the UF-2 reactor.

556

557 Figure 7 — Proposed model to explain changes in the UF-2 reactor that led to increased H- production

558
559  Based on the proposed model, we suggest that¢heaised HRT led to greater removal of sucrose,
560 due to the longer contact time between the sulestirad the biomass, and to a higher VSS
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concentration (biomass) that resulted from the tomash-out and longer time for bacterial growth.
The higher HRT allowed the formation of long chadhdacteria, increasing their adaptability to the
harsh environmental conditions (low pH) and conttiitg to the increased biomass in the reactor. The
growth of acid tolerant bacteria suchEthanoligenensvas favoured and the competitive advantage
of Lactobacilluswas reduced. The higher VSS and HRT resultedawer specific organic loading
rate, which enhanced the sucrose removal efficieflog increased sucrose removal resulted in
higher concentrations of fermentation productshasacids, Coand H. This latter directly
reflected in higher VHPR. The high levels of adsl CQ/ carbonic acid caused a reduction in the
pH of the medium. The maintenance of a very acidrenment and less relative abundance of
Lactobacillusresulted in reduced lactate formation. The in@dgs/ruvate availability to other,H
producing pathways, such as acetate and ethamoafimm, thus increased hydrogen yield and

production.

On the other hand, increasing HRT over the suitehlges is not recommended as it leads to OLR
reduction. In addition to increasing reactor volumguirements, this can reduce volumetric substrate
removal rates, reducing the attainable VHPR. Vewy OLR can also lead to cellular decay, reducing
the biomass concentration. In addition, reduced KM&Ties can increase the pH (through the
consumption and release of C®" and acids) and the,kh the medium, due to the mass transfer
reduction caused the less turbulence. Increasmgthand Hin the liquid medium then favours the
growth of H-consuming bacteria; and, it can reduce the comneefadvantage of the Hproducing

bacteria tolerant to very acid conditions.

3.5. Comparative studies

Hydrogen production in extremely acidic environnsematverage pH of 2.8 in the FB, UG, and UF-1
reactors, and of 2.7 in the UF-2 reactor, was ueetqal. Extensive data in the literature indicate
drastic reduction or cessation of hydrogen produadhy dark fermentation at pH values below 4.5-
4.0 (Yokoiet al, 1995; Lay. 2000; Mizunet al, 2000; Leeet al, 2002; Kimet al, 2004; Liu and
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Shen, 2004; Hwanet al, 2004; Cheret al, 2005; Liuet al, 2006; Chojnackat al, 2011; Ruggeri

et al, 2015). It is only in specific cases, in contine@cidogenic reactors, thas production at pH
values below 4.0 is reported (Xiegjal, 2008; Tahtet al,, 2013, Carosiat al, 2017). The capacity
of Ethanoligenens harbinenstrain YUAN-3 to produce Hwas evaluated by Xingt al (2008) in a
continuous stirred reactor at 35 °C for 21 days fpH value was kept above 3.5 by a pH controller
and they observed that ildroduction was not severely affected when thegathed the minimum
values (i.e., around 3.6), obtaining HY of apprb& molH, mol'glucose. Carosiat al. (2017) found
bacteria similar t&ethanoligenensarbinenseo be dominant bacteria in#producing anaerobic
fluidized bed reactors, inoculated with heat-trdatieidge. Although buffers (hydrochloric acid and
sodium bicarbonate) were added, effluent pH wascxpately 3.7, and the optimum HY obtained
was 0.76 molkimol'glucose. Tahtéet al (2013) used an extreme thermophilic (70 °C) UAS&ctor
for H, production from glucose by mixed culture. Howewelpw HY was obtained, equivalent to
0.73 mol mo‘llglucosgdded which was accompanied by a decrease in pH tadr8wr. In the present
study, despite the lowest pH values already bezpgnted, the HY and VHPR obtained are in the
highest-range. For comparison purposes, Table Wsstiee results obtained in the UF-2 reactor with
results from other studies applying continuous bgdn-producing reactors fed with sucrose-based

wastewater, in the mesophilic range.

Table 5 — Comparison of hydrogen production in continuous acidogenic reactors using sucrose as substrate

OLR - o . HY - mol H;
Reactor i Hz in biogas VHPR -mL H» 1
gCOD L™ EffluentpH Temp-< 41 mol Ref.
type 1o -% L™h
d sucrose
; Fang et al.
stirred tank 48.6 5.5 26 63 542 3.9
(2002)
) Kyazze et al.
stirred tank 80 5.25 35 55 506 2.3
(2006)
granular 7.1-37.4/ 44 o 57 - 37/ 50 - 190/ 2.9-2.0/ Yu and Mu
UASB 8.5-128 ' 44 - 42 33 - 202 1.6-1.0 (2006)
granular Zhao et al.
4.4 -30 4.0 30 26 - 50 4-122 05-33
UASB (2008)
Wang and Li
UASB 12 4-45 35 45 (approx.) 12 (approx.) 0.3
(2010)
fixed-bed 24 4.4 25 46 - 56 73 -125 09-14 Lima and Zaiat
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624
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627

628

629

(2012)

Penteado et al.

fixed-bed 24 4.8 25 54 - 62 15.1-61.6 07-21
(2013)
granular 216 40 36 40 ( )02 ) 16¢ ) Ning et al.
. . approx. approx. .6 (approx.
UASB PP PP PP (2013)
Anzola-Rojas
structured .
) 24.0 6.5 25 70 12 - 25 0.4-0.6 and Zaiat,
fixed-bed
(2016)
flocculent )
25.0 2.7 30 60 175 34 This study
UASB (UF-2)

*The reference conditions adopted were 25 C and 1 atm.

These results indicate that the formation of a aaigic environment allowed the growth of acid-
tolerant bacteria that were able to produgaiktier very acid conditions, especidlliostridiumsp.

andEthanoligenensp.

4, Conclusions

This study stands out as the first to demonsthatedal possibility for continuous, long-term, $¢ab
H, production at pH below 3.0, with a mean yield af 8iols of H per mol of sucrose consumed.
Proper HRT and OLR were crucial for enhancing hgdroproduction. This was associated with
increased sucrose consumption, reduced lactateafinm high acetate and ethanol concentrations,

reduction of relative abundancelaictobacillussp. and increase &thanoligenensp.

The operating requirements were keep at minimuntlaaaon-pH control, along with the production
of H, in extremely acid environments, presents sevgmataiing and economic advantages, including:
the non-addition of alkalizing agents, which cdmiies to reduction of the costs; elimination of the
demand for sludge pretreatment, due to the nayuaialtl environment; and, the non-necessity of
constant sludge removal, since higher biomass orat®n leads to enhanced production. These
results open a new field of investigation in biotad hydrogen production by dark fermentation

towards a more sustainable and feasible technology.
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Figure 1 — Schematic diagram of the acidogenic reactors. 1: distribution chamber, 2:

reactional zone, 3: headspace, 4: biogas sampling, 5: biogas outlet
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OTUO0001 this study
NR 113819.1 Lactobacillus parakefiri strain NBRC 15890
NR 112757.1 Lactobacillus parakefiri strain JCM 8573
NR 041659.1 Lactobacillus rapi strain YIT 11204
OTUO0009 this study
NR 041007.1 Lactobacillus nagelii strain NRIC 0559
NR 119275.1 Lactobacillus nagelii strain LUE10
NR 112754.1 Lactobacillus nagelii strain JCM 12492
OTUO0023 this study
NR 112774.1 Sporolactobacillus putidus strain QC81-06
NR 134815.1 Sporolactobacillus shoreae strain BK92
NR 134816.1 Sporolactobacillus spathodeae strain BK117-1

- OTUO002 this study
NR 115307.1 Ethanoligenens harbinense strain YUAN-3
NR 042828.1 Ethanoligenens harbinense strain YUAN-3
NR 074333.1 Ethanoligenens harbinense strain YUAN-3

OTUO0003 this study
’_L NR 028898.1 Clostridium acidisoli strain CK74

HNR 104822.1 Clostridium pasteurianum strain DSM 525

NR 113023.1 Clostridium pasteurianum strain JCM 1408
Otu0171 this study

NR 117702.1 Pectinatus frisingensis strain CCM 6217
NR 042900.1 Pectinatus portalensis strain B6

L—— NR 043658.1 Pectinatus haikarae

NR 074110.1 Methanosarcina acetivorans strain C2A

0.020
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Figure 7 — Proposed model to explain changes in the UF-2 reactor that led to

increased H, production




Highlights

Acidogenic reactors were fed with sucrose (4.7 gCOD L™) without pH regulator.

Acetate production replaced lactate when the HRT increased from 3.3 to 4.6 h.

Continuous long-term and stable H, production was achieved at pH always below 3.0.
H, production of 175 mLH, L*h™*and yield of 3.4 molH, mol™sucrose were obtained.

Bacteria affiliated with Ethanoligenens harbinense were predominant.



