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ARTICLE

Diverging importance of drought stress for maize
and winter wheat in Europe
Heidi Webber 1,2, Frank Ewert1,2, Jørgen E. Olesen 3, Christoph Müller 4, Stefan Fronzek 5,

Alex C. Ruane6, Maryse Bourgault7, Pierre Martre 8, Behnam Ababaei 8,9,10, Marco Bindi 11,

Roberto Ferrise 11, Robert Finger12, Nándor Fodor13, Clara Gabaldón-Leal14, Thomas Gaiser2,

Mohamed Jabloun15, Kurt-Christian Kersebaum 1, Jon I. Lizaso16, Ignacio J. Lorite 14, Loic Manceau8,

Marco Moriondo 17, Claas Nendel 1, Alfredo Rodríguez 16,18, Margarita Ruiz-Ramos16,

Mikhail A. Semenov19, Stefan Siebert 20, Tommaso Stella1, Pierre Stratonovitch19, Giacomo Trombi10 &

Daniel Wallach21

Understanding the drivers of yield levels under climate change is required to support

adaptation planning and respond to changing production risks. This study uses an ensemble

of crop models applied on a spatial grid to quantify the contributions of various climatic

drivers to past yield variability in grain maize and winter wheat of European cropping systems

(1984–2009) and drivers of climate change impacts to 2050. Results reveal that for the

current genotypes and mix of irrigated and rainfed production, climate change would lead to

yield losses for grain maize and gains for winter wheat. Across Europe, on average heat stress

does not increase for either crop in rainfed systems, while drought stress intensifies for maize

only. In low-yielding years, drought stress persists as the main driver of losses for both crops,

with elevated CO2 offering no yield benefit in these years.
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Improving global food security is critical given that over 800
million people remain food insecure1 and its association with
conflict and civil unrest2,3. While rising food prices may

benefit net food producers4,5 and support long-term develop-
ment6, excessive volatility and extreme price spikes, both linked
with crop yield variability7, pose serious challenges to achieving
food security. Globally, weather fluctuations were found to
explain upwards of one-third of current crop yield variability8

and much more in well-managed high input systems9. Under-
standing how climate change will affect yield variability, as well as
average crop yields, is critical10.

While information on climate impacts is important to under-
stand the macro-economic implications for food security,
enabling appropriate adaptation responses is supported with
knowledge on which processes drive yield changes under both
average and extreme conditions. Identifying the drivers of yield
changes and variability can allow the development of targeted
adaptation measures11,12 such as insurance solutions against
specific weather risks13–15; support planning for long-term
investments in irrigation infrastructure; or improve breeding
effectiveness, as suitability of adaptive traits changes under cli-
mate change and elevated [CO2]16. Observational studies have
offered considerable insight into the importance of high tem-
peratures compared to precipitation in driving negative yield
trends17,18 and non-linear yield responses19,20. Subsequent study
with a process-based crop model identified drought stress as the
probable underlying mechanism of this high temperature
response in maize in the USA21. High temperatures drive non-
linear increases in vapor pressure deficit (VPD), raising eva-
porative demand and concurrently depleting subsequent water
supply21. Nevertheless, questions remain about which crop level
processes dominate these responses, as potentially confounding
effects of higher temperature accelerating development and
damaging reproductive organs were not explicitly controlled for,
both of which are expected to be larger under drought stress
conditions due to canopy heating22.

Similar decompositions of drivers of yield change under cli-
mate change scenarios have not been systematically undertaken
in large area impact studies. Attempts to do so have relied on
inferences made in comparing responses across rainfed and
irrigated conditions23, ignoring effects of transpirational cooling
in irrigated systems24. Previous work investigating the shifting
importance of heat and drought stress for wheat and sorghum in
Northeast Australia is a notable exception25, though this study
did not account for interactions between heat and drought
stresses.

Here we use an optimally sized26,27 multi-model ensemble of
six grain maize models and eight winter wheat models, hereafter
maize and wheat, respectively, to analyze the drivers of current
(1984–2009) yield variability and projected (2040–2069) yield
changes. We focus on drivers related to higher temperatures for
three representative concentration pathways (RCPs 2.6, 4.5, and
8.5)28 and an ensemble of five climate models (GCMs, Supple-
mentary Figs. 1–3), recognizing that other extreme weather events
may be more limiting in specific locations or conditions29. While
many processes in crops have a temperature response30, we
decompose the effects of warmer temperatures on maize and
wheat yields into key mechanisms as: (1) direct effects on
potential yield levels through altering crop development rates31

and radiation use efficiency (RUE, balance between photo-
synthetic and respiration responses30); (2) indirect effects on
drought as VPD responds non-linearly to higher temperatures
increasing water demand; and (3) heat stress impacts resulting
from more frequent exposure to very high temperatures. Here
heat stress refers to a typically large and irreversible reduction in
grain yield and accelerated leaf senescence that occurs when

temperatures are higher than critical thresholds for reproductive
damage (e.g., 31 °C for wheat and 35 °C for maize) even for very
short periods32.

The use of process-based crop models in this study considering
each of these factors and their interactions allow accounting for
compensation (accelerated development avoiding heat or drought
stress) or reinforcement (drought stress leading to higher crop
temperatures and greater heat stress) between mechanisms33

(Supplementary Tables 1 and 2). Our results suggest that average
drought losses will increase for maize, and that drought will drive
losses in both crops in low-yielding years. We further investigate
implications of warmer temperatures co-occurring with elevated
[CO2]. For C4 crops like maize, the main impact of elevated
[CO2] is improved transpiration efficiency, whereas C3 crops like
wheat will additionally experience enhanced photosynthesis and
leaf area expansion. In both crops, enhanced transpiration effi-
ciency acts to increase crop temperatures34,35 which may inten-
sify heat stress. In C4 crops, the ultimate impact of elevated [CO2]
on yield under drought conditions will likely depend on the
drought severity and pattern36. For C3 crops, the effects of ele-
vated [CO2] on crop water use reduction will depend on its
relative effects increasing leaf area and crop temperature
(both can increase water use) versus improving transpiration
efficiency37,38. Our results here suggest that in driest years, ele-
vated [CO2] will not be able to mitigate yield losses from drought.

Results and Discussion
Drivers of current yield variability. Mean temperature
responses explain approximately one-quarter of the variation in
interannual yield variability for both crops (Fig. 1) for current
conditions across Europe (Supplementary Fig. 4). These mean
temperature effects on potential yields largely manifest as year-
to-year variation in the length of the growing season, but also
include effects on photosynthesis and respiration. On average,
including heat stress effects does not explain additional varia-
tion in either crop, though with a few exceptions for key pro-
ducers in more continental rainfed production conditions (e.g.,
Romania and Bulgaria, Fig. 1 and Supplementary Fig. 5 for
proportion of rainfed to irrigated area). For these countries,
consideration of canopy temperature in heat stress simulations
improves R2 values, suggesting the interaction of heat and
drought stress is important in these areas. The two crops differ
markedly in their response to drought. In maize, including
drought accounts for an additional 24% of variation for a total
explained variation of 46%. It is notable that the models can
only account for minimal variation in maize when irrigated
production dominates (Supplementary Fig. 5). This is probably
due to the implementation of full irrigation in the models,
whereas in reality, deficit irrigation is practiced for maize in
many Mediterranean regions39, as well as due to the hetero-
geneity of irrigation management under water scarcity40. For
wheat on the other hand, inclusion of drought increases R2 only
marginally. In fact, both observations and simulations have
lower interannual variability for wheat than for maize (Sup-
plementary Fig. 6), suggesting that wheat is more tolerant to
variable weather than maize—a feature also captured by the
models. Romania and Spain are the two notable exceptions
among the main wheat producing countries, where inclusion of
drought effects in simulations increases the average R2 to over
40 and 50%, respectively. Most notable is the lack of correlation
for the United Kingdom, Germany, and Denmark when water
limitation is considered (where at most, only one model had
significant R2). This result is in line with previous research
which has demonstrated that wheat yields in Denmark41 and
the United Kingdom42 have a negative response to late spring
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and summer rainfalls, due to disease, water logging, and lod-
ging. None of the models considered disease or lodging, while
the one model including more detailed accounting of water
logging has significant R2 values for Germany and Denmark.
Results are largely similar at the NUTS2 (Nomenclature des
Unités territoriales statistiques 2) level for both crops (Sup-
plementary Figs. 7 and 8), with increased model skill at the
NUTS2 level at high levels of variability in the yield statistics
(Supplementary Fig. 9).

Projected yield losses under climate change. Across Europe,
maintaining current genotypes, sowing dates, and the mix of
rainfed and irrigated land use would result in a 20% decrease of
maize yields by 2050, irrespective of consideration of [CO2] fer-
tilization (Fig. 2). Winter wheat presents a very different story
with projected yield increases of 4% when [CO2] fertilization is
accounted for, versus a 9% decline without. We cautiously con-
sider these results valid across our crop model by GCM ensemble.
However, at the level of scenarios the magnitude and direction of
change differs between crops and depending on [CO2] fertiliza-
tion, though we cannot conclusively test these interactions for our
model medians (Supplementary Table 3).

While it is beyond the scope of the present study to address, a
number of questions exist regarding statistical treatment of multi-
model ensembles43,44, and more specifically combining (unba-
lanced) ensembles. Beyond the challenge of testing three-way
interactions of model medians, modeling studies such as ours
violate the standard assumption that error terms (considered here
as crop model by GCM combinations) are random and
independent. Nevertheless, we have attempted a number of
different tests and we consider our results valid when most tests
agree (Supplementary Tables 3 to 6).

A sensitivity analysis reveals that most uncertainty in maize
projections results from use of different GCMs or crop models,
whereas consideration of [CO2] fertilization effects has a very large
influence on the magnitude and sign of the simulated impacts for
wheat (Supplementary Fig. 10). Due to our study design (CO2

effects confounded with RCPs), we do not isolate the uncertainty
of model response to elevated [CO2], though comparison of the
main and total effects for the crop models and CO2 terms suggests
uncertainty across crop models. While responses to elevated
[CO2] for C3 crops in non-water-limiting conditions are fairly
clear and validated in Free Air CO2 Enrichment (FACE)
experiments37,45, the response under drought is more varied
across crops, locations, and years35,36,46, as discussed below.
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Fig. 1 Climatic variation in historical national crop yields as captured by crop models. The amount of variation in the observed yields as reported in FAO-
stats for the period between 1984 and 2009, as quantified by the coefficient of determination (R2), correlation explained by each of the six simulation sets
(black—mean temperature effects only, blue—mean temperature and drought effects, yellow—mean temperature and heat stress with air-temperature
effects, magenta—mean temperature and heat stress with canopy-temperature effects, light green—mean temperature, drought, and heat stress with air-
temperature effects, and dark green—mean temperature, drought, and heat stress with canopy-temperature effects). Each point represents the mean of
the correlation coefficient for the eight winter wheat models and six maize models. The size of the dot indicates the number of models with significant
correlations for that simulation set and considered in the respective mean. Gray columns serve as an environmental index indicating the model median
average of the ratio of rainfed to irrigated yields for each country. For each plot, countries are ordered by production area in descending order. Note that
simulations were only for winter wheat, whereas FAO-stats does not distinguish winter and spring wheat
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Drought persists as main driver of losses. To understand what
drives yield changes under climate change, we decompose yields
at each of the national and European (EU) level for rainfed sys-
tems into losses from potential levels due to: drought, heat stress,
and the combination of drought plus heat for the baseline and
three RCPs (Fig. 3). Additionally, for each of the three RCPs,
changes in potential yield levels between the respective scenario
and the baseline are examined to quantify the direct effects of
warmer mean temperatures versus elevated [CO2]. The decom-
position is conducted for both average yield levels and yield levels
of the lowest decile for the baseline and each RCP (Fig. 3). Results
presented in Fig. 3 serve to illustrate the procedure followed to
decompose yields, as well as highlight the extent of the various
yield-limiting factors, and how they shift with the climate change
scenarios. For both crops and across scenarios, drought is by far
the larger yield-limiting climatic factor across Europe.

Figure 4 provides a summary of the drivers of EU aggregate
rainfed yield levels and projected shifts under climate change.
Both changes in potential yields relative to the baseline potential
and the absolute shifts in the losses from drought and heat
relative to scenario potential are presented. For average years and
both crops, warmer temperatures result in decreased potential
yields of approximately 10% relative to the baseline potential.
There is large uncertainty in this response for maize due to GCMs
(Supplementary Fig. 10) and how crop models simulate crop
development in response to warm temperatures (Supplementary
Fig. 11). Some models and GCM combinations indicate increased
potential yield levels relative to the baseline potential, and this is
related to average conditions becoming more favorable in cooler
climates. In the case of wheat, yield gains from CO2 largely
compensate for losses from accelerated development such that no
change in potential yields was projected (Fig. 4). As for drought,
our analysis showed different responses in maize and wheat, with
increasing yield losses relative to scenario potential in maize
versus remaining constant at baseline levels for wheat. While CO2

emerges as being significant to reduce the impact of drought
losses on average, the statistical analyses of yield losses due to
drought relative to scenario potential (Supplementary Table 4)
identify an interaction between crops and CO2, suggesting that
the reduction in drought losses with CO2 is more important

for maize than wheat. Heat stress does not increase for either
crop.

These EU aggregated yields mask a lot of spatial variability
across Europe. Some regions in Eastern and Northern Europe
experience a reduction in drought stress for maize (Fig. 5a), and
consideration of elevated [CO2] marginally increases this effect.
This occurs even as growing season water use increases in these
regions for some GCMs and RCPs (Supplementary Fig. 12).
Similarly, drought stress intensifies for wheat production in large
parts of Eastern Europe, while it is reduced in large parts of
France and Southern Europe.

Drought drives losses in low-yielding years. While the changes
from current yield levels are informative, risk perceived by
farmers and transmitted to markets may be better visualized by
looking at what drives production risk in the low-yielding years as
contrasted with average years. In these low-yielding years, losses
are due to drought and not heat stress (Fig. 4b). Drought is
responsible for 11 and 5%-point additional losses across scenarios
in maize and wheat, respectively. Elevated [CO2] is not able to
alleviate drought losses in these years for either crop. This con-
firms the finding that extremely hot days in the USA drove yield
losses in maize due to non-linear response of VPD to tempera-
tures, and not due to heat stress21.

Elevated carbon dioxide offers no benefit in driest years. C4
crops like maize are expected to benefit from elevated [CO2]
when water is limiting, reducing their sensitivity to drought47,
with relatively limited effects on potential yields36,37. Projecting
the extent to which elevated [CO2] may reduce the drought
sensitivity of C3 crops like wheat is more complicated, as
enhanced leaf growth under elevated [CO2] in C3 crops may lead
to increased water use, depending on the vigor of the crop and
patterns of soil water depletion35,38. Our study confirms the effect
of elevated [CO2] on reducing average losses due to drought in
both crops, with greater relative effects for maize than wheat
(Fig. 4a) and in countries where drought was not strongly limiting
yields (e.g., Germany, Denmark, Poland, the Netherlands;
Fig. 5a). However, elevated [CO2] is not able to offset additional
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losses from drought in the years with yields in the lowest decile in
either crop (Fig. 4b), in agreement with experiments with soy-
bean35 and modeling analysis23 for maize, wheat, and soybean.
While most of our wheat models simulate an effect similar to
increased transpiration efficiency under elevated [CO2], wheat
also experiences higher leaf area index under elevated [CO2], and
we speculate that this, together with higher water demand under
warmer temperatures, may lead to higher water use earlier in the
season, and an earlier depletion of soil water48. There is con-
siderable variation between models in capturing this response
(Supplementary Fig. 10). In fact, one study evaluated 21 maize
crop models and found most models unable to capture the very
large response to elevated [CO2] under drought49. However, that
study was based on only 1 year of data in which the crops
experienced drought. This contrasts with a soybean experiment
over 7 years, which detected a declining response to elevated
[CO2] as drought stress intensified35, and this was successfully
simulated by a process-based crop model50. These

results highlight the clear need for continued model improvement
based on FACE experiments under different levels of water lim-
itation, temperature regimes, and production conditions36,49.

Implications for informing adaptations. Our results suggest
different options for adapting European rainfed maize and winter
wheat production to climate change. While both crops mature
earlier under warmer mean temperatures (Supplementary
Fig. 11), in the absence of other drought adaptive traits51 or
earlier sowing, there may be limited opportunity to adopt longer
season maize varieties as drought stress intensifies in most regions
(except Northern Europe) (Fig. 5). On the other hand, longer
season varieties may be possible in many regions for wheat.
However, this would require more study, as heat stress is expected
to intensify if wheat growth continues into the hot summer
period. Importantly from a risk perspective, drought was the
primary driver of losses in years with the lowest yields. The
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(1981–2010) and three climate scenarios (RCPs 2.6, 4.5, and 8.5) in the period 2040 to 2069 for a grain maize and b winter wheat. Drivers of yield levels
are shown for the average of all years (top row in both panels), and drivers of yields levels for years with yields in the lowest decile (bottom row in both
panels). The shape of the symbol indicates the period in which changes are expressed as relative to (triangles are for changes relative to the baseline
potential and circles are losses relative to the respective scenario potential), whereas the color indicates the drivers considered (black are mean
temperature effects, blue are drought, magenta is heat, and green is the combination of drought and heat). The change in potential yields resulting from the
mean temperature effects are shown with black triangles for each scenario relative to the baseline potential. For the other drivers, changes indicated by
circles are relative to scenario potential yield. In all cases, the shading indicates if CO2 fertilization was considered (dark symbols consider CO2, light
symbols do not consider CO2). Results are shown for the five countries with the largest production area in Europe for each crop, listed by production area
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greater intensification of drought stress for maize than wheat with
the same GCMs and RCPs largely reflects that wheat is sown in
the autumn with cooler temperatures as compared to maize,
which grows in the summer. VPD of the air, a key driver of crop
water use, is a non-linear function of temperature, such that
increases in temperature in warmer periods will create relatively
larger increases in water demand. Therefore, use of autumn sown
crops may very well be among the options for enhancing resi-
lience of cropping systems to climate change in Europe.

While these European patterns are informative, our analysis of
baseline yield variability confirms that adaptation planning must
be conducted at the local level and consider economic drivers52.
The high degree of spatial variability in drivers and the variable
number of models describing yield variability in each country

reinforces earlier findings of conducting adaptation planning at
local scales with models that consider the most relevant factors53.
The baseline analysis also provides a, albeit limited, degree of
validation for our impact projections. We demonstrate that year-
to-year maize yield variability is sensitive to drought stress, and
this drought stress is projected to increase even after accounting
for accelerated crop development. On the other hand, winter
wheat yield variability is shown to be relatively insensitive to
drought and our model ensemble projects that average yield
limitation would not increase due to drought. We can have some
confidence that for each crop, the drivers of yield change that
emerge as important in the projections are built on models that
had skill in explaining these drivers in the baseline. The
important exception here is with wheat and drought, which
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emerged important in low-yielding years, though our ensemble
skill decreases in many instances when drought effects are
included. This leads to a final consideration on the possibility of
weighting ensemble member projections based on performance in
a historical period. We opt not to do this for reasons elaborated
for climate model ensembles43,44. There is no good scientific basis
to assume that models that capture past variability will best
describe projected response44, as relative importance of processes
are expected to shift under new climatic conditions. Given the
importance of understanding how crops will respond to climate
change, continued work to evaluate the robustness of impact
study results is needed.

Methods
Climate data. Climate data from the baseline period (1980–2010) were from the
Joint Research Center’s (JRC) Agri4Cast database (version 1.0) and included daily
minimum, average and maximum surface air temperature, precipitation, 10-m
wind speed, global radiation, and actual vapor pressure at 25 km resolution. Wind
speed at 2-m height was derived using procedures in Allen et al.54. The climate
projections for the future scenarios were available for a period of 2040–2069 for five
climate models (GCM: GFDL-CM3, GISS-E2-R, HadGEM2-ES, MIROC5, and
MPI-ESM-MR) under two forcing scenarios (RCP4.5 and RCP8.5). For RCP2.6,
only two GCMs (HadGEM2-ES and MPI-ESM-MR) from the group used with the
other RCPs were available with all required input variables at the time the study
was conducted. The climate projections were available at a 0.5° resolution and
downscaled to the resolution of the baseline data by assigning to each 25 km grid,
the climate projection data in which its center point was located. The climate
projections were created using the enhanced delta change method that applies
changes simulated by GCMs for aspects of temperature and precipitation varia-
bility in addition to changes in mean climate, as described in Ruane et al.55. Global
radiation was increased by 10% when a wet day in the baseline became dry in the
scenario and vice versa decreased by 10% when a dry day turned into a wet day.
The five GCMs were selected out of a larger ensemble from CMIP5 (Table 1) to
give a range of climatic conditions for Europe similar to the approach described in
Ruane and McDermid56, but with additional selection across a range of RCP
forcings. Note that grid cells were excluded from analysis (maps and aggregation to
NUTS2, national or EU levels) when differences in elevation between cropped areas
and the mean elevation of the grid cell resulted in temperature differences of >1 °C.
The climate data can be accessed at: http://open-research-data-zalf.ext.zalf.de/
ResearchData/DK_59.html.

Soil data. Soil data were obtained from the European Soil database from the JRC
European Soil Data Portal (http://eusoils.jrc.ec.europa.eu/). The layers from the
European soil database used were: the textural classes, depth available to roots, total
available water content (TAWC), bulk density (BD), and soil organic carbon (SOC)
and were available at 1-km resolution for each of the top soil (0–30 cm) and subsoil
(30–max. depth) layers. Soil layers were resampled to 250m to match the Corine 2006
land cover raster map Version 17 (123/2013) at 250m (http://www.eea.europa.eu/
data-and-maps/data/ds_resolveuid/a47ee0d3248146908f72a8fde9939d9d). It was used
to select only agricultural land to in turn aggregate the soil data information. This
version of the map did not contain Greece, so agricultural land in Greece was from
the Corine Land Cover 2000 raster data v16. Soil data corresponding to: non-irrigated
arable land, permanently irrigated land, rice fields, annual crops associated with
permanent crops, complex cultivation patterns, and land principally occupied by
agriculture, with significant areas of natural vegetation were selected. We also
excluded any soils which had depths <40 cm. Depth available to roots, TAWC, BD,
and SOC were aggregated to 25 km by selecting their median values, while soil texture
(top and subsoil) was based on the area majority in each 25-km unit. The soil water
parameters input for permanent wilting point and soil saturation were selected based
on the resulting textural classes, and field capacity (FC) was calculated from WP,
TAWC, and the soil depth. The initial soil water content was set at 30% depletion of
the readily available water on the day of sowing. While previous studies have
demonstrated the uncertainty introduced to simulation results by resetting soils
water57, we opted to reset to avoid uncertainty that would arise from differing
methods, skill, and assumptions required to run the models continuously over several
seasons. Further, it was beyond the scope of this study to specify crop rotation
sequences across Europe under climate change.

Simulations. Simulations were conducted for both crops on agricultural land for
the EU-27 with gridded simulations at 25-km resolution (8157 simulation
units). Six maize models and eight winter wheat models were used

Table 1 Climate models and forcing scenarios selected from
the CMIP5 ensemble

GCM RCP2.6 RCP4.5 RCP8.5

GFDL-CM3 x x
GISS-E2-R x x
HadGEM2-ES x x x
MIROC5 x x
MPI-ESM-MR x x x

HadGEM2-ES

Grain maizea b Winter wheat
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Fig. 5 Change in yield losses due to drought. Change in yield losses due to drought in a grain maize and b winter wheat for 2040–2069 for RCP4.5 relative
to the baseline period (1981–2010). Results are presented with (top row) and without (bottom row) consideration of CO2 fertilization effects and two
GCMs: HadGEM2-ES (first column) and MPI-ESM-MR (second column). Results shown are the median response across crop models
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(see Supplementary Table 4 for details). For each simulation unit and climate
scenario, six simulation treatments were conducted: T1, responsiveness to mean
temperatures, but no heat or water limitation; T2, responsiveness to mean tem-
peratures and heat stress using air temperature, but no water limitation; T3,
responsiveness to mean temperatures and heat stress using simulated canopy
temperature, but no water limitation; T4, responsiveness to mean temperatures and
drought, but no heat stress; T5, responsiveness to mean temperatures, drought, and
heat stress using air temperature; and T6, responsiveness to mean temperatures,
drought, and heat stress using simulated canopy temperature. To simulate without
effects of heat stress, models followed one of two procedures. The first was to
switch off modules or routines to simulate accelerated senescence or impacts on
grain number or yield when a high temperature threshold was surpassed. The
second procedure used was to set threshold temperature limits very high such that
no heat stress damage was simulated. To remove the effects of drought stress,
models assumed full and automatic irrigation. Simulations for each climate sce-
nario were conducted twice: once with ambient CO2 set at 360 ppm and once with
elevated [CO2] at 442, 499, and 571 ppm for RCPs 2.6, 4.5, and 8.5, respectively.

Crop-model properties. Six crop models simulated both maize and winter wheat
(4M58; CROPSYST, CR59,60; FASSET, FA61,62; HERMES, HE63; MONICA,
MO64,65; and SIMPLACE-Lintul5, L566), three models simulated only winter wheat
(SIRIUS 2015, S267–69; SiriusQuality v3, SQ70,71; and SSM-Wheat, SS72), while
IXIM, IX73 simulated only grain maize. All crop models included a heat stress
response that reduces the final yield under high temperatures as well as mechan-
isms to reduce growth and leaf area expansion under water limitation. Likewise,
each of the models account for the effects of [CO2] on either RUE or photo-
synthesis. The [CO2] effects on transpiration include reducing the transpiration
rates (FA, L5, 4M, and IX), affecting the stomatal resistance (HE, MO, and IX), or
increasing the transpiration efficiency (SS). SQ and S2 models do not include
effects of [CO2] on transpiration, though they are applied only to wheat. Seven
models include algorithms to estimate crop canopy temperature (FA, L5, HE, SS,
SQ, S2, and CR) allowing the interaction of high temperature, drought stress, and
[CO2]22. Key details and references of the model’s treatment of heat and drought
stress are given in Supplementary Tables 5 and 6.

Yield aggregation. The MIRCA2000 global data set on crop area74 was used to
aggregate yield simulations at 25 km to the European, national, or NUTS2 levels.
MIRCA2000 provides irrigated and rainfed crop areas around the year 2000 with a
spatial resolution of 9.2 km at the equator. The data on annual harvest area was
downloaded from: https://www.uni-frankfurt.de/45218031/data_download. Com-
parison to national yield statistics considered the share of irrigated and rainfed
production, whereas most of the analysis in the study considered rainfed and
irrigated production separately. Aggregate production was determined as the
product of yield by production area in each 25-km simulation unit and production
at NUTS2, national, or European level was determined as the sum of production in
all pixels at the respective level. Finally, yield was determined at various scales as
production divided by production area.

Drivers of yield loss. Drivers of yield losses presented in the main paper are for
rainfed production areas. Losses due to mean temperature effects were determined
as the relative change in potential yields for each climate scenario relative to the
baseline potential yield levels. For NUTS2, national or European levels, potential
yields were considered only on land that had rainfed production. Losses due to
drought were computed as the difference between potential yields and water-
limited yields, divided by the potential yields, considering only yields on land that
had rainfed production. Losses due to heat stress under irrigated conditions were
computed as the difference between potential yields and heat-limited yields (using
canopy temperature for the models that simulated it and air temperature for the
other models), divided by the potential yields, considering only yields on land that
had rainfed production. Heat losses under rainfed conditions were computed as the
difference between losses due to combined heat and drought stress and only
drought stress, relative to potential yields considering only yields on land that had
rainfed production. The change in losses due to drought and heat stress in each
climate scenario were computed as relative changes from the baseline period for
both all years and for years with yields in the lowest decile over the respective
scenario period. Finally, drivers of losses were computed for both cases with and
without inclusion of CO2 fertilization effects. The difference between the two sets of
losses was used to estimate the size of the CO2 fertilization effect and is considered
as a source of uncertainty in the response of crops to climate change.

Comparison of simulations and observed yield statistics. Finally, though multi-
model ensembles are increasingly used as they capture uncertainty associated with
modeled processes, a frequent concern with their use in large area climate impact
assessments is the limited opportunity to evaluate their performance9. Here we
assessed the skill of our 25-km resolution crop model ensemble to explain past
(1984–2009) yield variability based on both national and sub-national yield sta-
tistics. Time series of national production amounts and areas from Food and
Agriculture Organization statistics (FAO-stats) were downloaded for the period
from 1980 to 2010. Time series of NUTS2 level production amounts and areas were

from the CAPRI (Comparative Analysis of PRotein-protein Interaction) database
for the period from 1982 to 2010. To enable comparison of yield observations to
the simulations, yield observations were de-trended by computing annual
anomalies from a 5-year moving mean average of a 5-year window (t− 2 to t+ 2),
with 3-year windows at both ends (t− 1 to t+ 1) of the time series in order to not
lose too many years from the time series, as reported in previous studies9,75. Results
were largely similar when a linear trend was used, but some countries (e.g., Spain)
had a clear break point, though this varied between countries. Six simulation cases
were compared to the observations using correlation analysis, to determine the
level of variability in the observations that could be explained by the simulations.
The cases that were compared were: (1) mean temperature effects with no heat
stress or water limitation, (2) mean temperature and heat stress effects with no
water limitation, (3) mean temperature and drought effects with no heat stress
(used an area-based weighted average of irrigated and rainfed yields to approximate
actual degree of irrigation), and (4) a combination of mean temperature effects,
drought, and heat stress (used an area-based weighted average of irrigated and
rainfed yields to reproduce actual degree of irrigation). Simulation sets (5) and (6)
were conducted by a subset of models by repeating simulations for (2) and (4)
using both air and canopy temperature to enable the interaction of water limitation
and heat stress.

Uncertainty decomposition. To determine the contribution of the i factors (Xi:
GCMs, crop models, RCPs, consideration of [CO2]) to the total variability in EU
aggregate simulated crop yields, Y, for the current area of rainfed and irrigated
production, main effects (MEi, first order) and total effects (TSi) sensitivity indices
were computed. Following Monod et al.76, MEi and TSi sensitivity index was
determined as:

MEi ¼
var E YjXi½ �ð Þ

var Yð Þ ð1Þ

and

TSi ¼ 1� var E Y jX�i½ �ð Þ
var Yð Þ ; ð2Þ

where var is the variance and E[Y|Xi] denotes the expected value of Y across factors
Xi, while E[Y|X−i] is the expected value of Y across all factors except Xi. Sensitivity
analyses were estimated in R version 3.2.2 using the RStudio software.

Statistical analyses. A number of statistical tests were considered in R for the (1)
relative changes in EU aggregate yield, (2) losses due to drought stress on average,
(3) losses due to heat stress on average, and (4) drivers of heat stress in the years
with yields in the lowest decile. The treatment factors considered for the first three
variables were: crop (fixed), CO2 effects (fixed), RCP (fixed), and GCM and crop
models were treated as error terms or as random factors depending on the test, as
explained below. Finally, in testing the fourth variable, the driver of stress was also
considered as a fixed factor. The tests conducted included two-way fixed-effects test
on the medians (med2way and mcp2a from the WRS2 package), three-way fixed-
effects analysis of variance on the means, and general linear mixed model tests on
the means by residual maximum likelihood (asreml in asreml package) with dif-
ferent assumptions about the crop models and/or GCMs as being random factors
or error terms. Results were first aggregated to EU level for each crop-model and
GCM combinations. In doing so, we acknowledge that we violate a central tenant
of the statistical tests we conducted in that the error terms are neither random nor
independent. As none of the tests are strictly appropriate for our design, we
consider our results valid when most tests agree.

Code availability. All crop models that support the study are available for
download in the following links or by contacting the listed developer: FASSET:
www.fasset.dk and by contacting Prof. Olesen, jeo@agro.au.dk; SIMPLACE: http://
www.simplace.net/Joomla/index.php/download; HERMES: model description,
executable code and institutional contact at: http://www.zalf.de/en/
forschung_lehre/software_downloads/Pages/default.aspx; MONICA: https://
github.com/zalf-rpm/monica; 4M is available at FigShare with the identifier https://
doi.org/10.6084/m9.figshare.6260069; SSM: the code is embedded in a VBA macro
at https://sites.google.com/site/cropmodeling/-6-ssm-wheat; SiriusQuality (http://
www1.clermont.inra.fr/siriusquality/) at https://forgemia.inra.fr/siriusquality/
sqcode/Release; SIRIUS 2015: https://sites.google.com/view/sirius-wheat/; and
DSSAT_IX: https://github.com/DSSAT/dssat-csm.

Data availability. The modeling protocol followed to generate the simulation
results is included as Supplementary Methods. The climate data can be
accessed at: http://open-research-data-zalf.ext.zalf.de/ResearchData/DK_59.html
(https://doi.org/10.4228/ZALF.DK.59). Individual crop model codes can be acces-
sed at the links provided in the Methods. All other relevant data are available from
the corresponding author on request.
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