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Jan Van Den Abbeele6, Marinda Oosthuizen2, Vincent Delespaux7 and Luis Neves1,2

Abstract 

Background: Tsetse flies (Diptera: Glossinidae) and tabanids (Diptera: Tabanidae) are haematophagous insects of 
medical and veterinary importance due to their respective role in the biological and mechanical transmission of 
trypanosomes. Few studies on the distribution and relative abundance of both families have been conducted in 
Mozambique since the country’s independence. Despite Nicoadala, Mozambique, being a multiple trypanocidal drug 
resistance hotspot no information regarding the distribution, seasonality or infection rates of fly-vectors are available. 
This is, however, crucial to understanding the epidemiology of trypanosomosis and to refine vector management.

Methods: For 365 days, 55 traps (20 NGU traps, 20 horizontal traps and 15 Epsilon traps) were deployed in three graz-
ing areas of Nicoadala District: Namitangurine (25 traps); Zalala (15 traps); and Botao (15 traps). Flies were collected 
weekly and preserved in 70% ethanol. Identification using morphological keys was followed by molecular confirma-
tion using cytochrome c oxidase subunit 1 gene. Trap efficiency, species distribution and seasonal abundance were 
also assessed. To determine trypanosome infection rates, DNA was extracted from the captured flies, and submitted 
to 18S PCR-RFLP screening for the detection of Trypanosoma.

Results: In total, 4379 tabanids (of 10 species) and 24 tsetse flies (of 3 species), were caught. NGU traps were more 
effective in capturing both the Tabanidae and Glossinidae. Higher abundance and species diversity were observed in 
Namitangurine followed by Zalala and Botao. Tabanid abundance was approximately double during the rainy season 
compared to the dry season. Trypanosoma congolense and T. theileri were detected in the flies with overall infection 
rates of 75% for tsetse flies and 13% for tabanids. Atylotus agrestis had the highest infection rate of the tabanid species. 
The only pathogenic trypanosome detected was T. congolense.

Conclusions: Despite the low numbers of tsetse flies captured, it can be assumed that they are still the cyclical 
vectors of trypanosomosis in the area. However, the high numbers of tabanids captured, associated to their dem-
onstrated capacity of transmitting trypanosomes mechanically, suggest an important role in the epidemiology of 
trypanosomosis in the Nicoadala district. These results on the composition of tsetse and tabanid populations as well 
as the observed infection rates, should be considered when defining strategies to control the disease.
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Background
Tsetse-transmitted animal African trypanosomosis is 
one the most important diseases in sub-Saharan Africa 
[1] where it causes the death of thousands of heads 
of cattle per year and reduces the availability of meat, 
milk and other cattle-derived products [2–5]. Addition-
ally, fertile areas are often unsuitable for cattle keep-
ing due to the presence of tsetse flies, the biological 
vector of the pathogen [6, 7]. The presence of tabanid 
flies, mechanical vectors of many human and veterinary 
disease-causing agents, including Trypanosoma species, 
the cause of animal African trypanosomosis, intensifies 
the problem [8, 9].

Tsetse flies (Diptera: Glossinidae), are thought to 
comprise 34 species and subspecies from a single genus, 
Glossina [10–13]. Glossina spp. males and females feed 
exclusively on blood, which is required for all metabolic 
processes, and are subsequently ideal pathogen vectors. 
In Mozambique, G. morsitans, G. pallidipes, G. brevipal-
pis and G. austeni have all been recorded [14–16]. Spe-
cies of the Tabanidae, in contrast, need nectar for the 
metabolic processes, with only females of most species 
requiring blood for the production of eggs [8, 9]. Approx-
imately 4400 species have been described, currently 
divided into the subfamilies Pangoniinae, Tabaninae and 
Chrysopsinae; however, the higher classification remains 
unsettled [9, 17, 18]. Tabanids have been incriminated as 
vectors of livestock pathogens, including trypanosomes, 
and are considered one of the most efficient mechanical 
vectors due to their high mobility, interrupted feeding 
and large mouthparts [19–21].

Scarce information regarding the distribution of 
tsetse flies and tabanids in Mozambique, particu-
larly in the Nicoadala District, an area identified as 
trypanocidal resistance hotspot, through a block 
treatment study [22], is currently available. Further-
more, their role in the transmission of trypanosomes 
requires further elucidation, especially in the Afro-
tropics [23]. Moreover, little has been done to update 
the knowledge on the distribution and composition of 
hematophagous fly populations in Mozambique since 
the studies of Dias [24] and Oldroyd [25–27]. The 
lack of the aforementioned information, together with 
constant reports of high trypanosomosis prevalence 
in Nicoadala, urge for an accurate monitoring study 
targeting vectors of trypanosomosis and is the aim of 
this study. This study would allow an updated view on 
the respective vector species composition, with the 
ultimate goal of gaining a better understanding of the 

role said vectors play in maintaining and spreading 
trypanosomes in the trypanocidal drug resistance foci 
of Nicoadala District. Such results are of paramount 
importance for implementing regional vector con-
trol and/or management as well as subsequent policy 
making.

The use of trapping to determine the distribu-
tion of hematophagous insects have been extensively 
described in the scientific literature [28–33]. Currently, 
a plethora of different traps are available for collecting 
hematophagous brachyceran flies. Here, the horizontal 
or H trap, developed in South Africa for G. brevipalpis 
and G. austeni [34], the Epsilon trap, developed in Zim-
babwe as an alternative trap for savanna species such as 
G. pallidipes and G. morsitans [35] and the NGU trap, 
developed in Kenya for catching savannah flies such as 
G. pallidipes and also effective for tabanids [36], were 
selected given the species present in Mozambique.

The 18S PCR-RFLP method is effective for detecting 
Trypanosoma, or mixed parasite infections, from fresh 
or ethanol-preserved flies. The method has been shown 
to be accurate for identification of parasites up to the 
subspecies level [37, 38].

This study aims to assess the species composition and 
abundance of the Tabanidae and Glossinidae in three 
foci within Nicoadala District, Mozambique. Addition-
ally, the study aims to report on Trypanosoma infection 
rates of said vectors, trapping efficacy and cytochrome c 
oxidase subunit 1 (cox1) gene as a species delimitation 
tool.

Methods
Study area
Three grazing areas, Botao, Namitangurine and 
Zalala, all located in the Nicoadala District (17.608°E, 
36.820°N), were used for the survey. The region has a 
rainy tropical savannah climate according to the Köp-
pen-Geiger system [39, 40], with two seasons: rainy and 
dry. The average temperature in Nicoadala is 25.6  °C 
with about 1428 mm annual rainfall. In Zalala, the veg-
etation is mostly composed of coconut trees, grasses 
and small shrubs covering approximately 420 ha. Botao 
(c.1300 ha) is an open forest with large grassland areas. 
Namitangurine (c.1600  ha) is a slightly closed canopy 
forest with a high diversity of trees and shrubs. The 
dominant tree species in the district are Pterocar-
pus angolensis, Swartzia madagascariensis, Afzelia 
quanzensis, Millettia stuhlmannii, Khaya nyasica, Peri-
copsis angolensis, Combretum imberbe, Brachystegia 

Keywords: African animal trypanosomosis, Hematophagous insects, Tsetse fly, Tabanids, Trypanosoma congolense, 
Transmission
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spiciformis and Pteleopsis myrtifolia. Both Botao and 
Namitangurine are areas with pasture and water avail-
ability with some wild animals present [41]. Recently, 
Nicoadala was identified as a multiple trypanocidal 
drug resistance hotspot, in a block treatment study 
where trypanosomes in cattle were tested to both iso-
metamidium chloride and diminazene aceturate [22]. 
As there are no recent studies elucidating the epidemi-
ology of trypanosomosis in the region, it is of crucial 
importance to develop a study to identify possible vec-
tors of the disease. In addition, this study will help in 
the understanding of the role of mechanical transmis-
sion of the disease in the presence of resistant isolates.

Sampling
For 12 months, a total of 5 H traps, 5 Epsilon traps and 5 
NGU traps were deployed in Botao, an equal number of 
traps were deployed in Zalala, and 10 H traps, 5 Epsilon 
traps and 10 NGU traps were deployed in Namitangurine. 

Trap numbers were defined by the size of the sampling 
areas and all traps were placed at least 200  m apart to 
prevent interference [33, 42]. Trapping sites were geo-
referenced using a Garmin-GPSMAP®76 (Garmin Ltd., 
Kansas, USA) (Fig. 1). The traps were left at the deploy-
ment sites for the duration of the study [43, 44]. Each trap 
was baited with 4 polyethylene sachets (150  µm thick, 
surface area of 30  cm2) containing 4  ml of 1-octen-3-ol 
and one 15  ml plastic bottle with a 5  mm hole on top, 
containing acetone. Flies were collected weekly and those 
captured were placed in 1.5 ml tubes containing 1 ml of 
70% ethanol until further analysis [16, 45]. All the bot-
tles containing trapped flies were labeled with location, 
trap number, date and time and then replaced with empty 
ones.

Identification of hematophagous insects
All tsetse flies captured were identified using the tsetse 
control personnel training manual key for Glossina 
species identification, through the analysis of the fly’s 

Fig. 1 Trapping sites in the three grazing areas in Nicoadala District, central province of Zambezia. The study area is identified by the red square in 
the map of Mozambique



Page 4 of 16Mulandane et al. Parasites Vectors          (2020) 13:219 

morphological traits [11, 46]. Tabanids were identified to 
the genus and species level using the morphological keys 
of Oldroyd [25–27] supplemented by Taioe et  al. [23] 
and Dias [24]. To conduct the molecular species delimi-
tation, DNA was extracted using the Chelex® protocol 
modified from Walsh et al. [47] and Ravel et al. [48]. Poly-
merase chain reaction (PCR) targeting the cytochrome 
c oxidase subunit 1 (cox1) gene was conducted using an 
Applied Biosystems® thermal cycler (Thermo Fisher Sci-
entific, Göteborg, Sweden). Reactions were performed in 
a total volume of 20 µl containing, 10 µl of 2× Phusion 
Flash Master Mix, 0.5  µM of each primer and 6.5  µl of 
double distilled water  (ddH2O). PCR conditions were as 
follows: 98  °C for 10 s, 30 cycles of 98  °C for 1 s, 50  °C 
for 5 s and 72 °C for 15 s, followed by a final elongation 
step of 72 °C for 1 min. The primers used were LCO1490 
(5′-GGT CAA CAA ATC ATA AAG ATA TTG G-3′) 
and HCO2198 (5′-TAA ACT TCA GGG TGA CCA 
AAA AAT CA-3′) and the expected size of the fragment 
was approximately 653 bp [23, 49]. Genomic DNA from 
Glossina brevipalpis and G. austeni (from the Biotech-
nology Center, Eduardo Mondlane University reference 
collection) were used as a positive control and  ddH2O 
as a negative control. For PCR product visualization, the 
samples were analysed on 2% agarose gels, where 2  µl 
of loading dye was mixed with 5 µl of PCR product and 
loaded onto the gel. A 1 Kb DNA ladder was also loaded 
(4 µl) for fragment size determination; gel electrophore-
sis was performed for 45 min at 100 volts. The gels were 
stained with GelRed (Biotium, Inc., Fremont, CA, USA) 
using 4 µl per 100 ml of agarose solution directly added 
before polymerization. Four replicates of the PCR ampli-
cons from the cox1 PCR amplification were produced 
and pooled. After confirmation on agarose gel, 50  µl of 
the product was sent for sequencing at Inqaba Biotec™ 
(Pretoria, South Africa).

Phylogenetic analysis
With the aim of verifying monophyly of the species using 
molecular methods, and subsequently, infer species 
identification, all retrieved sequences were viewed and 
assembled using BioEdit version 7.0.9 [50]. Assembled 
sequences from species of both the Tabanidae and Gloss-
inidae were separately aligned with various sequences 
from the GenBank database using the online version of 
MAFFT with default parameters [51]. The aligned matri-
ces were viewed, edited and truncated in MEGA 7 [52] 
and used for all analysis. Data-display networks (DDN) 
were constructed in SplitsTree version 4 [53], from uncor-
rected p-distances using both parsimony-informative and 
-uninformative characters. Bootstrap (bs) support for the 

DDN was calculated from 1000 replicates. jModelTest 
version 2.1.10, via the Cipres Science gateway [54], was 
used for model estimation. A maximum likelihood (ML) 
analysis was performed in RAxML version 8 using the 
estimated models (GTR + G +  I). The auto MRE func-
tion was invoked for the calculation of bootstrap support 
[55]. A Bayesian approach for phylogenetic inference (BI) 
was conducted in MrBayes version 3 [56]. Four simulta-
neous cold Monte-Carlo Markov Chains searched for 10 
million generations, with each 1000th tree sampled. In 
both cases, TIM1 + G +  I estimated using the jModel-
Test was employed as the substitution model. Before tree 
construction, the first 15% of the trees were discarded as 
‘burn-in’ for the subsequent calculation of the posterior 
probabilities (pp). Effective sample sizes were calculated 
and viewed using Tracer version 1.6 [57] where values of 
> 200 were considered sufficient.

Glossinidae and Tabanidae diversity and seasonal 
abundance and trap efficiency
To access species richness and evenness from the graz-
ing areas, alpha (α) diversity was calculated using the 
Shannon index [58, 59], respectively. Data was processed 
with Vegan 2.5-2 in R [60]. A comparison of trap effi-
ciency was performed considering both the total num-
ber of individuals and the number of species captured by 
each type of trap. Seasonal abundance was assessed and 
compared.

Detection of trypanosome infection rates
A total of 480 (160 specimens from each site) taban-
ids and all tsetse captured (24 in total) were screened. 
To estimate the sample size and get a statistically repre-
sentative number of 160 individuals to be sampled per 
area, the formula from Cannon & Roe [61] was used. The 
number was determined when the expected prevalence 
was set at 10% with a 5% confidence interval and a 5% 
desired absolute precision. These were selected equally 
into the four most captured species namely Tabanus par, 
T. taeniola, Atylotus agrestis and Ancala africana. The 
24 tsetse flies comprised 17 Glossina specimens from 
Namitangurine (11 G. brevipalpis, 4 G. morsitans and 2 
G. pallidipes), 6 G. brevipalpis from Botao and 1 G. brev-
ipalpis from Zalala. DNA was extracted from individual 
flies using the ammonium acetate precipitation proto-
col modified from Bruford et al. [62]. For the molecular 
detection of trypanosomes in the flies, semi-nested rRNA 
PCRs were run targeting a fragment of the 18S ribosomal 
RNA gene. PCR conditions and gel visualization followed 
the description by Mulandane et al. [22] and Geysen et al. 
[38].
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Statistical analysis
Mean infection rate per species, per species/area and 
per total tabanids/area were calculated. To determine 
whether observed differences in tsetse and tabanids 
infection rates, infection rates per area and per species, 
tabanids distribution, trap efficiency and seasonal abun-
dance were statistically significant, ANOVA with Tukey’s 
HSD post-hoc test was used; Studentʼs t-test was used 
to determine if significant differences were observed 
between the seasons. All analyses were carried out with 
Statistica version 13.3 [63].

Results
Over a period of 12 months using 55 traps, a total of 4379 
tabanids and 24 tsetse flies were captured in three areas 
of Nicoadala District of which 35.9% in Zalala, 33.4% in 
Namitangurine and 30.7% in Botao.

Based upon morphological characterization, the 
captured tabanids belonged to four genera: Tabanus, 
Ancala, Atylotus and Haematopota. The genus Tabanus 
accounted for 73.2% of the total capture (n = 3207), fol-
lowed by the genera Atylotus (23.2%; n = 1017), Ancala 
(2.4%; n = 149) and Hematopota (0.14%; n = 6). Tabanus 
par and A. agrestis were the most frequently caught spe-
cies (66.8% and 23.2% of the captured flies, respectively). 
Tabanus par, T. taeniola, A. agrestis and Ancala afri-
cana were captured in all the three habitats (Table  1). 
From the 4379 tabanids captured, 16 Tabanus specimens 

were damaged and/or discolored by alcohol that made 
the morphological identification to the species level 
unreliable.

Three of the four Glossina species present in Mozam-
bique were captured. These species were G. brevipalpis 
(n = 18), G. pallidipes (n = 2) and G. morsitans morsitans 
(n = 4). In Botao (n = 6) and Zalala (n = 1), only G. brev-
ipalpis was captured. Namitangurine contributed with 
more than 50% of the total captured Glossina (11 G. brev-
ipalpis, 4 G. morsitans morsitans and 2 G. pallidipes), 
and thus, the only area where all three Glossina species 
were captured.

The dimensions of the final alignment matrices were 
113 taxa and 658 characters and 18 taxa and 659 char-
acters for the Tabanidae and Glossinidae, respectively. 
Identical substitution models, GTR + G +  I (AIC crite-
rion) and TIM1 + G + I (BIC criterion) were recovered 
for both datasets. Congruent topologies across all meth-
ods were recovered (Figs. 2, 3). Three specimens could be 
confidently identified as Ancala africana (nos. 7, 32, 37: 
DDN bs = 100; ML bs = 98; BI pp = 1) (Fig. 2, Additional 
file  1: Figure S1). Two Atylotus clades were recovered 
across all methods. All ten specimens sequenced for this 
study fell within a collapsed node representing A. agres-
tis, A. diurnus and A. nigromaculatus (DDN bs =  100; 
ML bs = 99; BI pp = 1) (Fig. 2, Additional file 1: Figure 
S1). Three specimens (nos. 21–23) could confidently be 
identified as T. par (DDN bs =  100; ML bs =  100; BI 
pp = 1) (Fig. 2, Additional file 1: Figure S1). An unveri-
fied sequence (GenBank: KY555744) submitted by 
Mugasa et al. [64], as T. taeniatus consistently fell within 
the T. par group. Seven specimens (nos. 8, 24, 25, 27–29 
and 31) were confidently recovered as T. taeniola (DDN 
bs = 94; ML bs = 98; BI pp = 0.99), and four specimens 
were identified as T. fraternus (nos. 18, 53–55) (DDN 
bs =  100; ML bs =  100; BI pp =  1) (Fig.  2, Additional 
file  1: Figure S1). Together, T. taeniola and T. fraternus 
formed a well-supported monophyletic clade (DDN 
bs = 98; ML bs = 97; BI pp = 1). A single specimen (57), 
formed a well-supported clade with Haematopota fenes-
tralis (DDN bs =  100; ML bs =  95; BI pp =  1) (Fig.  2, 
Additional file 1: Figure S1). The specimen morphologi-
cally identified as T. ustus (no. 14) could not be verified as 
belonging to any species-group due to a lack of reference 
sequences on GenBank.

Congruent topologies, analyzing the Glossinidae cox1 
data, from all three analyses were recovered (Fig.  3, 
Additional file  2: Figure S2). In all analyses, the Fusca 
and Palpalis groups were well-supported monophyletic 
clades (DDN bs =  99; ML bs =  85; BI pp =  0.98 and 
DDN bs =  100; ML bs =  100; BI pp =  1, respectively). 
Two well-supported monophyletic clades representing 
the Morsitans group were consistently found across all 

Table 1 Total flies captured and tested in all three grazing areas, 
in Nicoadala District

Fly species Grazing area Total flies 
captured

Zalala Botao Namitangurine

Tabanids 1571 1345 1463 4379

 Tabanus par 894 1130 900 2924

 Atylotus agrestis 482 89 446 1017

 Tabanus taeniola 79 71 92 242

 Ancala africana 96 47 6 149

 Tabanus gratus 5 0 7 12

 Tabanus biguttatus 0 0 1 1

 Tabanus fraternus 0 2 6 8

 Tabanus denshamii 1 0 1 2

 Haematopota spp. 3 3 0 6

 Tabanus ustus 2 0 0 2

 Undetermined 9 3 4 16

Tsetse flies 1 6 15 24

 Glossina brevipalpis 1 6 11 18

 Glossina m. morsitans 0 0 4 4

 Glossina pallidipes 0 0 2 2

Total 1572 1351 1480 4403
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analyses (Clade 1: DDN bs = 94; ML bs = 87; BI pp = 1; 
and Clade 2: DDN bs = 100; ML bs = 86; BI pp = 0.99) 
(Fig.  3, Additional file  2: Figure S2). All four specimens 
could be confidently identified. Three specimens (40, 
42 and 43) were molecularly identified as G. morsitans 
(DDN bs = 100; ML bs = 99; BI pp = 1) and one speci-
men was identified as G. brevipalpis (DDN bs = 100; ML 
bs = 96; BI pp = 1) (Fig. 3, Additional file 2: Figure S2). 
No sequence data could be generated from the G. pal-
lidipes specimen sampled in this study; however, mor-
phological identification was assigned with a high degree 
of confidence. Metadata for all specimens analysed are 
provided in Additional file 3: Table S1.

Alpha diversity analysis revealed a slightly higher taba-
nid species richness and evenness in Zalala (Shannonʼs 
index of 1.08) and Namitangurine (Shannonʼs index 
0.98), with 9 species of tabanids captured in each area. 

Botao with a Shannonʼs index of 0.64, revealed a lower 
diversity and evenness in the area.

Analyzing the trap efficiency, NGU (1735 tabanids and 9 
tsetse flies captured) demonstrated better performance in 
general. This trap also successfully captured all three spe-
cies of Glossina. The H traps only captured G. brevipal-
pis while Epsilon traps managed to capture the two tsetse 
savannah species present in the country (Fig.  4). There 
was a significant difference (Studentʼs t-test, t  =  7.44, 
df = 658, P < 0.001) between the captures in dry and rainy 
seasons, with the latter accounting for 70.5% of the total 
captures. Tabanids had a high activity peak in March (755 
tabanids captured) as compared to July (106 tabanids), 
during which the lowest density was recorded (Fig. 5).

From the 480 tabanids screened, 13.0% (66/480) tested 
positive for the presence of Trypanosoma spp. The over-
all trypanosome infection rate for tsetse flies was 75.0% 

Fig. 2 A consensus phylogram constructed in a Bayesian inference analysis using the Tabanidae cox1 data. Nodal support presented on the 
branches are bootstraps (bs) calculated a RAxML analysis (autoMRE function) and posterior probabilities (pp) calculated from a MrBayes analysis. 
Only bs values > 75 and pp values > 0.95 are shown (bs/pp)
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(18/24). Only T. congolense infections were detected in 
Glossina spp. and only in G. brevipalpis and G. morsitans 
(Fig.  6). Namitangurine with 18.8% (30/160) presented 
the highest tabanid infection rate followed by Botao with 
13.1% (21/160) and Zalala with 9.4% (15/160). There were 
no significant differences when comparing the infection 
rates of the tabanids between the three sites (ANOVA: 
F(2, 9) = 0.44, P = 0.66).

Species comparisons revealed that A. agrestis had the 
highest trypanosome infection rate with 6.25% (30/480), 
followed by T. par and T. taeniola, both yielding 3.8% of 
infected flies (18/480). No A. africana specimen tested 
positive for trypanosome infection. There was signifi-
cant difference in infection rate between the three spe-
cies where Trypanosoma infections were detected 
(ANOVA, F(3, 8) = 7.84, P = 0.009, post-hoc test: Tukey’s 

HSD, P = 1.0 for T. par vs T. taeniola, P = 0.19 for T. par 
vs A. agrestis, P = 0.23 for A. agrestis vs T. taeniola and 
P  =  0.01 for A. agrestis vs A. africana). However, the 
post-hoc test only showed significant difference between 
A. agrestis and A. africana, which represents the dif-
ference between the species with the highest infection 
rate and the species with no infection. Comparing the 
infection rate per species/area, A. agrestis remained the 
species with the highest infection rate in both Namitan-
gurine and Botao. In Zalala, T. par had a higher infection 
rate (Fig. 7). The trypanosome DNA detected in tabanids 
belonged to T. congolense (the only pathogenic trypano-
some) and T. theileri (Fig.  8). Tabanids from Namitan-
gurine presented the highest T. congolense infection rate 
(15.6%), followed by Botao (12.5%) and Zalala (5.6%).

Fig. 3 A consensus phylogram recovered from a MrBayes analysis using the Glossinidae cox1 data. Nodal support presented on the branches are 
bootstraps (bs) calculated from a RAxML analysis (autoMRE function) and posterior probabilities (pp) calculated from a MrBayes analysis. Only bs 
values > 75 and pp values > 0.95 are shown (bs/pp). Red arrows indicate the specimen sequences from this study
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Fig. 4 Bar graph showing the total Glossina spp. captured by each type of trap

Fig. 5 Total tabanids caught during the twelve months of trapping
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Fig. 6 Percentage of infected tsetse flies (total n = 24) per sampling area detected using 18S PCR-RFLP

Fig. 7 Percentage of infected tabanid flies per species/area and per species of Trypanosoma (n = 480) as detected by 18S PCR-RFLP. Abbreviations: 
T. par, Tabanus par; T. taeniola, Tabanus taeniola; A. africana, Ancala africana; A. agrestis, Atylotus agrestis; T. co, Trypanosoma congolense; T. th, 
Trypanosoma theileri; Zal, Zalala; Bot, Botao; Nam, Namitangurine
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Discussion
Despite the important role of tabanids and tsetse flies in 
the transmission of diseases, little research attention has 
been devoted to these taxa in the Afrotropics, including 
Mozambique. Limited fundamental information on their 
classification and distribution patterns are available, with 
the last major work focused on elucidating these aspects 
having been conducted more than half a century ago, in 
Mozambique [24]. Few surveys aiming at the distribution 
[16], genetic characterization [15] or infection of tsetse 
flies [65, 66] were previously published.

The results regarding the diversity of tabanids from this 
study are similar to those of Ahmed et al. [67] in Nigeria, 
Lendzele et al. [33] in Cameroon, Koné et al. [68] in Bur-
kina Faso and Taioe et al. [23] in South Africa and Zam-
bia. These authors also recorded a greater abundance 
and diversity of Tabanus versus other tabanid genera. 
Tabanus par and Atylotus agrestis were the dominant 
tabanid species in West Africa, despite the large geo-
graphical separation, possibly indicative of these spe-
cies preferring tropical climates. High numbers of T. 
par were also recorded by Taioe et  al. [23] in KwaZulu 
Natal, South Africa, but not A. agrestis. KwaZulu Natal 
is part of the eastern tropical corridor, reinforcing the 
idea that T. par might be a dominant species in tropi-
cal Africa. In their studies, Ahmed et al. [67] and Taioe 
et al. [23] also recorded a low abundance and diversity of 
Haematopota. This is a clear contrast with the Catalogue 
of Afrotropical Tabanidae by Chainey & Oldroyd [69] 

that reports approximately 250 Haematopota species of 
a total of 700 tabanid species present in the Afrotropical 
region. The reason for this contrast is unclear, but possi-
bly the trapping methodology might not be favorable for 
Haematopota species in the region. The complete lack 
of Chrysopsinae in the trapping is similarly curious and 
unexpected as it was reported by both Esterhuizen [70] 
and Taioe et al. [23], both using H traps. It might be pos-
sible that species of Chrysopsinae are not easily captured 
by blue traps, designed for Glossina spp., despite their 
well-known blood-feeding behavior.

Atylotus spp. could not be separated confidently and a 
collapsed group comprising A. agrestis, A. diurnus and 
A. nigromaculatus was recovered. All specimens in this 
study were morphologically identified as A. agrestis. This 
requires further study and might reflect incorrectly iden-
tified specimens uploaded to GenBank, or the inability 
of cox1 to distinguish between Atylotus species. Alterna-
tively, the taxonomy may not correspond to the genetic 
isolation prescribed by the biological species concept. 
Cytochrome oxidase cox1 barcodes for Haematopota 
species from the Afrotropics are needed. The speci-
men sequenced in this study (specimen 57) fell sister to 
a monophyletic group of H. fenestralis sequences from a 
single study. This might reflect confirmation of H. fenes-
tralis or a closely related sister species.

All specimens within the Fraternus group as described 
by Oldroyd [27] were here identified as T. taeniola, 
despite four specimens grouping separately (specimens 

Fig. 8 RFLP restriction enzyme analysis using MspI and Eco571 (a) and MboII (b) digestion of 18 SSU-rDNA from Trypanosoma congolense (Lanes 16, 
18, 9) and T. theileri (Lanes 6, 7, 8, 9 and 10) in polyacrylamide gel. Positive control for T. congolense (Lane 17) and for T. theileri (Lanes C) and a 100-bp 
DNA ladder (Lanes M) were included on the gels. Abbreviations: M1, samples from the first DNA extraction group; M2, samples from the second DNA 
extraction group; M1/Lane 16, Glossina brevipalpis; M1/Lane 18, Atylotus agrestis; M2/Lane 19, Glossina brevipalpis; F11, fly 11 (Tabanus par); F16, fly 16 
(Atylotus agrestis); F19, fly 19 (Tabanus par); F21, fly 21 (Tabanus taeniola); F22, fly 22 (Atylotus agrestis)
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18, 53–55), with one specimen identified as T. fraternus. 
Due to a lack of T. fraternus reference sequences availa-
ble and the subtle morphological difference, especially in 
specimens stored in 70% ethanol (T. fraternus has a slight 
additional pigment on the wings, lacking in T. taeniola), 
confident identification was impossible. This group-
ing remains an interesting one and the species bounda-
ries are worth investigating. The species boundaries 
between T. par and T. thoracinus remains unclear and 
was not treated in the most recent work by Mugasa et al. 
[64], who recovered two “genetic variants” from Uganda 
in their study. Unfortunately, Mugasa et  al. [64] did not 
include T. par specimens and could not find morpho-
logical differences between the genetic variants. With the 
sheer abundance of T. par in southern and eastern Africa, 
this species status also deserves investigation.

The performance of cox1 as a Tabanidae species delimi-
tating barcode should be reassessed as it posed several 
problems of which an inadequate number of sequences 
from accurately identified specimens. Other molecular 
markers, such as the internal spacers in the rRNA gene 
(ITS1 and ITS2) are worth investigating as an alterna-
tive for species delimitation. It should be noted, however, 
that cox1 worked well considering Glossina, but Glossina 
is considerably less diverse and all species have several 
representative sequences on GenBank. The fact that no 
sequences from G. pallidipes were obtained may be due to 
the poor quality of the PCR product sent for sequencing.

The underlying reasons for the observed differences in 
tsetse and tabanids abundance between the selected sites are 
unclear. Vegetation type, vegetation cover and non-domes-
ticated host species (host-preference), have all been shown 
to be important variables in the distribution and composi-
tion of haematophagous fly populations [71–73]. Zalala is 
an area consisting of small and widely dispersed pockets 
of shrubs and trees that may provide insufficient habitat 
for a high diversity of flies. Moreover, cattle being the only 
apparent food source available in the area is an additional 
limiting factor to the expansion of both tabanid- and tsetse 
fly assemblages. Finally, the dense human settlements that 
are rapidly expanding and changing the surrounding envi-
ronment may in turn also negatively impact biodiversity. 
Haematophagous flies that possibly require a wide range of 
hosts may then be especially affected [74–78].

Namitangurine on the other hand, is characterized by 
dense thickets and is seemingly a less disturbed area with 
wild animals like sable, kudu, reedbuck, duiker and bush 
pig present [79]. Interestingly, the highest infection rates 
were also detected from this area, possibly reflecting the 
importance of wild animals as reservoirs of Trypanosoma 
species. In fact, salivarian trypanosomes can be found 
in a wide variety of hosts such as ruminants, carnivores, 
rodents and reptiles [80–83]. This might then indicate the 

important role of these animals for the circulation of trypa-
nosomes in a certain habitat. Control measures directed to 
trypanosomes reservoirs have shown to be successful in the 
reduction of trypanosomosis prevalence, though they have 
proven not to be environmentally sustainable [84–86].

The efficacy of blue traps for determining Tabanidae 
diversity should perhaps be revisited, with all aforemen-
tioned studies being unable to reflect the “true” diversity 
of Tabanidae species as reported from museum data [25–
27, 87]. Furthermore, the higher diversity recorded in 
regions from museum data might possibly reflect “false” 
diversity due to erroneous taxonomy and highlight the 
need for renewed taxonomic approaches as stipulated by 
Morital et al. [18].

It is important to note that the H trap had a higher 
efficacy in capturing G. brevipalpis, compared to both 
the Epsilon- and NGU traps. However, Malele et al. [88] 
reported that, in Tanzania, H traps did not capture any 
G. brevipalpis. Several other studies, in turn, have dem-
onstrated good performance of H traps in the capture of 
G. brevipalpis in South Africa [34, 89, 90] and in Mozam-
bique [16]. These contradicting results are important in 
control and surveillance studies and require clarification.

The low levels of Shannonʼs diversity index obtained in 
the present study were mainly due to the high frequency of 
T. par (66.8%) and Atylotus agrestis (23.2%), showing the 
existence of clear dominant species and a very low even-
ness of species. This is often found in areas where human 
disturbances are evident, and cattle grazing might form 
part of such a disturbance [91]. The rainy season accounted 
for two folds the total capture number of the dry season 
as recorded by several studies [28, 33, 67, 92]. On a finer 
scale, seasonal tabanid activity peaks is extremely impor-
tant to understand the pathogen transmission dynamics. 
In this region of Mozambique, an early wet-season peak 
was observed in November, followed by a second more 
pronounced peak in March, at the end of the rainy season. 
This might be bivoltine behavior, with the emergence of 
the dry-season generation that probably included diapause 
(first peak), and a subsequent wet-season generation that 
lacks diapause (second peak). Investigating the drivers of 
these peaks might prove valuable for predicting, mitigating 
and controlling diseases spread by horse flies [93].

In this study, G. brevipalpis appears to be the most 
important vector since the species was most often col-
lected and showed a high infection rate (72.2%, n = 18). 
Motloang et  al. [94] reported contrasting results from 
an experimental study in South Africa; the authors con-
cluded that, despite their higher abundance, the role of 
G. brevipalpis in the transmission of T. congolense was 
negligible. The results here, in turn, warrants additional 
investigation and to reassess the role of G. brevipalpis in 
the transmission of trypanosomosis. Over the course of 



Page 12 of 16Mulandane et al. Parasites Vectors          (2020) 13:219 

a year’s uninterrupted collection, G. brevipalpis was the 
only species present in all three study areas with individ-
uals from all three areas infected with Trypanosoma.

Although the number of captured G. morsitans flies 
was low (four individuals), their high infection rate 
(100%) could nevertheless indicate their important role 
as a vector of trypanosomosis in this area. Glossina mor-
sitans was described by Vreysen et  al. [7] as one of the 
most important species in the Morsitans group and the 
major vector of AAT in eastern and southern Africa, and 
it was experimentally proven by Reinfeberg et  al. [95] 
that Morsitans flies were more susceptible to T. congo-
lense infections compared to other groups, as Palpalis for 
example. Thus, the high infection rate found in G. mor-
sitans from Namitangurine is somewhat expected. Even 
though infection rates differ from those found in this 
study, this is congruent with the findings of Salekwa et al. 
[96] in Tanzania and Shereni et  al. [97] in Zimbabwe. 
These studies postulated that G. morsitans from conser-
vation or less disturbed areas (like Namitangurine) are 
more likely to be infected with Trypanosoma species.

Since only one G. pallidipes specimen was captured, no 
accurate discussion can be presented on the infection rate 
of this species. However, in other studies, Trypanosoma 
infection were detected in G. pallidipes [31, 98], which 
shows that they can actively harbor and transmit trypa-
nosomes. The presence/absence of infection in tsetse flies 
can be due to feeding preferences [99], genetic differences, 
the availability of reservoirs, the parasitaemia of the verte-
brate host [100, 101] and the nutritional status of the flies 
[102, 103]. As discussed previously, tsetse flies respond 
demographically to habitat destruction or fragmentation. 
However, it is known that the flies also respond physio-
logically to this process and to other ecological pressures. 
In fact, it was experimentally proven that environmental 
stress, including starvation, causes increase in the suscep-
tibility of tsetse flies to trypanosome infections [102–105]. 
This may explain the high infection rates detected in the 
present study despite the small sample size.

The only pathogenic trypanosome found in the pre-
sent study was T. congolense. This is well in accordance 
with the study of Mulandane et al. [22] reporting T. con-
golense as the only circulating pathogenic Trypanosoma 
species in cattle in Nicoadala District. Additional to T. 
congolense, T. theileri was also found in tabanids in all the 
species screened except for A. africana, which is not an 
indication that this species cannot harbor trypanosomes 
as Firmino et al. [106] detected trypanosome sequences 
in A. africana flies captured in Ethiopia. Trypanosoma 
theileri is a stercorarian, non-pathogenic trypanosome 
transmitted to cattle by tabanids, where it undergoes 
a developmental cycle [107, 108], and highly prevalent 
around the globe [109–112].

Our results strongly suggest a role for tabanids in the 
transmission of T. congolense in the study area. In general, 
the participation of tabanids in the dynamics of African 
animal trypanosomosis (linked to T. vivax and T. evansi) 
is rightly becoming more important with the ecological 
transformations that are progressively affecting the tsetse 
densities and distribution in Africa [113–115]. Moreover, 
mechanical transmission of trypanosomosis, depending 
on the circumstances and conditions, may be as efficient 
as biological transmission, although its potential impact 
has never been estimated [8, 9, 19]. These inferences can 
be supported by the findings from Desquesnes & Dia [113, 
116], where mechanical transmission of T. congolense and 
T. vivax by A. agrestis and A. fuscipes were experimentally 
demonstrated. They are also supported by Abebe & Jobre 
[117], in which high T. vivax and T. congolense infection 
where detected in tsetse free zones. Our study indicates 
that A. agrestis could have an important impact on the 
dynamics and/or epidemiology of trypanosomosis.

Conclusions
To the best of our knowledge, this is the first study con-
ducted in Nicoadala District, an area identified as a drug 
resistance hotspot, involving the characterization of the 
Tabanidae and Glossinidae and the detection of the trypa-
nosomes they harbor. As a pioneer study, it constitutes a 
starting point for future work on the subject. Considering 
the trapping effort, it can be concluded that a very small 
population of tsetse flies responsible for the biological trans-
mission of trypanosomosis is present in the district. How-
ever, the strong presence of tabanids, including species that 
have previously been identified as trypanosomosis vectors, 
suggests their participation as mechanical vectors as a relay 
and amplification factor to tsetse flies resulting in a high 
prevalence of trypanosomosis in the district as reported by 
Mulandane et al. [22], Jamal et al. [118] and Specht [119].
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