J. Weeranantanaphan, G. Downey, P. Allen, and D. Sun, Review of near Infrared Spectroscopy in Muscle Food Analysis: 2005-2010, J. Near Infrared Spectrosc, vol.19, pp.61-104, 2011.

A. Brinker and R. Reiter, Fish meal replacement by plant protein substitution and guar gum addition in trout feed, Part I: Effects on feed utilization and fish quality, Aquaculture, vol.310, pp.350-360, 2011.

T. Gormley, Note on consumer preference of smoked salmon colour, Ir. J. Agric. Food Res, vol.31, pp.199-202, 1992.

N. Colihueque, M. Parraguez, F. Estay, and N. Diaz, Skin Color Characterization in Rainbow Trout by Use of Computer-Based Image Analysis, N. Am. J. Aquac, vol.73, pp.249-258, 2011.

X. Yi, W. Xu, H. Zhou, Y. Zhang, Y. Luo et al., Effects of dietary astaxanthin and xanthophylls on the growth and skin pigmentation of large yellow croaker Larimichthys croceus, Aquaculture, vol.433, pp.377-383, 2014.

Á. Segade, L. Robaina, O. Ferrer, G. Romero, and M. Domínguez, Effects of the diet on seahorse (Hippocampus hippocampus) growth, body colour and biochemical composition, Aquac. Nutr, vol.21, pp.807-813, 2014.

D. Costa, C. Mattioli, W. Silva, R. Takata, F. Leme et al., The effect of environmental colour on the growth, metabolism, physiology and skin pigmentation of the carnivorous freshwater catfsh Lophiosilurus alexandri, J. Fish Biol, vol.90, pp.1-14, 2016.

U. Erikson and E. Misimi, Atlantic salmon skin and fillet color changes effected by perimortem handling stress, rigor mortis, and ice storage, J. Food Sci, vol.73, pp.50-59, 2008.

M. Balaban, M. Chombeau, D. C?rban, and B. Gümü?, Prediction of the weight of Alaskan pollock using image analysis, J. Food Sci, vol.75, pp.552-556, 2010.

F. Clydesdale, E. Ahmed, . Colorimetry-methodology, and . Applications-*-.-c-r-c, Crit. Rev. Food Sci. Nutr, vol.10, pp.243-301, 1978.

D. Skonberg, R. Hardy, F. Barrows, and F. Dong, Color and flavor analyses of fillets from farm-raised rainbow trout (Oncorhynchus mykiss) fed low-phosphorus feeds containing corn or wheat gluten, Aquaculture, vol.166, pp.269-277, 1998.

A. Macagnano, M. Careche, A. Herrero, R. Paolesse, E. Martinelli et al., A model to predict fish quality from instrumental features, Sens. Actuators B Chem, pp.293-298, 2005.

C. Kalinowski, M. Izquierdo, D. Schuchardt, and L. Robaina, Dietary supplementation time with shrimp shell meal on red porgy (Pagrus pagrus) skin colour and carotenoid concentration, Aquaculture, vol.272, pp.451-457, 2007.

F. Mendoza and J. Aguilera, Application of image analysis for classification of ripening bananas, J. Food Sci, vol.69, pp.471-477, 2004.

K. Yam and S. Papadakis, A simple digital imaging method for measuring and analyzing color of food surfaces, J. Food Eng, vol.61, pp.137-142, 2004.

M. Saberioon, A. Gholizadeh, P. Cisar, A. Pautsina, and J. Urban, Application of machine vision systems in aquaculture with emphasis on fish: State-of-the-art and key issues, Rev. Aquac, vol.9, pp.369-387, 2017.

I. Zat'ková, M. Sergejevová, J. Urban, R. Vachta, D. ?tys et al., Carotenoid-enriched microalgal biomass as feed supplement for freshwater ornamentals: Albinic form of wels catfish

. Aquac and . Nutr, , vol.17, pp.278-286, 2009.

N. Colihueque, Analysis of the coloration and spottiness of Blue Back rainbow trout at a juvenile stage, J. Appl. Anim. Res, vol.42, pp.474-480, 2014.

M. Balaban, K. Stewart, G. Fletcher, and Z. Alçiçek, Color Change of the Snapper (Pagrus auratus) and Gurnard (Chelidonichthys kumu) Skin and Eyes during Storage: Effect of Light Polarization and Contact with Ice, J. Food Sci, vol.79, pp.2456-2462, 2014.

A. Wishkerman, A. Boglino, M. Darias, K. Andree, A. Estévez et al., Image analysis-based classification of pigmentation patterns in fish: A case study of pseudo-albinism in Senegalese sole, Aquaculture, vol.464, pp.303-308, 2016.

G. Wallat, A. Lazur, and F. Chapman, Carotenoids of Different Types and Concentrations in Commercial Formulated Fish Diets Affect Color and Its Development in the Skin of the Red Oranda Variety of Goldfish, N. Am. J. Aquac, vol.67, pp.42-51, 2017.

D. Luzuriaga, M. Balaban, and S. Yeralan, Analysis of visual quality attributes of white shrimp by machine vision, J. Food Sci, vol.62, pp.113-130, 1997.

C. Du and D. Sun, Learning techniques used in computer vision for food quality evaluation: A review, J. Food Eng, vol.72, pp.39-55, 2006.

J. Hu, D. Li, Q. Duan, Y. Han, G. Chen et al., Fish species classification by color, texture and multi-class support vector machine using computer vision, Comput. Electron. Agric, vol.88, pp.133-140, 2012.

A. Hernández-serna and L. Jiménez-segura, Automatic identification of species with neural networks, PeerJ, vol.2, p.563, 2014.

F. Rossi, A. Benso, S. Carlo, G. Politano, A. Savino et al., A mobile App to detect fish falsification through image processing and machine learning techniques, Proceedings of the IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), pp.1-6, 2016.

Z. Liu, F. Cheng, and H. Hong, Identification of Impurities in Fresh Shrimp Using Improved Majority Scheme-Based Classifier, Food Anal. Methods, vol.9, pp.3133-3142, 2016.

M. Dutta, A. Issac, N. Minhas, and B. Sarkar, Image processing based method to assess fish quality and freshness, J. Food Eng, vol.177, pp.50-58, 2016.

, Nutrient Requirements of Fish and Shrimp, 2011.

J. Yang, J. Yang, D. Zhang, and J. Lu, Feature fusion: Parallel strategy vs. serial strategy, Pattern Recognit, vol.36, pp.1369-1381, 2003.

M. Pavlidis, N. Papandroulakis, and P. Divanach, A method for the comparison of chromaticity parameters in fish skin: Preliminary results for coloration pattern of red skin Sparidae, Aquaculture, vol.258, pp.211-219, 2006.

U. Erikson, F. Shabani, E. Beli, S. Muji, and A. Rexhepi, The impacts of perimortem stress and gutting on quality index and colour of rainbow trout (Oncorhynchus mykiss) during ice storage: A commercial case study, Eur. Food Res. Technol, vol.244, pp.197-206, 2018.

L. Tang, L. Tian, and B. Steward, Classification of broadleaf and grass weeds using gabor wavelets and an artificial neural network, Trans. ASAE, vol.46, pp.1247-1254, 2003.

H. Trussell, E. Saber, and M. Vrhel, Color image processing: Basics and special issue overview, IEEE Signal Process. Mag, vol.22, pp.14-22, 2005.

S. Westland and C. Ripamonti, Computational Colour Science Using MATLAB

J. Wiley, &. Sons, and L. , , 2004.

H. Cheng, X. Jiang, Y. Sun, and J. Wang, Color image segmentation: Advances and prospects, Pattern Recognit, vol.34, pp.2259-2281, 2001.

Y. Xu, X. Wang, H. Sun, H. Wang, and Y. Zhan, Study of monitoring maize leaf nutrition based on image processing and spectral analysis, Proceedings of the World Automation Congress, pp.19-23, 2010.

C. Tucker, Red and photographic infrared linear combinations for monitoring vegetation, Remote Sens. Environ, vol.8, pp.127-150, 1979.

S. Kawashima and M. Nakatani, An Algorithm for Estimating Chlorophyll Content in Leaves Using a Video Camera, Ann. Bot, vol.81, pp.49-54, 1998.

D. Karcher and M. Richardson, Quantifying Turfgrass Color Using Digital Image Analysis, Crop Sci, vol.43, pp.943-951, 2003.

M. Haidekker, Image Registration, Advanced Biomedical Image Analysis

M. Hall-beyer and . Texture, A Tutorial v. 1.0 through 2.7, 2017.

C. Hsu, C. Chang, and C. Lin, A Practical Guide to Support Vector Classification, 2003.

V. Vapnik, Statistical Learning Theory

M. Kuhn, Building Predictive Models in R Using the caret Package, J. Stat. Softw, vol.28, 2008.

L. Breiman, Bagging predictors, Mach. Learn, vol.24, pp.123-140, 1996.

T. Ho, The random subspace method for constructing decision forests, IEEE Trans. Pattern Anal. Mach. Intell, vol.20, pp.832-844, 1998.

L. Breiman, Random forests, Mach. Learn, vol.45, pp.5-32, 2001.

R. Díaz-uriarte and S. Andres, Gene selection and classification of microarray data using random forest, BMC Bioinform, vol.7, issue.3, 2006.

A. Liaw and M. Wiener, Classification and regression by randomForest, R News, vol.2, pp.18-22, 2002.

H. Akaike, New look at the statistical model identification, IEEE Trans. Autom. Control, vol.19, pp.716-723, 1974.

G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning: With Applications in R, 2013.

I. Marschner, glm2: Fitting generalized linear models with convergence problems, R J, vol.3, pp.12-15, 2011.

W. Venables and B. Ripley, Modern Applied Statistics with S-PLUS, p.495, 2002.

J. Amigo, H. Babamoradi, and S. Elcoroaristizabal, Hyperspectral image analysis. A tutorial, Anal. Chim. Acta, vol.896, pp.34-51, 2015.

A. Bradley, The use of the area under the ROC curve in the evaluation of machine learning algorithms, Pattern Recognit, vol.30, pp.1145-1159, 1997.

X. Robin, N. Turck, A. Hainard, N. Tiberti, F. Lisacek et al., pROC: An open-source package for R and S+ to analyze and compare ROC curves, BMC Bioinform, vol.12, pp.1-8, 2011.

D. Ariana, D. Guyer, and B. Shrestha, Integrating multispectral reflectance and fluorescence imaging for defect detection on apples, Comput. Electron. Agric, vol.50, pp.148-161, 2006.

S. Araújo, J. Wetterlind, J. Demattê, and B. Stenberg, Improving the prediction performance of a large tropical vis-NIR spectroscopic soil library from Brazil by clustering into smaller subsets or use of data mining calibration techniques, Eur. J. Soil Sci, vol.65, pp.718-729, 2014.

B. Boser, I. Guyon, and V. Vapnik, A training algorithm for optimal margin classifiers, Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp.144-152, 1992.

G. Mountrakis, J. Im, and C. Ogole, Support vector machines in remote sensing: A review, ISPRS J. Photogramm. Remote Sens, vol.66, pp.247-259, 2011.

S. Chatzifotis, M. Pavlidis, C. Jimeno, G. Vardanis, A. Sterioti et al., The effect of different carotenoid sources on skin coloration of cultured red porgy (Pagrus pagrus), Aquac. Res, vol.36, pp.1517-1525, 2005.

A. Ho, S. O'shea, and H. Pomeroy, Dietary esterified astaxanthin effects on color, carotenoid concentrations, and compositions of clown anemonefish, Amphiprion ocellaris, skin, Aquac. Int, vol.21, pp.361-374, 2013.

G. Rosenlund, A. Obach, M. Sandberg, H. Standal, and K. Tveit, Effect of alternative lipid sources on long-term growth performance and quality of Atlantic salmon (Salmo salar L.), Aquac. Res, vol.32, pp.323-328, 2001.

G. Choubert, M. Mendes-pinto, and R. Morais, Pigmenting efficacy of astaxanthin fed to rainbow trout Oncorhynchus mykiss: Effect of dietary astaxanthin and lipid sources, Aquaculture, vol.257, pp.429-436, 2006.

T. Nguyen, The cholesterol-lowering action of plant stanol esters, Recent Adv. Nutr. Sci, vol.129, pp.2109-2112, 1999.

C. Regost, J. Jakobsen, and A. Rørå, Flesh quality of raw and smoked fillets of Atlantic salmon as influenced by dietary oil sources and frozen storage, Food Res. Int, vol.37, pp.259-271, 2004.

G. Turchini, G. Quinn, P. Jones, G. Palmeri, and G. Gooley, Traceability and Discrimination among Differently Farmed Fish: A Case Study on Australian Murray Cod, J. Agric. Food Chem, vol.57, pp.274-281, 2009.

K. Shearer, S. Kestin, and P. Warriss, The effect of diet composition and feeding regime on the proximate composition of farmed fishes, In Farmed Fish Quality; Blackwell Science, pp.31-41, 2001.

F. Dabbene, P. Gay, and C. Tortia, Traceability issues in food supply chain management: A review, Biosyst. Eng, vol.120, pp.65-80, 2014.

M. Føre, K. Frank, T. Norton, E. Svendsen, J. Alfredsen et al., Precision fish farming: A new framework to improve production in aquaculture, 2017.

S. Dev, F. Savoy, Y. Lee, and S. Winkler, Rough-set-based color channel selection, IEEE Geosci. Remote Sens. Lett, vol.14, pp.52-56, 2017.