Guiding principles for identification, evaluation and conservation of Vitis vinifera L. subsp sylvestris

To cite this version:

HAL Id: hal-02624072
https://hal.inrae.fr/hal-02624072
Submitted on 26 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License
Guiding principles for identification, evaluation and conservation of *Vitis vinifera* L. subsp. *sylvestris*

1) Institute for Adriatic Crops and Karst Reclamation, Split, Croatia
2) JKI - Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, Stieboldingen, Germany
3) Instituto Nacional de Investigación Agraría e Veterinaria, Dois Portos, Portugal
4) Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), Alcala de Henares, Spain
5) Agricultural University of Tirana Koder-Kamez, Tirana, Albania
6) University of Zagreb, Faculty of Agriculture, Zagreb, Croatia
7) Agricultural Research Institute, Nicosia, Cyprus
8) National Agricultural Research and Innovation Center, Research Institute for Viticulture and Enology, Badacsony, Hungary
9) University of Belgrade, Faculty of Agriculture, Belgrad-Zemun, Serbia
10) University of Novi Sad, Faculty of Agriculture, Institute for Fruit Growing & Viticulture, Novi Sad, Serbia
11) Ss. Cyril and Methodius University in Skopje, Institute of Agriculture, Skopje, Republic of Macedonia
12) 13 Jul Plantaza, Podgorica, Montenegro
13) Biodiversity International, Maccarese, Rome, Italy
14) Research Council of Italy, Institute for Sustainable Plant Protection, Torino, Italy
15) JKI - Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Data Processing Department, Quedlinburg, Germany
16) INRA, UMR AGAP, Equipe Diversité, Adaptation et Amélioration de la Vigne, Montpellier, France

Summary

Conservation of grapevine genetic resources is an important and long lasting task. Here, partners of the InWiGrape Activity of the European Cooperative Programme for Plant Genetic Resources have proposed a set of descriptors that will assist in identification, conservation and study of genetic resources of *Vitis vinifera* L. subsp. *sylvestris*. A distribution map of *Vitis vinifera* L. subsp. *sylvestris* populations in Europe was produced, with on-line access through the European *Vitis* Database. The several different aspects of conservation of *Vitis vinifera* L. subsp. *sylvestris* including bibliographical references, identification in the wild, *in situ* and *ex situ* conservation have been discussed. The descriptors and the map will assist different stakeholders, working on biodiversity and ecosystems in more effective conservation of wild grapevine genetic resources.

Introduction

The wild grapevine (*Vitis vinifera* L. subsp. *sylvestris* Gmel.) is a rare and endangered plant subspecies. It is the wild ancestor of cultivated grapevine and it is distributed from Portugal to Turkmenistan and from the banks of the Rhine to the forest of Tunisia (Arnold et al. 1998). Its preferred habitats are relatively untouched forests with plenty of water nearby. It is a dioecious liana which climbs over supporting plants in search of better growing conditions. The female plants have very small, loosely clustered blue-black berries with little juice. For wine and grape production, wild grapevine has very limited value today (Levadoux 1956).

However, the conservation of wild grapevine is very important for several reasons. Populations are on the brink of extinction owing to human activities, such as intensive riverbank and forest management; pathogen spread, which has increased in the last decades; and a demanding reproductive strategy (Ocete et al. 2015). Forest communities with wild grapevine usually do not provide favorable conditions for seed germination and natural gene flow between populations (Di Vecchi-Starraz et al. 2009). Many factors constrain wild grapevine regeneration, including: scarcity of light; animal grazing (e.g. deer); snails feeding on the tender plantlets, and the long distance for pollen to be transmitted between plants in such a context. A particular problem for genetic sustainability of wild grapevine is the presence of other *Vitis* species and cultivated grapevine, which are invasive in the natural habitat (Arrigo and Arnold 2007).

Exploring the genetic relationship between the wild ancestor and cultivated grapevines is necessary to understand the domestication process. Thus, the identification of true wild grapevines and their characterization is becoming an increasingly common subject of scientific interest, including for exploring new sources of genetic variation that might be important for plant breeding (This et al. 2006).
However very little is known about agro-biological and production characteristics of wild grapevine. The country reports given in the scope of the InWiGrape Activity of the European Cooperative Programme for Plant Genetic Resources (ECPGR - http://www.ecpgr.cgiar.org/working-groups/vitis/inwigrape/presentations/) in Split - July 5, 2016 and recent publications (Biscotti et al. 2015; Schnee-
der et al. 2015; Zdunić et al. 2017) reveal that there is still a considerable potential for further study of Vitis sylves-
tris populations in the wild which have not been reported and investigated at all. So far descriptors and guidelines for
identification of true Vitis sylvestris plants, their character-
ization, evaluation and conservation were not harmonized,
but rather conducted in different ways and with varying
intensity in the European countries and thus became one of
the objectives of the ECPGR InWiGrape Activity.

The importance of conserving grape genetic resources in Europe has been emphasized through several previous
initiatives and projects within the Vitis research community. Within the EU project GENRES081 (1997-2002),
primary and secondary OIV descriptors for morphological
description and evaluation of agronomic traits were select-
ed. The importance of conserving old and neglected vari-
eties has been emphasized, while deploying SSR markers
has been recommended as a complementary method for
identification (Maul and This 2008). Later, in the frame-
work of EU project GRAPEGEN06 (2007-2010), a specif-
ic work package (WP4) for the genetic resources of wild
grapevine was introduced (Maul et al. 2012). Efforts to
conserve wild grapevine continued in the COST FA1003
Activity (2010-2013), which resulted in a series of publi-
cations about wild grapevine genetic resources and collab-
oration among different research groups (Failla 2015). A
perspective platform for wild grapevine management was
given by Ocete and collaborators who stated that the Euro-
sian wild grapevine conservation requires adoption of legal
measures to be integrated within formal state legislation
(Ocete et al. 2015).

Following these previous studies on wild grapevine
conservation and evaluation, the Vitis Working Group of
the ECPGR (www.ecpgr.cgiar.org) initiated the InWiGrape
Activity, to harmonize protocols referring to genetic
resources of wild grapevine. In this paper, we propose a set
of indicators that will assist in identification, conservation
and study of genetic resources of wild grapevine, including
a minimum set of descriptors for phenotyping and geno-
typing, as well as vulnerability indicators of populations.
To get a clear picture about still existing Vitis sylvestris
populations in Europe, partners within InWiGrape Activity
compiled a bibliography on wild grapevine and produced
the current distribution map of wild grapevine, accessible
on-line from the European Vitis Database (http://www.
eu-vitis.de/index.php).

Material and Methods

Sixteen institutional partners from 11 European coun-
tries participated in the InWiGrape Activity within the
second call of the ECPGR Activity Grant Scheme. Liter-
ature on grapevine genetic resources was made available
through the European Vitis Database generated during previ-
ous projects. For characterization and evaluation of wild
grapevine 25 characteristics have been proposed (Table); 23 descriptors from the OIV descriptor list for grapevine
varieties and Vitis species (OIV 2009), and two character-
istics (colors of leaves in autumn and length of seed beak
compared with whole seed length) which are not included
in OIV descriptor list. During a meeting held in Split, Cro-
atia, in July 2016 (www.ecpgr.cgiar.org/working-groups/
vitis/inwigrape), Activity partners discussed several im-
portant aspects for the conservation of wild grapevine in
order to jointly propose a set of indicators that will help in
conserving and studying genetic resources of wild grape-
vine. The following aspects were considered: 1) compila-
tion of bibliography/available information on habitats and
wild grapevine research, 2) identification of subsp. sylves-
tris individuals in the wild, 3) in situ and ex situ conserva-
tion and characterization of agro-biological traits.

Results

Bibliography on Vitis vinifera L. subsp. sylvestris: The bibliography covering wild grapevine available from usual bibliographic databases (VITIS-VEA, Web of Science, Scopus) was compiled. 155 publications were examined studying different as-
pects, methods and results with a focus on wild grapevine.
The most common aspect was the identification and study
of genetic diversity of wild grapevine populations using
"Simple Sequence Repeats" (SSR) markers. In addition
to this list of publications, 60 collected publications were
produced outside of the traditional academic channels and
included unpublished articles or materials published in lo-
cal journals. Such material, although less available to the
wider academic community, may provide necessary infor-
mation or evidence of wild grapevine populations’ exist-
ence and therefore could be very important for conserva-
tion. The distribution map of wild grapevine was generated
on the basis of available GPS coordinates extracted from
referred scientific publications. The full bibliography and
distribution map are available from the European Vitis Da-
tabase and will be open for continuous updating.

Identification and characterization of V. syl-
vestris individuals in the wild: Before starting
molecular characterization by applying SSR markers, it is
necessary to perform morphological evaluation to confirm
trueness to type. Morphological identification should be
carried out for every individual according to the interna-
tional format of descriptors for grapevine (OIV descrip-
 tors). Very often intruder plants can be found among the
wild grapevine individuals in a population, but applying the
proposed morphological evaluation it should be possible to
discriminate between wild grapevine, cultivated grapev
ine and other Vitis species. The Table shows recommended
OIV descriptors for in situ identification of wild grapevine
individuals. Morphological identification is recommended
as a two-step process to examine in total 25 characteris-
tics (23 OIV descriptors + 2 characteristics not included in
Table

Minimal check list of OIV descriptors for morphology evaluation of *Vitis sylvestris* individuals in the wild

<table>
<thead>
<tr>
<th>1st screening: Vitis vinifera or other Vitis sp.</th>
<th>Expression level for V. vinifera L.</th>
</tr>
</thead>
<tbody>
<tr>
<td>OIV001 Young shoot: opening of the shoot tip</td>
<td>Always full open</td>
</tr>
<tr>
<td>OIV012 Shoot: density of erect hairs on internodes</td>
<td>None or very low</td>
</tr>
<tr>
<td>OIV016 Shoot: number of consecutive tendrils</td>
<td>Always 2 or less</td>
</tr>
<tr>
<td>OIV051 Young leaf: color of upper side of blade (4th leaf)</td>
<td>Often green or yellow</td>
</tr>
<tr>
<td>OIV076 Mature leaf: shape of teeth</td>
<td>Never sharp teeth’s (one side concave, one side convex)</td>
</tr>
<tr>
<td>OIV078 Mature leaf: length of teeth compared with their width</td>
<td>Never very long or very short</td>
</tr>
<tr>
<td>OIV084 Mature leaf: density of prostrate hairs between main veins on lower side of blade</td>
<td>Rarely none or very low</td>
</tr>
<tr>
<td>OIV452 Leaf: degree of resistance to Plasmopara</td>
<td>Always none or very low</td>
</tr>
<tr>
<td>OIV455 Leaf: degree of resistance to Oidium</td>
<td>Always none or very low</td>
</tr>
<tr>
<td>OIV461 Degree of tolerance to Phylloxera (leaf)</td>
<td>Often high</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2nd screening: subspecies vinifera (sativa) or sylvestris?</th>
<th>Expression level for sylvestris</th>
</tr>
</thead>
<tbody>
<tr>
<td>OIV151 Flower: sexual organs</td>
<td>Always dioecious</td>
</tr>
<tr>
<td>OIV074 Mature leaf: profile of blade in cross section</td>
<td>Often flat or revolute</td>
</tr>
<tr>
<td>OIV076 Mature leaf: shape of teeth</td>
<td>Often both sides straight</td>
</tr>
<tr>
<td>OIV078 Mature leaf: length of teeth compared with their width</td>
<td>Often short to medium</td>
</tr>
<tr>
<td>OIV079 Mature leaf: degree of opening / overlapping of petiole sinus</td>
<td>Always open</td>
</tr>
<tr>
<td>OIV082 Mature leaf: degree of opening / overlapping of upper lateral sinus</td>
<td>Always open</td>
</tr>
<tr>
<td>OIV085 Mature leaf: density of erect hairs between the main veins on lower side of blade</td>
<td>Often low</td>
</tr>
<tr>
<td>OIV087 Mature leaf: density of erect hairs on main veins on lower side of blade</td>
<td>Often low</td>
</tr>
<tr>
<td>Colors of leaves in autumn</td>
<td>Always anthocyanin coloration</td>
</tr>
<tr>
<td>OIV204 Bunch: density</td>
<td>Never dense</td>
</tr>
<tr>
<td>OIV220 Berry length</td>
<td>Always very short</td>
</tr>
<tr>
<td>OIV223 Berry: shape</td>
<td>Always round (obloid, globose)</td>
</tr>
<tr>
<td>OIV225 Berry: color of skin</td>
<td>Always blue black</td>
</tr>
<tr>
<td>OIV236 Berry: particular flavor</td>
<td>Always none</td>
</tr>
<tr>
<td>OIV242 Berry: Length of seeds</td>
<td>Often very short</td>
</tr>
<tr>
<td>OIV243 Berry: Weight of seeds</td>
<td>Always very low</td>
</tr>
<tr>
<td>Length of seed beak compared with whole seed length</td>
<td>Always short beak</td>
</tr>
</tbody>
</table>

1 Expression level for *Vitis vinifera* L. and *sylvestris* estimated as most frequent notation.
* Characteristics not included in OIV Descriptor List.
OIV list). In the first step 10 distinctive OIV descriptors are used to determine whether the observed individuals truly belong to *Vitis vinifera* species or not. In the second step 17 characteristics (15 distinctive characteristics + OIV076 and OIV078 already tested in first step) are recommended for determining whether the observed individuals belong to *vinifera* (synonym *sativus*) or *sylvestris* subspecies. Molecular analysis should follow-on from this morphological evaluation, using the 9 SSR markers (VVS2, VVMD5, VVMD7, VVMD27, VzZAG62, VzZAG79, VVMD25, VVMD28, VVMD32) agreed in GRAPEGEN06 project as a standard descriptor set for grapevine identification (THS et al. 2004). Characterization and evaluation based on additional OIV descriptors from the OIV descriptor list (OIV, 2009) should be carried out on accessions deposited in *ex situ* collections (BENTO et al. 2017).

In situ conservation: The most efficient way to conserve endangered plant species is to protect their natural habitats and ecosystems. Each country should make efforts to include wild grapevine in their national list of endangered species, following the positive examples of France and Hungary. ECPGR National Coordinators could support this effort within their respective countries. Researchers working on wild grapevine are in a strong position to educate and inform responsible people about the importance of wild grapevine and its conservation. This applies to the people managing protected areas, and public and private forests, such as associations, environmental organizations or similar institutions. In order to prevent losses by fire, cleaning of riversides or other events, it is necessary to share information on wild grapevine hot spots with all potential stakeholders.

For conservation, it is necessary to estimate the degree of sensitivity of each specific population to direct human impact. The following vulnerability indicators (often depending on human activities) should be taken into consideration for *in situ* efficient conservation: distance from roads; distance from villages/towns; number of individuals found destroyed in a certain time; distance from commercial vineyards; traces of viticulture activity in the past; ratio of female and male individuals, genetic pollution by other cultivated grapevines (e.g. *vinifera* cultivars, hybrids, rootstocks) within the population, and population size.

Ex situ conservation: As with other plant genetic resources, particularly with those at risk of extinction, it is necessary to conserve wild grapevine genetic diversity by establishing *ex situ* germplasm collections as a source of material for restoration of plants in the natural habitat, for characterization and other research purposes.

Vegetative (clonal) propagation is preferable because it enables the conservation of the intact genotype of mother plants. Dormant cuttings are preferable material for propagation. As an alternative, green shoots in summer time could also be collected. Generative propagation by seeds is also possible for inclusion into *ex situ* collection. In this case, we recommend checking individuals grown from seed using an appropriate number of SSR markers, because open pollination allows the possibility of a pollen donor other than *V. sylvestris*. Propagation from seed is recommended only when vegetative propagation is not possible. Tissue culture can be used for propagation when seeds or cuttings are not adequate (PENCE 2010).

After morphological screening *in situ*, the following steps are therefore suggested for the *ex situ* conservation process:
- 1. Molecular identification – recommended prior setting up *ex situ* collections.
- 2. Establishing *ex situ* safety duplication sites, to be documented according to Descriptor N. 25 of the FAO/BIOVERSITY MULTI-CROP PASSPORT DESCRIPTORS V.2.1 (December 2015) – (MCPD). We recommend duplicating collections in botanical gardens or other (public) institutions.
- 3. The number of plants from each individual should be at least 3.
- 4. Type of storage (MCPD, descriptor N. 26) – grafting is recommended for ampelographic description. If grafting is not possible during the first year (for example if the diameter of cuttings are too small for effective grafting), cuttings should be rooted in pots and grafting made later, when the plants are sufficiently developed. Rootstock remains at the discretion of the collection holder, depending on soil characteristics.
- 5. If a field collection cannot be established, another type of storage should be chosen (see descriptor N. 26 of the MCPD).

Conclusions

Wild grapevine (*Vitis vinifera* subsp. *sylvestris* Gmel.) is a valuable and endangered plant deserving full professional attention for conservation in its natural habitats (*in situ*) and in *ex situ* collections. Within InWiGrape ECPGR Activity, partners proposed a set of measures for identification and conservation of wild grapevine genetic resources. A distribution map of wild grapevine populations in Europe was produced on the basis of available bibliographic information. The map is accessible on-line through the European *Vitis* Database. Conservation of wild grapevine genetic resources requires the participation of different stakeholders, including research institutes, public/private forestry institutions/departments, botanical gardens and other state organizations working on biodiversity and ecosystems.

Acknowledgements

Authors thank the European Cooperative Programme for Plant Genetic Resources (ECPGR) for supporting the InWiGrape Activity, and V. JOHNSON of Biodiversity International for editing the script. The Hungarian research was funded by the National Research, Development and Innovation Office (PD- 109386). G. ZDUNIĆ acknowledges financial support from the Croatian Science Foundation (Project No. UIP-2014-09-9737).
References

Received May 2, 2017
Accepted June 6, 2017