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ABSTRACT 26 

 With the availability of the 600K Affymetrix® Axiom® high-density (HD) single 27 

nucleotide polymorphism (SNP) chip, genomic selection has been implemented in broiler and 28 

layer chicken. However, the cost of this SNP chip is too high to genotype all selection 29 

candidates. A solution is to develop low density SNP chip, at a lower price, and to impute all 30 

missing markers. But to routinely implement this solution, the impact of imputation on 31 

genomic evaluation accuracy must be studied. It is also interesting to study the consequences 32 

of the use of low density SNP chips on genomic evaluation accuracy. In this perspective, the 33 

interest of using imputation in genomic selection was studied in a pure layer line. 34 

Two low density SNP chip design were compared: an equidistant (EQ) methodology 35 

and a methodology based on linkage disequilibrium (LD). Egg weight, egg shell color, egg 36 

shell strength and albumen height were evaluated with single-step GBLUP methodology. The 37 

impact of imputation errors or the absence of imputation on the ranking of the male selection 38 

candidates was assessed with a genomic evaluation based on ancestry. Thus, genomic 39 

estimated breeding values (GEBV), with imputed HD genotypes or low density genotypes, 40 

were compared to GEBV obtained with the HD SNP chip. The relative accuracy of GEBV 41 

was also investigated by considering as reference GEBV estimated on offspring. 42 

A limited reordering of the breeders, selected on a multi-trait index, was observed. 43 

Spearman correlations between GEBV on HD genotypes and GEBV on low density 44 

genotypes (with or without imputation) were always higher than 0.94 with more than 3K 45 

SNPs. For the genetically closer top 150 individuals for a specific trait, with imputation, the 46 

reordering was reduced with correlation higher than 0.94 with more than 3K SNPs. Without 47 

imputation the correlations remained below 0.85 with less than 3K and 16K SNPs for EQ and 48 

LD methodology, respectively. The differences in GEBV correlations between both 49 

methodologies never were significant. The conclusions were the same for all studied traits. 50 
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INTRODUCTION 76 

The availability of single nucleotide polymorphisms (SNP) enabled the development 77 

of high-throughput genotyping technologies leading to the use of the 600K Affymetrix® 78 

Axiom® high density (HD) genotyping array, a high-density genotyping chip developed by 79 

Kranis et al. in 2013, in layer and broiler breeding. Genomic selection as described by 80 

Meuwissen et al. (2001) has then been implemented in many livestock species with different 81 

statistical methods like genomic best linear unbiased prediction methods (GBLUP) (Legarra 82 

et al., 2009; Goddard et al., 2011) or Bayesian methods (Meuwissen et al., 2001; Xu, 2003; 83 

Habier et al., 2009). From a reference population with genotypes and phenotypes, it is 84 

possible to estimate the genomic value of the genotyped selection candidates with or without 85 

phenotype. The main objective is to choose among the selection candidates of generation N, 86 

the best breeders for one or more traits to produce the individuals of the generation N+1. In 87 

addition, compared to a genetic selection, genomic selection may increase the genetic gain 88 

through the decrease in generation interval, most particularly for species with high generation 89 

interval, through the increase in selection intensity by genotyping many selection candidates 90 

and through the increase in evaluation accuracy. 91 

However, the high cost of such high density (HD) SNP chip is still a problem for all 92 

livestock species. To reduce the cost of genomic selection, low density SNP chips can be 93 

developed. The idea is to select a subset of markers from the HD SNP chip and to impute the 94 

genotypes at missing markers. Three main methods to select the marker panel have been 95 

developed: (1) selection of a subset of SNPs chosen at regular intervals along each 96 

chromosome taking into account or not the MAF of the selected SNPs (Habier et al., 2009; 97 

Weigel et al., 2009; Zhang et al., 2011; Cleveland & Hickey, 2013; Wang et al., 2013; Herry 98 

et al., 2018), (2) selection of a subset of SNPs having high effects on different traits of interest 99 

(Weigel et al., 2009, Zhang et al., 2011), or (3) selection of a subset of SNPs based on linkage 100 
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disequilibrium (LD) between markers (Herry et al., 2018). This latter method was studied 101 

because of the particularities of the Gallus gallus genome (International Chicken Genome 102 

Sequencing Consortium, 2004) and the particular structure of the avian linkage disequilibrium 103 

(Megens et al., 2009; Qanbari et al., 2010; Hérault et al., 2018). 104 

Factors influencing imputation accuracy are well documented as well as the relation 105 

between imputation accuracy and genomic evaluation of the selection candidates. 106 

Theoretically, due to imputation errors, genomic evaluation accuracy with imputed genotypes 107 

is expected to be lower than a genomic evaluation done with HD genotypes. The literature 108 

confirms it for very low density SNP chip (from few SNPs to 3K SNPs) with a decrease in 109 

genomic evaluation accuracy with a decrease, sometimes limited, in imputation accuracy 110 

(Weigel et al., 2009; Weigel et al., 2010; Mulder et al., 2012; Cleveland & Hickey, 2013, 111 

Raoul et al., 2017). But concerning intermediate low density SNP chip (between 6K and 20K 112 

SNPs), other studies showed that the impact of imputation errors was very limited (Weigel et 113 

al., 2010; VanRaden et al., 2011; VanRaden et al., 2012; Moghaddar et al., 2015; Wang et al., 114 

2016). However, few studies about the impact of imputation on genomic evaluation have been 115 

led on chickens (Wang et al, 2013).  116 

In addition, several studies showed that for traits affected by few large QTL, genomic 117 

evaluations are more sensitive to imputation errors. This was shown by Habier et al. (2009) 118 

and Zhang et al. (2011) in simulation studies and confirmed by Chen et al. (2014) on real 119 

data. They showed, in Holstein bulls, that the accuracy of direct genomic value (DGV) for 120 

milk fat percentage, a trait affected by few large QTL, decreased by 34% via GBLUP using 121 

imputed genotypes. Conversely, they showed that the accuracy of DGV for the somatic cell 122 

score, a trait affected by many small QTL, decreased only by 15%. In layer chickens, most of 123 

studied traits are affected by many small QTL. This could indicate that genomic evaluation 124 

would not be severely impacted by imputation errors. 125 
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Finally, most studies investigated the impact of imputation on genomic evaluation 126 

accuracy, but only few studies focused on the impact of the use of medium density SNP chip 127 

(Su et al., 2012; Moghaddar et al., 2015) or low density SNP chip (Weigel et al., 2009; Harris 128 

& Johnson, 2010) without imputation on genomic evaluation. 129 

The main objective of a company is to select their breeders and to describe the 130 

consequences on the loss of selection response and on genetic progress by investigating if the 131 

ranking of their best candidates would be modified with the use of low density SNP chip. 132 

Thus, focusing on four generations of a pure line of laying hens, the first objective of this 133 

study was to investigate the impact of imputation errors on genomic evaluation with an 134 

evaluation based on ancestry of the candidates of the second generation with true HD 135 

genotyping or imputed HD genotyping. The second objective was to study the impact of a 136 

direct use of low density SNP chips, without imputation, on genomic evaluation. To do so, a 137 

comparison was done between the same previous genomic evaluation of the candidates based 138 

on ancestry with true HD genotyping or with low density genotyping without imputation. 139 

Then, to get closer to the true breeding values of the candidates, their genomic estimated 140 

breeding values (GEBV) was estimated with a genomic evaluation with optimal information 141 

(phenotypes on descendants). Thus, the third objective was to assess the relative accuracy of 142 

genomic evaluation by comparing the GEBV of the candidates of the second generation with 143 

optimal information (phenotypes on their descendants of the third and fourth generations) and 144 

their GEBV based on ancestry with imputed HD genotyping. Finally, imputed HD genotyping 145 

of the candidates were replaced by their low density genotyping without imputation. 146 

Therefore, the fourth objective was to assess the relative accuracy of genomic evaluation of 147 

the candidates without imputation.  148 

 149 

 150 
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 151 

MATERIAL AND METHODS 152 

Ethics Statement 153 

All blood samples were carried out as part of the commercial and selection activities 154 

of Novogen. These animals studied and the scientific investigations described herein are 155 

therefore not to be considered as experimental animals per se, as defined in EU directive 156 

2010/63 and subsequent national application texts. As a consequence, we did not seek ethical 157 

review and approval of this study as one inclusing the use of experimental animals. All 158 

animals were reared in compliance with national regulations pertaining to livestock 159 

production and according to procedures approved by the French Veterinary Services. 160 

 161 

Animals 162 

All animals studied were detailed in Herry et al. (2018). They consisted in a 163 

commercial pure line of Rhode Island (RI) laying hens. This line was created and selected by 164 

Novogen (Plédran, France). The population studied was comprised of 21,475 chickens split in 165 

four generations. Each generation was divided in three batches and a new batch was bred 166 

every six months from 2010 to 2015 (Figure 1). 167 

Concerning the laying hens, phenotypic data were recorded from 60 to 90 weeks of age, when 168 

birds where bred in individual cages. Each data collected was associated with a laying hen. 169 

There were 75,121 measures recorded for 7983 birds. Finally, the sires were bred in 170 

individual cages. 171 

Genomic selection was implemented in 2015 on males of this line. However, females were 172 

still selected based on pedigree and performances, and not with genomic selection. Thus, this 173 

study concerned male selection candidates. In addition, among the different parameters 174 
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studied and detailed in a next section, the relative accuracy of genomic selection was 175 

investigated. To calculate this relative accuracy, it is necessary to have a set of male selection 176 

candidates with information on their offspring. These male selection candidates were the 67 177 

male breeders of the generation G1. 178 

 179 

Genotyping 180 

Genotyping are briefly described because detailed in Herry et al. (2018). 2370 animals 181 

were genotyped for 580,961 SNPs using the 600K Affymetrix® Axiom® HD genotyping array 182 

(Kranis et al., 2013).  183 

Based on the fifth annotation release of Gallus gallus genome (Warren et al., 2017), 184 

these SNPs were distributed on macro-chromosomes (1 to 5), intermediate chromosomes (6 to 185 

10), micro-chromosomes (11 to 28 and 33), one linkage group (LGE64), two sexual 186 

chromosomes Z and W, as well as a group of 3,724 SNPs with unknown location. 187 

Genotypes were filtered through six successive steps (Table 1) including individual 188 

call rate (<95%), MAF (<0.05), SNP call rate (<95%) and Hardy-Weinberg equilibrium (P < 189 

10-4). SNPs with unknown location or located on sexual chromosome W were removed, as 190 

well as the animals showing pedigree incompatibilities. Most of the SNPs had to be removed 191 

because they showed zero MAF. Finally, 300,351 SNPs and 2362 individuals remained 192 

available for the analyses. 193 

 194 

Low Density SNP Chips Design 195 

Several low density SNP chips were previously designed in silico by selecting a subset 196 

of SNPs (Herry et al., 2018) from the HD SNP chip. 197 

An equidistant (EQ) methodology was studied by selecting SNPs at regular physical 198 

intervals (in pb) along each chromosome. In addition, for each interval, the SNP with the 199 
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highest MAF, or the one located furthest on the left, in case of equivalent MAF, was selected. 200 

12 low density “equi” SNP chips were designed according to this method with different SNP 201 

densities: 1K, 2K, 3K, 4K, 5K, 7.5K, 10K, 15K, 20K, 30K, 40K and 50K SNPs. 202 

A linkage disequilibrium (LD) methodology was studied considering the particular 203 

structure of the chicken linkage disequilibrium (Robert et al., 2015). Low density SNP chips 204 

were designed using the SS4I software (Hérault et al., 2016). This software enabled to obtain 205 

clusters of SNPs according to a chosen LD threshold. For each cluster, the SNP with the 206 

highest MAF was selected and used as representative of this cluster. 9 low density “LD” SNP 207 

chips were designed with different LD thresholds: 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8. 208 

 209 

Imputation Accuracy 210 

In our study, the selection candidates were the 580 sires of the second generation (G1) 211 

with simulated low density genotyping. The selection candidates were imputed from the high 212 

density genotyping of the 447 sires of the first generation (G0). These 447 individuals were 213 

the fathers or the fathers’ half-brothers of the selection candidates. Thus, the selection 214 

candidates were directly related to them.  215 

For each low density SNP chip designed, imputation accuracy of the selection 216 

candidates was previously assessed as the mean correlation between true and imputed 217 

genotypes (Herry et al., 2018). Correlations were calculated one SNP at a time for all the 218 

candidates, as suggested in Pearson’s method. The mean correlation was then estimated on 219 

300,351 correlations. The mean correlations obtained were subsequently compared for the 220 

different low density SNP chips and/or scenarios, using Student tests with type 1 error rate of 221 

0.1%. 222 

 223 

 224 
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 225 

Measurement of Traits 226 

Four distinct traits were studied in this paper. They are named according to Animal 227 

Trait Ontology for Livestock (Atol Ontology, 2012). From 60 to 75 weeks, egg production 228 

was recorded each day for all individuals. There were individual data. 75,121 eggs concerning 229 

7983 birds were measured from (G0) to (G3). 230 

One egg was collected per layer and per week, between 60 and 75 weeks, for all 231 

layers. These eggs were then transferred at Zootests (Ploufragan, France) to study egg quality 232 

traits. The first step was to measure Egg Weight (EW, in g). Then, three traits concerning egg 233 

shell color were estimated with a Minolta Chroma Meter: redness (a*), yellowness (b*) and 234 

lightness (L*) of egg shell. Egg Shell Color (ESC) was then calculated as ��� =235 

 100 – (
∗  −  ∗ −  �∗). The next step consisted in measuring Egg Shell Strength (ESS, in N) 236 

by using a compression machine to evaluate the shell static stiffness. ESS corresponded to the 237 

maximum force recorded before fracturing the shell. Finally, each egg was broken and 238 

Albumen Height (AH) was measured using a tripod. 239 

 240 

Genomic Evaluation Strategies 241 

EW, ESC, ESS and AH were evaluated with single-step GBLUP methodology 242 

(Legarra et al., 2009) using BLUPF90 programs (Misztal et al., 2002). 243 

The first part aimed to investigate the impact of imputation errors on genomic 244 

evaluations (Figure 2a). To do so, a genomic evaluation based on ancestry “Anc_HD” was 245 

done using true HD genotyping of the 447 G0 sires and selection candidates (G1), and 246 

phenotypes of the first generation (G0). A second genomic evaluation based on ancestry 247 

“Anc_Imputed” was done using the same data for the 447 G0 sires and imputed HD 248 

genotyping of the selection candidates (G1) from simulated low density SNP chips previously 249 
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designed. For each low density SNP chip and for each trait, Spearman correlations, that 250 

enabled to estimate the reordering of the selection candidates, were calculated between true 251 

“Anc_HD” Genomic Estimated Breeding Value (GEBV) and “Anc_Imputed” GEBV. 252 

Spearman correlations were calculated for the top 150 individuals from G1 according to each 253 

trait. Spearman correlations were limited to the top 150 males to better describe the 254 

consequences of imputation errors on the reordering of these individuals, and thus to better 255 

describe the consequences on the loss of selection response and on genetic progress. The 256 

objective was to identify the good candidates and to successfully rank them among 257 

themselves. We did not focus on the ranking of the less good candidates. There were also 258 

calculated for the 67 breeders from G1 having at least 10 offspring in G2.  259 

Then, concerning the second objective, imputed HD genotyping of the candidates were 260 

replaced by their low density genotyping without imputation, allowing to simulate the impact 261 

of the direct use of the different low density SNP chips without imputation (Figure 2b). This 262 

part also implied the use of low density genotyping without imputation for the reference 263 

population. For each low density SNP chip and for each trait, Spearman correlations were 264 

calculated between the same previous true “Anc_HD” GEBV and “Anc_Not_Imputed” 265 

GEBV obtained with low density genotyping (without imputation). These correlations were 266 

calculated for the same 67 breeders of G1 and the top 150 individuals from G1 according to 267 

each trait. 268 

The third objective was to study the attainable relative accuracy with imputation 269 

(Figure 2c). To calculate this relative accuracy, it is necessary to have a set of male selection 270 

candidates with information on their offspring. On one hand, males don’t have own 271 

phenotypes and only a few of them have daughter records. Thus, information from them is 272 

limited. On the other hand, Generation 2 had 662 genotyped females with own performances 273 

and some of them with progeny records. They would provide a more reliable validation set 274 
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with GEBVs using all available information fairly close to the true breeding values. However, 275 

females were still selected based on pedigree and performances, and not with genomic 276 

selection. Thus, this study focused on male selection candidates. To get closer to the true 277 

breeding values for the males, a genomic evaluation “Full_HD” of the G1 candidates was 278 

done with all available information (phenotypes and genotypes) from (G0) to (G3). These 279 

“Full_HD” GEBV leaded to closer to the true breeding values of the G1 candidates which 280 

cannot be calculated. These “Full_HD” GEBV represented the maximum of relative accuracy 281 

attainable regarding this genomic evaluation with all information and were calculated only for 282 

the 67 G1 breeders which had at least 10 offspring in G2. Then, these “Full_HD” GEBV were 283 

compared by Pearson correlations with the previous GEBV based on ancestry “Anc_Imputed” 284 

with imputed HD genotyping of the breeders, for each simulated low density SNP chip. 285 

Finally, imputed HD genotyping of the candidates were replaced again by their low 286 

density genotyping without imputation. The “Full_HD” GEBV of the 67 G1 breeders were 287 

compared by Pearson correlations with their GEBV obtained with low density genotyping 288 

without imputation (“Anc_Not_Imputed” GEBV). The fourth objective was thus to 289 

investigate the impact of a direct use of low density SNP chips without imputation on relative 290 

accuracy of genomic evaluation (Figure 2d). 291 

The four traits were jointly estimated according to a classical multi-trait animal model: 292 

� = 1μ + �� + �� + �. � is a vector of the four traits of each individual, μ is the vector of 293 

means of each trait, � is a vector of fixed effects including batches, battery and position in the 294 

battery, � is a vector of genomic breeding values and � is a vector of random residual effects. 295 

� and � are design matrixes relating respectively phenotypes to fixed effects and phenotypes 296 

to genomic breeding values (�). It is assumed that �~�(0, � ⊗ �) where � is the genetic 297 

relationship matrix combining SNP information and pedigree data (Legarra et al., 2009) and 298 

W is the matrix of variance and covariance of the genomic breeding values of the four traits. 299 
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Finally, �~�(0, � ⊗ �) where � is the identity matrix and � is the matrix of residual variance 300 

and covariance of the four traits. 301 

Software 302 

FImpute V2.2 (Sargolzaei et al., 2014) was used to impute the selection candidates 303 

with low density genotyping to high density genotyping from the individuals of G0 with high 304 

density genotyping. 305 

The scenario with all available information (Full_HD) was used to estimate the genetic 306 

parameters of the model. Remlf90 (Misztal et al., 2002) was used to estimate the genetic and 307 

residual variance components. Once fixed, all different genomic evaluations based on 308 

ancestry were performed with Blupf90. The variance components were compared to 309 

components estimated with a pedigree based model using all phenotypes. They were highly 310 

correlated (Picard Druet et al., 2019). 311 

 312 

RESULTS AND DISCUSSION 313 

Imputation Accuracy 314 

All the results concerning imputation accuracy were presented in Herry et al. (2018) 315 

but the evolution of the mean correlations between true and imputed genotypes for the two 316 

different methodologies were recalled in Figure 3. For both methodologies, there was an 317 

increase in mean correlation with an increase in the number of SNPs on the different low 318 

density SNP chips. Better imputation accuracies were obtained with the LD methodology at 319 

an equivalent SNP density. The differences observed in mean correlation between the two 320 

methodologies were all significant. In addition, for the EQ methodology at a very low density 321 

of 1K SNPs, the mean correlation was 0.7098 indicating a quite deteriorated imputation 322 

accuracy. This corresponded to a genotyping imputation error rate of 18.5%. 323 
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These results were consistent with those found in the literature (Dassonneville et al., 324 

2012; Carvalheiro et al., 2014) where an increase in the number of SNPs on low density SNP 325 

chip led to better imputations. 326 

Impact of Imputation Errors 327 

The impact of imputation errors was investigated by comparing the results of a 328 

genomic evaluation based on ancestry, with true HD genotyping or with imputed HD 329 

genotyping. Only the results for Egg Weight (EW) were shown to simplify the reading and 330 

because of the similarity of the results for the other traits. 331 

 332 

Results For The Top 150 Individuals. 333 

For both methodologies (Figure 4a), there was an increase in Spearman correlations 334 

between “Anc_HD” GEBV and “Anc_imputed” GEBV with an increase in SNP density. 335 

Indeed, for the LD0.05 and LD0.8 SNP chips, the mean correlations were respectively 0.8661 336 

and 0.9931. For the 3Kequi and 20Kequi SNP chips, there were respectively 0.9045 and 337 

0.9885. These results are in agreement with imputation accuracies obtained with the different 338 

low density SNP chips. There was an increase in mean correlation concerning the evaluations 339 

with an increase in imputation accuracy which is consistent with the literature. Moghaddar et 340 

al. (2015) showed, for Merino sheep, that the mean correlations between GEBV based on true 341 

genotypes (50K) and GEBV based on imputed genotypes (50K imputed from 12K) increased 342 

with imputation accuracies.  343 

It was noticed that for both methodologies, with more than 5K SNPs, the mean 344 

correlations were above 0.90 indicating a re-ranking rather reduced of the best individuals for 345 

EW. However, for the 1Kequi SNP chip, the mean correlation was 0.7833 indicating a 346 

reordering quite important of the best individuals for egg weight.  347 
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Finally, at equivalent SNP density of 3K SNPs, the EQ methodology seemed to 348 

present higher results than the LD methodology with mean GEBV correlations of respectively 349 

0.9045 and 0.8661 for the 3Kequi and LD0.05. But the differences were not significant since 350 

the standard errors were ±0.04 for both SNP chips. At a density of 20K SNPs, both 351 

methodologies were equivalent with mean GEBV correlations of respectively 0.9885 and 352 

0.9931 for the 20Kequi and LD0.8. However, as seen previously, the LD methodology 353 

appeared to be better to get good imputation accuracies. Thus, higher imputation accuracies 354 

with the LD methodology were not synonymous of better mean correlations between GEBV 355 

compared to the EQ methodology. This could be due to the methodology itself. Indeed, Harris 356 

and Johnson (2010) and Weigel et al. (2010) said that an equidistant methodology was better 357 

to get good genomic evaluation results for traits controlled by many small QTL, which is the 358 

case for the four traits studied. On the contrary, genomic evaluations concerning traits 359 

controlled by few large QTL were more sensitive to equidistant methodology which was 360 

consequently not the most appropriated methodology. Moreover, ssGBLUP methodology 361 

considers a same variance for each SNP (Legarra et al., 2009) and consequently would favor 362 

the EQ methodology. Finally, another reason could be due to the errors done with imputation. 363 

Some imputation errors from LD SNP chips could degrade more the GEBV estimation than 364 

imputation errors from equidistant SNP chips. The EQ methodology would be more robust 365 

than the LD methodology in case of imputation errors.  366 

 367 

Results For The Breeders. 368 

Spearman correlations between “Anc_HD” GEBV and “Anc_Imputed” GEBV were 369 

also calculated for the 67 G1 breeders having at least 10 offspring in the next generation G2. 370 

For both methodologies (Figure 4b), there was an increase in Spearman correlations with an 371 

increase in SNP density. Indeed, for the LD0.05 and LD0.08 SNP chips, the mean GEBV 372 
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correlations were respectively 0.9777 and 0.9979. For the 3Kequi and the 20Kequi SNP chips, 373 

the results were respectively 0.9771 and 0.9972. Thus, the results were higher compared to 374 

the results for the top 150 individuals. This is due to the distribution of the 67 breeders which 375 

were not the best breeders of G1 for EW, but the best for a set of selection criteria. This was 376 

confirmed by plotting the normal distribution of HD GEBV estimated on ancestry with true 377 

HD genotyping for all G1 candidates (Figure 5). The 67 breeders (in red on the plot) were 378 

well distributed among the 580 individuals of G1 which reduced the reordering of the 379 

individuals. 380 

The results also showed that even with a SNP density superior to 2K SNPs, good mean 381 

correlations (superior to 0.95) could be obtained indicating a very reduced re-ranking of the 382 

individuals. With only 5K SNPs imputed to the HD SNP chips, mean correlations above 0.98 383 

could be reached.  384 

However, with the 1Kequi SNP chip, the mean GEBV correlation was under 0.95. 385 

This decrease in correlation was also illustrated by Cleveland and Hickey (2013) in pig. They 386 

used only 450 SNPs imputed to the Illumina PorcineSNP60 BeadChip which resulted in a 387 

decrease in correlation to 0.866 (for an imputation accuracy of 0.914). Thus, by decreasing to 388 

much the SNP density, the reduced imputation accuracies can have negative consequences on 389 

genomic evaluations. 390 

Finally, our results did not show any difference between EQ and LD methodologies.  391 

 392 

Impact of the Absence of Imputation 393 

Given the good results of genomic evaluations with imputed genotyping, the impact of 394 

the absence of imputation was studied. Only the results for Egg Weight (EW) were shown to 395 

simplify the reading and because of the similarity of the results for the other traits. 396 

 397 
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Results For The Top 150 Individuals. 398 

For the top 150 individuals for both methodologies (Figure 6a), there was an increase 399 

in Spearman correlation between “Anc_HD” GEBV and “Anc_Not_Imputed” GEBV with an 400 

increase in SNP density. Indeed, the mean correlations for the 3Kequi and the 20Kequi SNP 401 

chips were respectively 0.8507 and 0.9379. For the LD0.05 and the LD0.8 SNP chips there 402 

were respectively 0.7816 and 0.8658. Zhang et al. (2011) showed in simulation studies that 403 

compared to the results of a genomic evaluation done with HD SNP chip, the results of 404 

genomic evaluations done with low density SNP chips without imputation also decreased. 405 

With an effective population size of 100, heritability of 0.5, 241 QTL, and a SNP chip of 10K 406 

markers, the relative accuracy of the GBLUP evaluation decreased from 0.88 with 5K 407 

markers to 0.69 with only 200 markers. 408 

For both methodologies, there was a consequent decrease in mean correlations 409 

compared to the results of the genomic evaluations done with imputed HD genotyping. For 410 

the 1Kequi and the 50Kequi SNP chips, both imputed, the results were respectively 0.7833 411 

and 0.9964. Without imputation, the results were respectively 0.6261 and 0.9503. Likewise, 412 

for the LD0.05 and the LD0.8 SNP chips with imputation, the results were respectively 413 

0.8661 and 0.9931. Without imputation, the results decreased respectively to 0.7816 and 414 

0.8658. Furthermore, from 20K SNPs, the results for the EQ methodology seemed to reach a 415 

mean correlation threshold of 0.95 whereas with imputation the mean correlations were above 416 

0.99. Thus, imputations enabled to increase significantly the mean correlations, mainly for 417 

very low density SNP chips. In addition, these results indicate that the ranking of the best 150 418 

individuals of G1 for EW obtained without imputation was quite different from the ranking 419 

obtained with HD genotyping. The lower results obtained for very low SNP density indicated 420 

that using few SNPs could not be sufficient to accurately rank individuals having very close 421 

genomes. 422 
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Finally, at equivalent SNP density, a tendency to get higher results with the EQ 423 

methodology was observed. Indeed, at 3K SNPs, the difference in mean correlation between 424 

3Kequi and LD0.05 SNP chips was equal to 0.07. The same difference was obtained between 425 

20Kequi and LD0.8 SNP chips. Such differences were higher than with imputation but were 426 

not significant. However, we can note that the correlations remained always below 0.90 for 427 

the top 150 individuals whatever the SNP density with the LD methodology without 428 

imputation. The differences between methodologies are consistent with the genetic 429 

determinism of the four traits as explained in the previous part (Harris and Johnson, 2010; 430 

Weigel et al., 2010). In addition, the EQ methodology enabled a covering of all chromosomes 431 

more optimal than the LD methodology (Herry et al., 2018). With the LD methodology, there 432 

were some gaps on chromosomes without SNPs selected on low density SNP chips. With the 433 

EQ methodology, the number of gaps was decreased, or at least their size was lower.  434 

 435 

Results For The Breeders. 436 

Spearman correlations between “Anc_HD” GEBV and “Anc_Not_Imputed” GEBV 437 

were also calculated for the 67 breeders (Figure 6b). For both methodologies, there was an 438 

increase in Spearman correlations with an increase in SNP density. At equivalent SNP 439 

density, the results for the 3Kequi and 20Kequi SNP chips were respectively 0.9484 and 440 

0.9802. For the LD0.05 and LD0.8 the results were respectively 0.9349 and 0.9665. 441 

Compared to the results for the top 150 individuals, the results were better for the 67 breeders 442 

as shown previously in the scenario with imputation. Finally, for a SNP density higher than 443 

3K, the mean correlations were above 0.94 for both methodologies, indicating a reordering 444 

rather reduced of the 67 breeders. In bovine, Weigel et al. (2009) showed that compared to the 445 

top 500 bulls selected from progeny testing, 306 were truly selected with 32K SNPs chosen 446 

from the Illumina BovineSNP50 Bead Chip. With 2K equally spaced SNPs, 292 bulls were 447 
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chosen. With only 500 equally spaced SNPs, 247 bulls were chosen. This illustrates that 448 

compared to the HD SNP chip, the re-ranking was limited and that even with few SNPs, the 449 

reordering of the individuals was limited.  450 

Compared to the results obtained with imputation, there was a slight decrease in 451 

correlations with “Anc_HD” GEBV. Indeed, for the 1Kequi and 50Kequi SNP chips, the 452 

results were respectively 0.9316 (±0.0451) and 0.9983 (±0.0072) with imputation, and 0.8718 453 

(±0.0608) and 0.9815 (±0.0238) without imputation. Likewise, for the LD0.05 and the LD0.8, 454 

the results were respectively 0.9777 (±0.0261) and 0.9979 (±0.0080) with imputation, and 455 

0.9349 (±0.0440) and 0.9665 (±0.0318) without imputation. Thus, the differences observed 456 

for both methodologies were not significant and the results were still high whatever the SNP 457 

chip used. These results were rather different from those obtained by Aliloo et al. (2018). 458 

They showed in bovine, for 1034 individuals, that correlations between HD GEBV (on 777K 459 

genotypes) and GEBV based on imputed HD genotyping were significantly higher than 460 

without imputation. Indeed, according to their MAFI (Minor Allele Frequency within 461 

Interval) method which was the closest to our EQ methodology, using 4013 and 25,410 SNPs 462 

imputed to 777K SNPs resulted respectively in correlations of 0.9398 and 0.9927. These 463 

results decreased dramatically without imputation with correlations of respectively 0.6485 and 464 

0.8598. Such a large decrease was not observed in our study. 465 

Finally, the differences observed between the two methodologies were also not 466 

significant. Consequently, the simpler EQ methodology seems to be sufficient to get good 467 

genomic evaluation results for traits controlled by many small QTL, which is the case for the 468 

four traits studied. 469 

 470 

Impact Of Imputation On Relative Accuracy Of Genomic Evaluation 471 
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The impact of imputation on the attainable relative accuracy of genomic evaluations 472 

was studied by comparing a genomic evaluation “Full_HD” of the 67 G1 breeders using all 473 

available information (phenotypes and genotypes) from generation (G0) to (G3) and GEBV of 474 

the G1 breeders based on ancestry with imputed HD genotyping (“Anc_Imputed” GEBV), for 475 

each low density SNP chip. Only the results for Egg Weight (EW) were shown to simplify the 476 

reading and because of the similarity of the results for the other traits. 477 

It was noticed (Figure 7) for the EQ methodology a slight increase in Pearson 478 

correlations from very low density SNP chips to 20K SNPs. Indeed, for the 1Kequi and the 479 

20Kequi SNP chips, the mean correlations were respectively 0.4472 and 0.4854. But for the 480 

LD methodology, the results were rather stable with mean correlations of respectively 0.4917 481 

and 0.4875 for the LD0.05 and LD0.8 SNP chips. For both methodologies, the results varied 482 

slightly up to 20K SNPs. They became steady for the EQ methodology from 20K to higher 483 

SNP densities. Finally, for both methodologies, the correlations of “Anc_Imputed” GEBV 484 

with “Full_HD” GEBV were not significantly different from those obtained by comparison 485 

between true HD GEBV on ancestry and “Full_HD” GEBV. The mean correlation was 486 

0.4848 and corresponded to a theoretical maximum value attainable. The standard error for 487 

each low density SNP chip was ± 0.11 indicating that there was no difference with the 488 

theoretical maximum value. For information purposes, the mean correlations for ESC, ESS 489 

and AH were 0.2618 ± 0.12, 0.4027 ± 0.11 and 0.4802 ± 0.11. This is consistent with the 490 

previous results showing a very slight impact of imputations errors on GEBV estimations of 491 

the 67 breeders on ascendance. For both methodologies, from a density of 5K SNPs imputed 492 

to the HD SNP chip, the mean correlations were above 0.98 between “Anc_HD” GEBV and 493 

“Anc_Imputed” GEBV. These results are also in agreement with the literature. Indeed, Harris 494 

and Johnson (2010) showed that in bovine, from 5K to 1000K SNPs, the increase in 495 

correlations between true phenotypes and predicted phenotypes was very limited (0.62 to 496 
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0.65). VanRaden et al. (2012) showed that, for 28 traits tested in bovine, in average, the 497 

estimated genomic reliability was 61.1% with 300K SNPs and decreased to only 60.7% when 498 

they used 45K SNPs. In the study of Wellman et al. (2013), 768 SNPs imputed to the Illumina 499 

PorcineSNP60 BeadChip (60K SNPs) led to a negligible loss in genomic evaluation accuracy. 500 

Likewise, Chen et al. (2014) estimated in bovine that the accuracy of genomic prediction with 501 

observed 50K or imputed 50K (from 6K) genotypes was 0.61 for milk yield and 0.62 for 502 

somatic cell score (SCS). 503 

However, a decrease in relative accuracy was observed with the 1Kequi SNP chip with 504 

a mean correlation of 0.4472. The highest decrease was observed for albumen height (AH) 505 

where the mean correlation for the 1Kequi SNP chip was 0.4045 (±0.11) and the theoretical 506 

maximum value was 0.4802. One cannot conclude about the significance of this difference 507 

but this decrease was also expected because the results regarding the impact of imputation 508 

accuracies showed a mean correlation of 0.9316 for the 1Kequi SNP chip. Other studies 509 

showed that decreasing to much the SNP density has consequences on genomic evaluation 510 

accuracies. Raoul et al. (2017) illustrated this point in Merino sheep where using only 500 or 511 

250 SNPs imputed to the Illumina OvineSNP50 BeadChip resulted respectively in a decrease 512 

in accuracies from 0.53 (with HD SNP chip) to 0.45 and 0.38. Wellman et al. (2013) showed 513 

that 384 SNPs imputed to the Illumina PorcineSNP60 BeadChip led to a loss of 3% in 514 

genomic evaluation accuracy. Likewise, Chen et al. (2014) showed that the accuracy of 515 

genomic prediction decreased from 0.61 to 0.49 for milk yield and from 0.62 to 0.53 for SCS 516 

with imputed 50K genotypes from 384 SNPs.  517 

Consequently, we can conclude that the effects of imputation errors on GEBV relative 518 

accuracies were very limited even if slightly more important for very low densities.  519 

 520 
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Impact of the Direct Use of Low Density SNP Chips Without Imputation on 521 

Relative Accuracy of Genomic Evaluation 522 

The impact of the direct use of low density SNP chips on relative accuracy of genomic 523 

evaluation was studied by comparing the “Full_HD” GEBV of the G1 and GEBV of the G1 524 

breeders on ancestry with low density genotyping without imputation (“Anc_Not_Imputed” 525 

GEBV), for each low density SNP chip. For both methodologies, only the results for Egg 526 

Weight (EW) were shown to simplify the reading and because of the similarity of the results 527 

for the other traits. 528 

Both methodologies were rather stable with slight variations in Pearson correlations up 529 

to 20K SNPs (Figure 8). The results for the 3Kequi and 20Kequi SNP chips were respectively 530 

0.4471 and 0.4675. For the LD0.05 and LD0.8 the correlations were respectively 0.4583 and 531 

0.4888. However, the standard errors associated to these results were ±0.11 and the 532 

correlation between the “Full HD” GEBV and the HD GEBV based on ancestry was 0.4848. 533 

This indicates that the differences observed between each low density SNP chip, and 534 

consequently between the two methodologies, were not significant. These results are in 535 

agreement with the previous results showing a very slight impact of the absence of imputation 536 

on GEBV estimation of the 67 breeders on ascendance. However, the results for the 1Kequi 537 

was 0.4018 (±0.11). This lower but non-significant result was also expected because the 538 

correlation between “Anc_HD” GEBV and “Anc_Not_Imputed” GEBV was lower (0.8718 539 

±0.0608) than those obtained with higher SNP densities. This was the case for all traits 540 

studied. 541 

The results found in the literature are contrasted. Moghaddar et al. (2015) showed in 542 

Merino sheep, that the accuracy of genomic prediction based on observed 50K genotypes was 543 

0.446 for post-weaning weight (PWW) and 0.219 for post-weaning eye muscle depth 544 

(PW_EMD). Based on genotypes imputed from 12K to 50K genotypes, with imputation 545 
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accuracy comprised between 0.88 and 0.99, the accuracy of genomic prediction was 0.443 for 546 

PWW and 0.219 for PW_EMD. Based on observed 12K genotypes, the accuracy was 0.412 547 

for PWW and 0.205 for PW_EMD. Thus, the results were slightly better with imputation 548 

compared to a direct use of the 12K without imputation, but in both cases, there was not a 549 

dramatic decrease in genomic prediction accuracy despite a significant gap of SNP density 550 

between HD and low density chips. Weigel et al. (2009) had a gap of SNP density closer to 551 

our but the results were rather different. The correlation between the results from progeny 552 

testing and the genomic result with a HD SNP chip of 32K was 0.612. With 300, 1K and 2K 553 

equally spaced SNPs, the results were respectively 0.253, 0.422 and 0.539. Contrary to the 554 

results of Moghaddar et al. (2015), there was a significant decrease in their results with the 555 

use of low density SNP chips without imputation. In 2010, they showed that their results were 556 

better with imputation. 557 

Finally, for a SNP density higher than 3K, using low density SNP chips without 558 

imputation leaded to results as good as those obtained with the HD SNP chip itself.  559 

 560 

CONCLUSIONS 561 

This study showed a very limited reordering of the breeders, selected on a multi-traits 562 

index, with low density genotyping (with or without imputation) instead of HD genotyping. 563 

Indeed, Spearman correlations between GEBV on HD genotyping and GEBV on low density 564 

genotyping were always higher than 0.94 with more than 3K SNP. For the top 150 565 

individuals, who are genetically closer than the breeders, the reordering was a bit more 566 

important. Thus, the correlations between GEBV with HD genotyping and GEBV with low 567 

density genotyping remained below 0.85 with less than 3K SNP with the EQ methodology 568 

and less than 16K SNP (LD0.6) with the LD methodology. The differences in GEBV 569 
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correlations between the two methodologies were never significant but seemed to indicate that 570 

the simpler EQ methodology was sufficient to obtain similar results.  571 

Thus, using directly low density SNP chips designed with the EQ methodology with 572 

more than 5K SNPs could enable to get good results of genomic evaluation and could be a 573 

cost effective solution for genomic selection. However, only four traits were studied. These 574 

four traits were controlled by many small QTL, which explained why the equidistant 575 

methodology was more appropriated to realize genomic evaluation with ssGBLUP than the 576 

LD methodology, whereas the results on imputation accuracies were inverted. Further 577 

investigations on other traits with different genetic architectures should be conducted. 578 

Finally, as shown by Habier et al. (2009), there could be a decrease in genomic 579 

evaluation accuracy over the generations with low density genotyping. This would require to 580 

genotype at higher density birds selected at each generation to avoid a decrease in genomic 581 

evaluation accuracy which could be prejudicial for genomic selection. In addition, in our 582 

study, only the males were genotyped but having both parents genotyped could lead to higher 583 

genomic evaluation accuracies. 584 
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Table 1. Summary of the different steps of quality control 728 

Genotypes filtration RI Line 

Individual Call Rate (<95%) 8 

MAF (=0) 204,122 

MAF (<0.05) 54,650 

SNP Call Rate (<95%) 7541 

Hardy-Weinberg equilibrium (P<10-4) 12,538 

SNP with unknown location or on 

chromosome W 
1759 

Pedigree Incompatibility 0 

SNP retained for analyses 300,351 

Animals retained for analyses 2362 
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 732 

Figure 1. Population structure of the RI line 733 

 734 

 735 



32 

 

 736 

Figure 2. Summary of all different genomic evaluation strategies studied 737 

 738 

 739 

Figure 3. Mean correlations between true and imputed genotypes according to the number of 740 

SNPs on low density SNP chips for EQ and LD methodologies. 741 
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 742 

Figure 4. Spearman correlations between GEBV based on ancestry obtained with true HD 743 

genotyping and GEBV based on ancestry obtained with imputed HD genotyping. Results are 744 

shown for egg weight and for the top 150 individuals (a) or the 67 breeders (b) according to 745 

the number of SNPs on low density SNP chip for both methodologies. 746 

 747 
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 748 

Figure 5. Normal distribution of all G1 selection candidates according to their HD GEBV of 749 

Egg Weight estimated on ancestry with true HD genotyping. Red dots represent the 67 G1 750 

breeders, green dots represent the top 150 individuals for EW, and blue dots represent the 751 

other selection candidates. 752 
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 753 

Figure 6. Spearman correlations between GEBV based on ancestry obtained with true HD 754 

genotyping and GEBV based on ancestry obtained with low density genotyping (without 755 

imputation). Results are shown for egg weight and for the top 150 individuals (a) or the 67 756 

breeders (b) according to the number of SNPs on low density SNP chip for both 757 

methodologies. 758 
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 760 

Figure 7. Pearson correlations between “Full_HD” GEBV based on offspring with true HD 761 

genotyping and GEBV based on ancestry with imputed HD genotyping. Results are shown for 762 

egg weight and for the 67 G1 breeders according to the number of SNPs on low density SNP 763 

chip for both methodologies. 764 
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 770 

Figure 8. Pearson correlations between “Full_HD” GEBV based on offspring with true HD 771 

genotyping and GEBV based on ancestry with low density genotyping (without imputation). 772 

Results are shown for egg weight and for the 67 G1 breeders according to the number of 773 

SNPs on low density SNP chip for both methodologies. 774 




