J. J. Almagro-armenteros, C. K. Sonderby, S. K. Sonderby, H. Nielsen, and O. Winther, DeepLoc: prediction of protein subcellular localization using deep learning, Bioinformatics, vol.33, pp.3387-3395, 2017.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment search tool, J. Mol. Biol, vol.215, pp.403-410, 1990.

E. Anatriello, J. M. Ribeiro, D. Miranda-santos, I. K. Brandao, L. G. Anderson et al., An insight into the sialotranscriptome of the brown dog tick, Rhipicephalus sanguineus, BMC Genomics, vol.11, p.450, 2010.

B. Bechinger and S. U. Gorr, Antimicrobial peptides: mechanisms of action and resistance, J. Dent. Res, vol.96, pp.254-260, 2017.

H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat et al., The protein data bank, Nucleic Acids Res, vol.28, pp.235-242, 2000.

K. W. Borrelli, A. Vitalis, R. Alcantara, and V. Guallar, PELE: protein energy landscape exploration. A novel Monte Carlo based technique, J. Chem. Theory Comput, vol.1, pp.1304-1311, 2005.

W. F. Broekaert, F. R. Terras, B. P. Cammue, and J. Vanderleyden, An automated quantitative assay for fungal growth inhibition, FEMS Microbiol. Lett, vol.69, pp.55-59, 1990.

P. Bulet, C. Hetru, J. Dimarcq, and D. Hoffmann, Antimicrobial peptides in insects; structure and function, Dev. Comp. Immunol, vol.23, pp.329-344, 1999.

K. Bush, P. Courvalin, G. Dantas, J. Davies, B. Eisenstein et al., Tackling antibiotic resistance, Nat. Rev. Microbiol, vol.9, pp.894-896, 2011.

A. Cabezas-cruz, M. Tonk, A. Bouchut, C. Pierrot, R. J. Pierce et al., Antiplasmodial activity is an ancient and conserved feature of tick defensins, Front. Microbiol, vol.7, p.1682, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02637818

, Antibiotic Resistance Threats in the United Stated Report, CDC, 2013.

U. S. , Department of Health and human services

S. M. Ceraul, D. E. Sonenshine, R. E. Ratzlaff, and W. L. Hynes, An arthropod defensin expressed by the hemocytes of the American dog tick, Dermacentor variabilis (Acari: ixodidae), Insect Biochem. Mol. Biol, vol.33, pp.1099-1103, 2003.

T. Chrudimska, T. Chrudimsky, M. Golovchenko, N. Rudenko, and L. Grubhoffer, New defensins from hard and soft ticks: similarities, differences, and phylogenetic analyses, Vet. Parasitol, vol.167, pp.298-303, 2010.

T. Chrudimská, J. Slaninova, N. Rudenko, D. Ruzek, and L. Grubhoffer, Functional characterization of two defensin isoforms of the hard tick Ixodes ricinus, Parasit. Vectors, vol.4, p.63, 2011.

A. R. Coates, G. Halls, and Y. Hu, Novel classes of antibiotics or more of the same?, Br. J. Pharmacol, vol.163, pp.184-194, 2011.

J. Couto, M. Tonk, J. Ferrolho, S. Antunes, A. Vilcinskas et al., Antiplasmodial activity of tick defensins in a mouse model of malaria, Ticks Tick. Dis, vol.9, pp.844-849, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02624083

G. E. Crooks, G. Hon, J. Chandonia, and S. E. Brenner, WebLogo: a sequence logo generator, Genome Res, vol.14, pp.1188-1190, 2004.

J. Davies and D. Davies, Origins and evolution of antibiotic resistance. Microbiol, Mol. Biol. Rev, vol.74, pp.417-433, 2010.

A. J. Enright, S. Van-dongen, and C. A. Ouzounis, An efficient algorithm for large-scale detection of protein families, Nucleic Acids Res, vol.30, pp.1575-1584, 2002.

A. C. Fogaça, D. M. Lorenzini, L. M. Kaku, E. Esteves, P. Bulet et al., Cysteinerich antimicrobial peptides of the cattle tick Boophilus microplus: isolation, structural characterization and tissue expression profile, Dev. Comp. Immunol, vol.28, pp.191-200, 2004.

N. C. Goonesekere and B. Lee, Context-specific amino acid substitution matrices and their use in the detection of protein homologs, Proteins, vol.71, pp.910-919, 2008.

S. R. Graves and J. Stenos, Tick-borne infectious diseases in Australia, Med. J. Aust, vol.206, pp.320-324, 2017.

O. Hajdusek, R. Sima, N. Ayllón, M. Jalovecká, J. Perner et al., Interaction of the tick immune system with transmitted pathogens, Front. Cell. Infect. Microbiol, vol.3, p.26, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02650988

L. Holm and L. M. Laakso, Dali server update, Nucleic Acids Res, vol.44, pp.351-356, 2016.

W. Humphrey, A. Dalke, and K. Schulten, VMD: visual molecular dynamics, J. Mol. Graph, vol.14, pp.27-28, 1996.

W. L. Jorgensen, D. S. Maxwell, and J. Tirado-rives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids, J. Am. Chem. Soc, vol.118, pp.11225-11236, 1996.

K. Katoh and D. M. Standley, MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol. Biol. Evol, vol.30, pp.772-780, 2013.

P. Kopá?ek, O. Hajdu?ek, V. Bure?ová, and S. Daffre, Tick innate immunity. Invertebrate Immunity, pp.137-162, 2010.

D. J. Krysan, N. C. Rockwell, and R. S. Fuller, Quantitative characterization of furin specificity. Energetics of substrate discrimination using an internally consistent set of hexapeptidyl methylcoumarinamides, J. Biol. Chem, vol.274, pp.23229-23234, 1999.

B. Li and T. J. Webster, Bacteria antibiotic resistance: new challenges and opportunities for implant-associated orthopedic infections, J. Orthop. Res, vol.36, pp.22-32, 2018.

L. Liu, J. Dai, Y. O. Zhao, S. Narasimhan, Y. Yang et al., Ixodes scapularis JAK-STAT pathway regulates tick antimicrobial peptides, thereby controlling the agent of human granulocytic anaplasmosis, J. Infect. Dis, vol.206, pp.1233-1241, 2012.

A. Madadkar-sobhani and V. Guallar, PELE web server: atomistic study of biomolecular systems at your fingertips, Nucleic Acids Res, vol.41, pp.322-330, 2013.

K. L. Mansfield, L. Jizhou, L. P. Phipps, and N. Johnson, Emerging tick-borne viruses in the twenty-first century, Front. Cell. Infect. Microbiol, vol.7, p.298, 2017.

A. Marchler-bauer, S. Lu, J. B. Anderson, F. Chitsaz, M. K. Derbyshire et al., CDD: a Conserved Domain Database for the functional annotation of proteins, Nucleic Acids Res, vol.39, pp.225-229, 2010.

Y. Nakajima, . Van-der-goes, . Van, A. Naters-yasui, D. Taylor et al., Antibacterial peptide defensin is involved in midgut immunity of the soft tick, Ornithodoros moubata. Insect Mol. Biol, vol.11, pp.611-618, 2002.

Y. Nakajima, J. Ishibashi, F. Yukuhiro, A. Asaoka, D. Taylor et al., Antibacterial activity and mechanism of action of tick defensin against Gram-positive bacteria, Biochim. Biophys. Acta, vol.1624, pp.125-130, 2003.

E. Nigro, I. Colavita, D. Sarnataro, O. Scudiero, G. Zambrano et al., An ancestral host defence peptide within human betadefensin 3 recapitulates the antibacterial and antiviral activity of the full-length molecule, Sci. Rep, vol.5, p.18450, 2015.

C. A. O'brien, S. Hall-mendelin, J. Hobson-peters, G. Deliyannis, A. Allen et al., Discovery of a novel iflavirus sequence in the eastern paralysis tick Ixodes holocyclus, Arch. Virol, vol.163, pp.2451-2457, 2018.

J. S. Oeemig, C. Lynggaard, D. H. Knudsen, F. T. Hansen, K. D. Norgaard et al., Eurocin, a new fungal defensin: structure, lipid binding, and its mode of action, J. Biol. Chem, vol.287, pp.42361-42372, 2012.

C. T. Ong, M. Rodriguez-valle, P. M. Moolhuijzen, R. A. Barrero, A. Hunter et al., Exploring the transcriptomic data of the Australian paralysis tick, ixodes holocyclus, GSTF. J. Vet. Med. Sci, vol.2, 2018.

K. Parisi, T. M. Shafee, P. Quimbar, N. L. Van-der-weerden, M. R. Bleackley et al., The evolution, function and mechanisms of action for plant defensins, Semin. Cell Dev. Biol, 2018.

T. N. Petersen, S. Brunak, G. Von-heijne, and H. Nielsen, SignalP 4.0: discriminating signal peptides from transmembrane regions, Nat. Methods, vol.8, pp.785-786, 2011.

L. Ren, L. O. Lomas, J. Jonczy, and P. C. Turner, Two novel non-cationic defensin-like antimicrobial peptides from haemolymph of the female tick, Amblyomma hebraeum, Biochem. J, vol.379, pp.681-685, 2004.

M. Rodriguez-valle, P. Moolhuijzen, R. A. Barrero, C. T. Ong, G. Busch et al., Transcriptome and toxin family analysis of the paralysis tick, Ixodes holocyclus, Int. J. Parasitol, vol.48, pp.71-82, 2018.

G. M. Sastry, M. Adzhigirey, T. Day, R. Annabhimoju, and W. Sherman, Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments, J. Comput. Aided Mol. Des, vol.27, pp.221-234, 2013.

A. E. Sathoff, S. Velivelli, D. M. Shah, and D. A. Samac, Plant defensin Peptides have antifungal and antibacterial activity against human and plant pathogens, Phytopathology, vol.109, pp.402-408, 2019.

T. M. Shafee, F. T. Lay, T. K. Phan, M. A. Anderson, and M. D. Hulett, Convergent evolution of defensin sequence, structure and function, Cell. Mol. Life Sci, vol.74, pp.663-682, 2017.

T. Sun, W. Pan, Y. Song, J. Zhang, J. Wang et al., Functional characterization of two defensins, HlDFS1 and HlDFS2, from the hard tick Haemaphysalis longicornis, Parasit. Vectors, vol.10, p.455, 2017.

K. Tamura, G. Stecher, D. Peterson, A. Filipski, and S. Kumar, MEGA6: molecular evolutionary genetics analysis version 6.0, Mol. Biol. Evol, vol.30, pp.2725-2729, 2013.

R. L. Tatusov, N. D. Fedorova, J. D. Jackson, A. R. Jacobs, B. Kiryutin et al., The COG database: an updated version includes eukaryotes, BMC Bioinformatics, vol.4, p.41, 2003.

D. Taylor, Innate immunity in ticks: a review, J. Acarol. Soc. Jpn, vol.15, pp.109-127, 2006.

S. M. Todd, D. E. Sonenshine, and W. L. Hynes, Tissue and life-stage distribution of a defensin gene in the lone star tick, Amblyomma americanum, Med. Vet. Entomol, vol.21, pp.141-147, 2007.

M. Tonk, A. Cabezas-cruz, J. J. Valdés, R. O. Rego, T. Chrudimská et al., Defensins from the tick Ixodes scapularis are effective against phytopathogenic fungi and the human bacterial pathogen Listeria grayi, Parasit. Vectors, vol.7, p.554, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02639796

M. Tonk, A. Cabezas-cruz, J. J. Valdes, R. O. Rego, N. Rudenko et al., Identification and partial characterisation of new members of the Ixodes ricinus defensin family, Gene, vol.540, pp.146-152, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02635033

M. Tonk, A. Cabezas-cruz, J. J. Valdés, R. O. Rego, L. Grubhoffer et al., Ixodes ricinus defensins attack distantly-related pathogens, Dev. Comp. Immunol, vol.53, pp.358-365, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02636289

M. Tonk, E. Knorr, A. Cabezas-cruz, J. J. Valdés, C. Kollewe et al., Tribolium castaneum defensins are primarily active against gram-positive bacteria, J. Invert. Pathol, vol.132, pp.208-215, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02630858

N. Tsuji, B. Battsetseg, D. Boldbaatar, T. Miyoshi, X. Xuan et al., Babesial vector tick defensin against Babesia sp. parasites, Infect. Immun, vol.75, pp.3633-3640, 2007.

J. J. Valdes, A. Schwarz, I. Cabeza-de-vaca, E. Calvo, J. H. Pedra et al., Tryptogalinin is a tick Kunitz serine protease inhibitor with a unique intrinsic disorder, PLoS One, vol.8, 2013.

V. Mering, C. Jensen, L. J. Kuhn, M. Chaffron, S. Doerks et al., STRING 7-recent developments in the integration and prediction of protein interactions, Nucleic Acids Res, vol.35, pp.358-362, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01518392

J. Wang, G. Bian, W. Pan, T. Feng, and J. Dai, Molecular characterization of a defensin gene from a hard tick, Dermacentor silvarum, Parasit. Vectors, vol.8, p.25, 2015.

Y. Wang and S. Zhu, The defensin gene family expansion in the tick ixodes scapularis, Dev. Comp. Immunol, vol.35, pp.1128-1134, 2011.

S. Whelan and N. Goldman, A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach, Mol. Biol. Evol, vol.18, pp.691-699, 2001.

W. C. Wimley, Describing the mechanism of antimicrobial peptide action with the interfacial activity model, ACS Chem. Biol, vol.5, pp.905-917, 2010.

Y. Yamaguchi and Y. Ouchi, Antimicrobial peptide defensin: identification of novel isoforms and the characterization of their physiological roles and their significance in the pathogenesis of diseases, Proc. Jpn. Acad., Ser. B, vol.88, pp.152-166, 2012.

N. Y. Yount and M. R. Yeaman, Multidimensional signatures in antimicrobial peptides, Proc. Natl. Acad. Sci. U. S. A, vol.101, pp.7363-7368, 2004.

L. Zhang and R. L. Gallo, Antimicrobial peptides, Curr. Biol, vol.26, pp.14-19, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01959821

Y. Zhang, I-TASSER server for protein 3D structure prediction, BMC Bioinformatics, vol.9, p.40, 2008.

S. Zhu, B. Gao, P. J. Harvey, and D. J. Craik, Dermatophytic defensin with antiinfective potential, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.8495-8500, 2012.