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Abstract 18 

Ticks and the pathogens they transmit constitute a growing burden for human and animal 19 

health worldwide. Traditionally, tick-borne pathogen detection has been carried out using 20 

PCR-based methods that rely in known sequences for specific primers design. This approach 21 

matches with the view of a ‘single-pathogen’ epidemiology. Recent results, however, have 22 

stressed the importance of coinfections in pathogen ecology and evolution with impact in 23 

pathogen transmission and disease severity. New approaches, including high-throughput 24 

technologies, were then used to detect multiple pathogens, but they all need a priori 25 

information on the pathogens to search. Thus, those approaches are biased, limited and 26 

conceal the complexity of pathogen ecology. Currently, next generation sequencing (NGS) is 27 

applied to tick-borne pathogen detection as well as to study the interactions between 28 

pathogenic and non-pathogenic microorganisms associated to ticks, the pathobiome. The use 29 

of NGS technologies have surfaced two major points: (i) ticks are associated to complex 30 

microbial communities and (ii) the relation between pathogens and microbiota is 31 

bidirectional. Notably, a new challenge emerges from NGS experiments, data analysis. 32 

Discovering associations among a high number of microorganisms is not trivial and therefore 33 

most current NGS studies report lists of microorganisms without further insights. An 34 

alternative to this is the combination of NGS with analytical tools such as network analysis to 35 

unravel the structure of microbial communities associated to ticks in different ecosystems. 36 

 37 

Keywords: ticks, pathogen detection, next generation sequencing, network analysis 38 

 39 

 40 
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Tick-borne pathogens: "One health" concern 42 

Ticks are hematophagous ectoparasites of vertebrates and approximately 10% of the 900 43 

currently known tick species are of significant medical or veterinary importance. Besides 44 

causing direct damage associated with blood feeding and in some cases through the excretion 45 

of toxins within their saliva [1], the main relevance of ticks lies in the wide variety of 46 

pathogens they can transmit, including bacteria, viruses, protozoa and [2-4]. After hatching 47 

from the eggs, the life cycle of ticks includes three developmental stages (larvae, nymphs and 48 

adults) that in most cases (i.e. three-host ticks) feed on different hosts. Potentially, while 49 

feeding on a host, each of these stages can transmit and acquire new pathogens [5]. Thus, 50 

ticks are ‘hubs’ in pathogen’s circulation cycles. Major tick-borne pathogens are transmitted 51 

by hard ticks (Ixodidae) and include Anaplasma phagocytophilum, Borrelia burgdorferi sensu 52 

lato, Crimean-Congo hemorrhagic fever virus (CCHFV), tick-borne encephalitis virus 53 

(TBEV), Rickettsia spp. and Babesia spp., [4]. These pathogens cause the most prevalent tick-54 

borne diseases such as human granulocytic anaplasmosis (A. phagocytophilum), Lyme 55 

diseases (B. burgdorferi), Crimean-Congo hemorrhagic fever (CCHFV), tick-borne 56 

encephalitis (TBEV), spotted fever (Rickettsia spp.) and babesiosis (Babesia spp.). Other 57 

major human pathogens may occasionnally be transmitted by ticks, including Francisella 58 

tularensis and Coxiella burnetii. Importantly, the circulation of tick-borne pathogens in nature 59 

involves wildlife and livestock which pose a twofold risk for animal and human health [6]. 60 

 61 

Single-pathogen models 62 

Our current experimental and theoretical models of pathogen transmission by ticks are limited 63 

because they frequently include single pathogen species [7-9]. Despite their limits, single-64 
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pathogen models have allowed for the systematic discovery of tick-borne microorganisms 65 

with pathogenic effects in humans and livestock. Detection and identification of single 66 

pathogens is not technically demanding and relies mostly on PCR [10, 11]. After 67 

amplification of some taxonomically relevant genes by PCR, sequencing is followed by 68 

BLAST search and, in some cases, phylogenetic analysis for pathogen classification [10-13]. 69 

A major limitation of this approach is that it is extremely biased towards known pathogens as 70 

species-specific primers for PCR are designed based on known sequences. As a consequence, 71 

pathogen detection within the same geographic region will be strongly influenced by 72 

particular research interests. Another limitation of one-pathogen models is that they do not 73 

explain the impact of coinfections on pathogen transmission, on the spread of diseases and on 74 

the clinical presentation. 75 

 76 

Why coinfections are important?  77 

Coinfections, when multiple pathogen species coexist within an individual, are very common 78 

in nature [14, 15] and are a major public health concern. Coinfections occur in humans, such 79 

as by the malaria parasite, Plasmodium [16], in the setting of sexually-transmitted infections 80 

or mixed abdominal infections. It may also occur in a wide range of other organisms, from 81 

bacteria infected by a mixture of bacteriophages [17] to plants [18] and animals [19]. When 82 

pathogens share a host, they can interact, with consequences for individual pathogen fitness 83 

[14, 20]. Individual pathogens can adapt and increase their fitness in response to coinfections 84 

if pathogens facilitate each other’s establishment [21]. Alternatively, it has been shown that 85 

individual infection rates can be reduced if pathogens directly compete via resources or toxin-86 

production, or indirectly interact via host immune-mediation, whereby one pathogen primes 87 

the host immune response against the other (e.g. cross-reactivity) [15]. Epidemiological 88 
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studies in natural populations have provided compelling evidence that within-host interactions 89 

are so strong that the dynamics of one pathogen, within a host and within a host population, 90 

cannot be understood without knowledge of other pathogens [14, 22].  91 

Probably, one of the best studied examples of tick-borne pathogen coinfection is that of A. 92 

phagocytophilum and B. burgdorferi. These two pathogens have been systematically reported 93 

in the literature [23], as well as in clinical cases of humans [24] as occurring together more 94 

often than expected by chance. In USA, coinfection with B. burgdorferi and A. 95 

phagocytophilum have been reported in Ixodes scapularis [23], as well as in humans [24] and 96 

wild animal hosts [25]. Tick infection and colonization by A. phagocytophilum and B. 97 

burgdorferi occurs firstly in the tick gut cells and subsequently in other tissues, including the 98 

salivary glands from where transmission occurs during feeding. Thus, these pathogens coexist 99 

and potentially interact within the same tissues for long periods of time. Empirical work has 100 

shown that coinfection with these two pathogens can enhance pathogen colonization in tick 101 

larvae [26], and significantly increase the potential for the spread of Lyme disease. 102 

Coinfections also elicit different immune system responses within mice hosts – the antibody 103 

response to A. phagocytophilum was decreased during coinfection, but antibodies produced in 104 

response to B. burgdorferi increased in coinfected mice [27] – as well as pathological 105 

processes – A. phagocytophilum-infected neutrophils enhance the transmigration of B. 106 

burgdorferi across the human blood brain barrier [28]. All this suggests that coinfection has a 107 

major impact on the fitness, transmission and pathology of these two pathogens.  108 

In another study, natural populations of field voles (n=5981), Microtus agrestis, were 109 

followed for 6 years and coinfections with cowpox virus, Bartonella spp., A. 110 

phagocytophilum and Babesia microti were recorded [14]. This impressive field experiment 111 

revealed that except for cowpox, infection with other parasite species explained more 112 
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variation in infection risk than factors related to exposure risk and host condition, such as age 113 

and season [14]. Interestingly, voles with ongoing A. phagocytophilum infections were less 114 

likely to become infected with B. microti, but risk was not reduced in animals that had 115 

recently cleared an infection [14]. 116 

Currently, coinfections are routinely included in tick-borne pathogen screenings [29-31]. 117 

Thus, the Swiss national center for tick-borne diseases sequentially tested the same 8’000 118 

batch of ticks for the presence of the agent of tick-borne encephalitis [32], for chlamydiae 119 

[13] as well as Anaplasma and Coxiella (Pilloux et al, unpublished). Not only different 120 

pathogen species were found coinfecting ticks and hosts, but also coinfections with multiple 121 

strains of the same pathogen have been reported [33, 34]. Detection of coinfections can be 122 

achieved following standard PCR or more demanding technologies such as microfluidic high-123 

throughput real-time PCR. This nanotechnology is a powerful tool capable of performing 124 

parallel real-time PCRs using 96x96 chips resulting in 9216 individual reactions in one run  125 

[35]. Recently, Michelet and colleagues [29] applied this technology for a large (n=7050 126 

ticks) and rapid screening of tick-borne pathogens in Ixodes ricinus, the most common tick in 127 

Europe. These authors successfully detected expected pathogens (B. burgdorferi sensu lato, A. 128 

phagocytophilum, Rickettsia helvetica, Candidatus Neoehrlichia mikurensis, Babesia 129 

divergens, Babesia venatorum), as well as unexpected pathogens (Borrelia miyamotoi), and 130 

rare (Bartonella henselae) pathogens in France, Denmark, and the Netherlands [29]. This 131 

technology can be easily adapted to detect ‘single pathogens’ or ‘multiple pathogens’ 132 

infections. However, despite the leap of this technology compared to standard PCR, both have 133 

the same limitation, this is, to be highly biased towards known pathogens as species-specific 134 

primers have to be designed based on known sequences.  135 
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Despite this review focuses on microorganisms detected in ticks, it is noteworthy that 136 

coinfections with different tick-borne pathogens are frequently reported in humans [36-38]. 137 

Strikingly, the majority of patients with chronic Lyme disease reported at least one 138 

coinfection with another tick-borne pathogen. In particular, 32.3% reported laboratory 139 

confirmed diagnosis with Babesia, 28.3% with Bartonella (note that only B. henselae is 140 

suspected to be transmitted by ticks), 14.5% with Ehrlichia, 4.8% with Anaplasma, 5.6% with 141 

Rocky Mountain spotted fever (caused by Rickettsia rickettsii), and 0.8% with tularemia [36]. 142 

An interesting example is that of the human coinfection of B. burgdorferi with B. microti in 143 

the United States [38]. The emergence of B. microti has become difficult to explain because 144 

this pathogen has a low ecological fitness characterized by poor transmission from 145 

Peromyscus leucopus mice to larval ticks and poor transstadial transmission from larvae to 146 

nymphs [38]. Interestingly, recent studies show that human babesiosis is emerging in areas 147 

endemic for Lyme disease. The current hypothesis is that B. burgdorferi increases B. microti 148 

transmission from P. leucopus mice to ticks [38]. The current model that explains the 149 

epidemiology of B. microti in the United States demonstrates that the emergence of tick-borne 150 

infections should be studied within realistic epidemiological and ecological contexts. Selected 151 

examples of relevant tick-borne pathogen coinfections are provided in Table 1.  152 

 153 

Understanding the tick pathobiome 154 

Recent advances in next generation sequencing (NGS) technologies applied to explore the 155 

tick microbiome revealed an astonishing diversity of microorganisms associated to these 156 

arthropods [39-43]. These studies using NGS have shown that specific tick-borne pathogens 157 

are frequently found together with other pathogens, symbionts and commensals. This was 158 

described as a technology-driven revolution of tick-borne pathogen’s vision and the concept 159 
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of pathiobiome was proposed [3]. This theoretical framework recognizes that the pathogen is 160 

integrated within its abiotic and biotic (i.e. including other pathogens, commensals and 161 

symbionts) environment [3]. Different NGS technologies have been utilized to define the 162 

microbiomes of various tick species: Sanger sequencing of full-length 16S rDNA, 454-163 

pyrosequencing, Ion torrent, or Illumina-based sequencing of 16S rDNA hypervariable 164 

regions, as well as a whole genome shotgun [41]. A major strength of NGS compared to PCR-165 

based approaches is that NGS is not biased towards the detection of specific microorganisms.  166 

There is functional evidence that the relation between pathogen and microbiome is 167 

bidirectional. For example, in the tick I. scapularis, the gut microbiota composition influences 168 

B. burgdorferi colonization of tick guts [40]. A tick gut microbiota composed by high 169 

abundance of bacteria of the genera Rickettsia, Thioclava, and Delftia, and low abundance of 170 

bacteria of the genera Aquabacterium, Brevibacterium, and Novosphingobium did not favor B. 171 

burgdorferi colonization of tick guts [40]. This microbiota composition, which was recovered 172 

from ticks reared and maintained under ‘‘sterile’’ conditions, decreased the expression of the 173 

transcription factor signal transducer and activator of transcription (STAT). Lower STAT 174 

expression correlated with diminished expression of peritrophin, a component of the tick 175 

peritrophic matrix, which in turn decreased the ability of B. burgdorferi to colonize the gut 176 

epithelium [40]. Another interesting example showed that tick colonization by A. 177 

phagocytophilum perturbs the tick gut microbiota by decreasing the relative abundance of 178 

Enterococcus and Rickettsia whereas increasing the abundance of Pseudomonas [42]. 179 

Anaplasma phagocytophilum induces I. scapularis to express antifreeze glycoprotein, which 180 

encodes a protein that modulates the peritrophic matrix and binds Gram-positive bacteria 181 

decreasing their ability for biofilm formation [42]. Thus, by inducing antifreeze glycoprotein 182 

expression, A. phagocytophilum modifies tick microbiota and tick peritrophic matrix which 183 
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may jeopardize B. burgdorferi colonization [40, 42]. While these studies provided some 184 

functional basis of pathogen-microbiome interactions, a major challenge remains to 185 

understand the pathobiome at the bacterial community level. The analysis of bacterial 186 

communities as a whole may be challenging and specific analytical tools are needed to this 187 

aim. 188 

Network analysis is a suitable tool that has been used to unravel complex microbial 189 

communities as those present in soil [44], water [45] or animal microbiota [46, 47]. Recently, 190 

ecological networks methodology was applied to unravel the complex interactions between 191 

ticks, their vertebrate hosts and pathogens in the western Palearctic [6]. Using data mining, 192 

more than 14,000 interactions were quantified among ticks, vertebrates, and pathogens in the 193 

western Palearctic [6]. The use of this approach, allowed concluding that ticks and vertebrates 194 

interact along the shared environmental gradient, while pathogens are linked to groups of 195 

phylogenetically close reservoirs [6]. Another report using networks methodology revealed a 196 

prominent role for birds in the dissemination of B. burgdorferi and A. phagocytophilum, with 197 

little contribution to the possible dissemination of other tick-borne pathogens [48]. This was 198 

in agreement with the fact that B. burgdorferi (s.l.) complex circulation is supported by a 199 

highly redundant network where few host genera have high centrality values (i.e. high relative 200 

importance for pathogen circulation) [49]. NGS projects, such as those performed currently to 201 

study the ecology of tick-associated microorganisms [50, 51], generate large data sets that can 202 

be combined with networks analysis.  203 

Finally, NGS studies have revealed that ‘single or multiple-pathogens infection’ are both 204 

idealized scenarios that do not reflect a more complex reality where ‘pathogen transmission’ 205 

appear to be a limited conception of a broader phenomenon, i.e. microorganisms; including 206 

pathogens, symbionts and commensals; migrate across biological systems. In fact, several 207 
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symbionts can transmit horizontally when their hosts interact through mating, feeding or egg 208 

laying [52, 56]. For example, the male-killing heritable symbiont Arsenophonus nasoniae is 209 

transmitted horizontally when their parasitoid wasp host share oviposition patches with 210 

uninfected conspecifics, a phenomenon called superparasitism [55, 56]. Interestingly, 211 

Candidatus Midichloria mitochondrii, a tick endosymbiont, was proposed to be transmitted 212 

both vertically and horizontally [57, 58]. Further NGS studies should evaluate the hypothesis 213 

of the transmission of microbial communities in vector-host systems (i.e. between ticks and 214 

between ticks and hosts). 215 

 216 

Concluding remarks  217 

In the last twenty years, tick-borne pathogen detection have improved dramatically from 218 

‘single’ and ‘multiple’ pathogens detection to the elucidation of the pathobiome. The ‘single 219 

pathogen’ view is still widely used and indeed is a necessary ‘reduction’ that should be 220 

integrated to the studies addressing the complexity of the pathobiome. Combining NGS 221 

projects with network analysis will provide new insights into the structure of microbial 222 

communities associated to ticks and their impact on pathogen circulation. 223 

224 
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 380 

Table 1. Selected exemples of ticks co-infection significantly modifying the biology of 381 

another microbe co-occuring in ticks.  382 

Co-infections   Effect                  383 

Anaplasma/Borrelia  Decreased antibody response towards   384 

A. phagocytophilum 385 

Borrelia/Anaplasma  Increased transmigration of B. burgdoreferi  386 

across the human blood brain barrier 387 

Borrelia/Babesia microti Increased transmission from mice to ticks                                388 


