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Abstract: Non-alcoholic fatty liver disease (NAFLD) is a major health issue in developed countries.
Although usually associated with obesity, NAFLD is also diagnosed in individuals with low body
mass index (BMI) values, especially in Asia. NAFLD can progress from steatosis to non-alcoholic
steatohepatitis (NASH), which is characterized by liver damage and inflammation, leading to cirrhosis
and hepatocellular carcinoma (HCC). NAFLD development can be induced by lipid metabolism
alterations; imbalances of pro- and anti-inflammatory molecules; and changes in various other factors,
such as gut nutrient-derived signals and adipokines. Obesity-related metabolic disorders may be
improved by activation of the nuclear receptor peroxisome proliferator-activated receptor (PPAR)β/δ,
which is involved in metabolic processes and other functions. This review is focused on research
findings related to PPARβ/δ-mediated regulation of hepatic lipid and glucose metabolism and
NAFLD development. It also discusses the potential use of pharmacological PPARβ/δ activation for
NAFLD treatment.
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1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is an inclusive term describing a broad range of chronic
liver pathologies [1]. During the development of this chronic condition, several potentially pathogenic
mediators are crucially involved [2]. Risk factors for NAFLD include obesity, insulin resistance,
and other features of metabolic syndrome. Steatosis is the initial benign stage, characterized by lipid
accumulation in hepatocytes due to impaired triglyceride synthesis and export, and/or reduced fatty
acid beta-oxidation. Patients with steatosis may progress to non-alcoholic steatohepatitis (NASH),
a more severe form of NAFLD that involves hepatocellular injury and liver inflammation—both
drivers of hepatic fibrosis [3]. NASH can lead to more deleterious conditions, such as cirrhosis and
hepatocellular carcinoma (HCC) [4]. NASH is rapidly becoming a leading cause of end-stage liver
disease and hepatocellular carcinoma, both of which are indications for liver transplantation [5].

As obesity rates have risen, NAFLD has become the most common chronic liver disease in humans
and is considered an epidemic disease that constitutes a major global health issue. NAFLD affects
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70% of type 2 diabetes patients, and even a greater proportion of obese diabetic individuals [6,7].
Astonishingly, NAFLD affects nearly 30% of the general population worldwide [8–10] and has
potentially serious sequelae [11]. Although steatosis is considered a relatively benign condition,
about 30% of patients with steatosis will develop NASH, and 30–40% of patients with NASH will
progress to fibrosis and cirrhosis. Among patients with cirrhosis, 4% will develop hepatocellular
carcinoma with a 10-year mortality rate of 25% [12–14].

Although the majority of affected individuals are asymptomatic, NAFLD can be detected by
ultrasound scanning or routine blood testing for elevated plasma levels of the liver enzymes alanine
aminotransferase and aspartate aminotransferase, reflecting hepatocyte injury. On the other hand,
NASH diagnosis requires a liver biopsy and histological scoring. Individuals who are diabetic or
obese, or who suffer from metabolic syndrome, should be suspected as having NAFLD and should be
examined accordingly [15–17].

Body weight reduction through increased physical activity and dietary improvement can help
with NAFLD management and delay disease progression. However, long-term lifestyle changes may
be insufficient in many cases [18–20]. Notably, there is currently no effective FDA-approved therapy
for the prevention and/or treatment of NAFLD development and progression, although several
drugs are currently being tested in clinical trials [21]. Pharmacological treatments that target insulin
resistance, including metformin and thiazolidinediones (TZDs), have been tested in NAFLD patients
and those diagnosed with NASH. These studies have not demonstrated that metformin is effective
for NAFLD treatment [21,22]. TZDs reportedly lead to decreased hepatic fat and reduced liver injury;
however, TZD discontinuation allows NASH recurrence, and long-term TZD treatment can result in
medical complications, such as congestive heart failure, osteoporosis, and weight gain in susceptible
patients [23,24]. Thus, other than weight loss, there are currently no effective interventions and
therapies for NAFLD treatment [18–21].

Peroxisome proliferator-activated receptor (PPAR)β/δ is a nuclear receptor that is closely related
to PPARγ, which is activated by TZDs, as well as to PPARα, which is targeted by hypolipidemic agents
of the fibrate class. PPARβ/δ exerts a variety of metabolic effects and physiological actions [25–29],
and PPARβ/δ activation may inhibit and improve obesity-related metabolic disorders. In the present
review, we discuss the involvement of PPARβ/δ in NAFLD, and the effects of PPARβ/δ agonists on
this pathology.

2. Hallmark of NAFLD

2.1. Two-Hit Hypothesis

It has been proposed that NAFLD pathogenesis is a “two-hit” process (Figure 1) [30,31]. In this
hypothesis, the first hit results from triglyceride accumulation in the hepatocyte cytoplasm due to
an imbalance in lipid input and output, which is the hallmark of NAFLD [30]. Four mechanisms
can contribute to triglyceride accumulation in hepatocytes: (1) upregulated free fatty acid uptake
from blood plasma in the context of increased lipolysis from adipose tissue and/or chylomicrons
after high-fat diet consumption [32]; (2) high carbohydrate uptake that increases circulating glucose
and insulin levels, thus promoting de novo lipogenesis and contributing to triglyceride accumulation
in hepatocytes [33,34]; (3) decreased fatty acid mitochondrial oxidation; and (4) reduced hepatic
triglyceride secretion via packaging of apolipoprotein B (ApoB) into very low-density lipoprotein
(VLDL) particles, promoting triglyceride accumulation in hepatocytes [33–35]. Overall, aberrations in
any lipid metabolism processes, which may involve a large number of genes, can result in NAFLD
development [36].
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Figure 1. Schematic diagram of the two-hit hypothesis of non-alcoholic fatty liver disease (NAFLD) 
progression. In the first hit, an imbalance of lipid synthesis, catabolism, and export results in lipid 
accumulation in liver (steatosis). Obesity and insulin resistance are strongly correlated with liver 
steatosis. In the second hit, further inflammation processes lead to non-alcoholic steatohepatitis 
(NASH) and fibrosis, which can evolve into more severe stages, such as cirrhosis and ultimately 
hepatocellular carcinoma. 

The second hit in this NAFLD progression model is an imbalance of pro- and anti-inflammatory 
factors, resulting in increased inflammation, as seen in NASH [30]. Hence, the most critical and 
challenging step in NAFLD progression is the transition from relatively benign steatosis to the 
damaged and inflamed liver in NASH. Any strong chronic inflammation will cause fibrosis, thereby 
contributing to the development of cirrhosis and eventually hepatocellular carcinoma [37]. 

2.2. Multiple Parallel Hit Hypothesis 

The multiple parallel hit hypothesis considers alterations in the regulation of several factors, 
including gut nutrient-derived signals, adipokines, and certain pro-inflammatory cytokines (Figure 
2) [38]. Insulin resistance leads to alterations of nutrient metabolism and is thus commonly associated 
with NAFLD development [39]. Elevated levels of inflammatory cytokines, such as interleukin 6 (IL6) 
and tumor necrosis factor α (TNFα), result in hepatic inflammation [40]. The administration of TNFα 
antibody into ob/ob mice induces steatosis improvement, supporting a role of TNFα in NAFLD 
progression. Moreover, hepatic steatosis can be induced through primary inflammation in ob/ob mice 
[41]. In humans, inflammation is occasionally observed before steatosis, as seen in patients who have 
NASH but exhibit lower levels of steatosis [42]. 

Genome-wide association studies (GWAS) have identified genes that are involved in diseases 
and that can be targeted for disease treatments. A GWAS of various races found that NAFLD was 
linked to a polymorphism in the patatin-like phospholipase domain containing 3 (PNPLA3) gene [43]. 
PNPLA3 is a multifunctional enzyme involved in triacylglycerol hydrolysis and acyl-CoA-
independent transacylation of acylglycerols [44]. The nonsynonymous rs738409 C/G variant in 
PNPLA3 encodes I148M. It is proposed to be the main genetic component of NAFLD and NASH [45]. 
It reportedly shows the strongest risk effect on NAFLD development, accounting for 5.3% of total 
variance, and is associated with histological disease severity and NAFLD progression [45,46]. In 
patients with the single PNPLA3 nucleotide polymorphism rs738409 G/G, fatty liver progresses 
directly to NASH [47,48]. Notably, mice with Pnpla3 deficiency do not develop fatty liver or liver 
injury [49], and Pnpla3 knockdown decreases intracellular triglyceride levels in primary hepatocyte 
cultures [50]. Thus, the function of PNPLA3 in NAFLD warrants further investigation. Interestingly, 
Pnpla3 is a downstream target gene of sterol-regulated binding protein 1c (SREBP1c) and can mediate 
its effect in promoting lipid accumulation. Therefore, PNPLA3 has been suggested as a possible “first 
hit”, preceding other hits that may affect disease progression [51]. 

Figure 1. Schematic diagram of the two-hit hypothesis of non-alcoholic fatty liver disease (NAFLD)
progression. In the first hit, an imbalance of lipid synthesis, catabolism, and export results in lipid
accumulation in liver (steatosis). Obesity and insulin resistance are strongly correlated with liver
steatosis. In the second hit, further inflammation processes lead to non-alcoholic steatohepatitis
(NASH) and fibrosis, which can evolve into more severe stages, such as cirrhosis and ultimately
hepatocellular carcinoma.

The second hit in this NAFLD progression model is an imbalance of pro- and anti-inflammatory
factors, resulting in increased inflammation, as seen in NASH [30]. Hence, the most critical and
challenging step in NAFLD progression is the transition from relatively benign steatosis to the damaged
and inflamed liver in NASH. Any strong chronic inflammation will cause fibrosis, thereby contributing
to the development of cirrhosis and eventually hepatocellular carcinoma [37].

2.2. Multiple Parallel Hit Hypothesis

The multiple parallel hit hypothesis considers alterations in the regulation of several factors,
including gut nutrient-derived signals, adipokines, and certain pro-inflammatory cytokines
(Figure 2) [38]. Insulin resistance leads to alterations of nutrient metabolism and is thus commonly
associated with NAFLD development [39]. Elevated levels of inflammatory cytokines, such as interleukin 6
(IL6) and tumor necrosis factor α (TNFα), result in hepatic inflammation [40]. The administration of
TNFα antibody into ob/ob mice induces steatosis improvement, supporting a role of TNFα in NAFLD
progression. Moreover, hepatic steatosis can be induced through primary inflammation in ob/ob
mice [41]. In humans, inflammation is occasionally observed before steatosis, as seen in patients who
have NASH but exhibit lower levels of steatosis [42].

Genome-wide association studies (GWAS) have identified genes that are involved in diseases
and that can be targeted for disease treatments. A GWAS of various races found that NAFLD was
linked to a polymorphism in the patatin-like phospholipase domain containing 3 (PNPLA3) gene [43].
PNPLA3 is a multifunctional enzyme involved in triacylglycerol hydrolysis and acyl-CoA-independent
transacylation of acylglycerols [44]. The nonsynonymous rs738409 C/G variant in PNPLA3 encodes
I148M. It is proposed to be the main genetic component of NAFLD and NASH [45]. It reportedly shows
the strongest risk effect on NAFLD development, accounting for 5.3% of total variance, and is associated
with histological disease severity and NAFLD progression [45,46]. In patients with the single PNPLA3
nucleotide polymorphism rs738409 G/G, fatty liver progresses directly to NASH [47,48]. Notably,
mice with Pnpla3 deficiency do not develop fatty liver or liver injury [49], and Pnpla3 knockdown
decreases intracellular triglyceride levels in primary hepatocyte cultures [50]. Thus, the function
of PNPLA3 in NAFLD warrants further investigation. Interestingly, Pnpla3 is a downstream target
gene of sterol-regulated binding protein 1c (SREBP1c) and can mediate its effect in promoting lipid
accumulation. Therefore, PNPLA3 has been suggested as a possible “first hit”, preceding other hits
that may affect disease progression [51].
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Figure 2. Schematic illustration of the multiple parallel hits hypothesis of NAFLD development. 
NAFLD develops due to the impaired regulation of several factors, such as gut nutrient-derived 
signals, adipokines, and certain pro-inflammatory cytokines. 

Two other widely studied genetic modifiers of NAFLD are the transmembrane 6 superfamily 
member 2 (TM6SF2) and glucokinase regulator (GCKR) genes. TM6SF2 regulates liver fat 
metabolism, influencing triglyceride secretion and hepatic lipid droplet content [52]. The 
nonsynonymous rs58542926 variant in TM6SF2 encodes E167K and is associated with increased liver 
fat levels [53]. Patients with NAFLD show significantly lower TM6SF2 expression in the liver [54]. 
With regards to NAFLD risk alleles of TM6SF2, the C (Glu167) allele is correlated with higher 
cardiovascular risk via elevated circulating low-density lipoprotein (LDL)-cholesterol levels [55], and 
the T (Lys167) allele is associated with NAFLD and NASH [54,56,57]. GCKR encodes the glucokinase 
regulatory protein, which controls the activity and intracellular location of glucokinase, a key enzyme 
in glucose metabolism [58]. The GCKR missense variant rs780094 is significantly associated with 
histological NAFLD [59,60]. Moreover, GCKR mutations reportedly cause maturity-onset diabetes in 
young individuals with NAFLD risk factors, such as glucose intolerance and insulin resistance [61]. 
Histological NAFLD is also significantly associated with variants in or near the neurocan (NCAN) 
and lysophospholipase like 1 (LYPLAL1), but not protein phosphatase 1 regulatory subunit 3B 
(PPP1R3B) genes [59]. 

Obesity is another increasingly common global condition that is associated with diseases, 
including NAFLD, hypertension, type 2 diabetes mellitus, and hyperlipidemia. In fact, hypertension, 
hypertriglyceridemia, and obesity are predictive risk factors for NAFLD [62]. Over the past decade, 
visceral obesity has become more common among adults and children worldwide in association with 
increased consumption of Western-style diets with high fat and fructose contents [63]. Visceral fat 
accumulation is positively correlated with various organ pathologies, including NAFLD, as well as 
with insulin resistance in both obese and non-obese individuals. These findings suggest that visceral 
fat accumulation influences hepatic steatosis, regardless of the degree of obesity [64]. 

3. Peroxisome Proliferator-Activated Receptor β/δ Expression in Liver 

Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor 
superfamily, which comprises ligand-activated transcription factors. PPARs play important roles in 
regulating genes involved in fatty acid uptake and oxidation, lipid and carbohydrate metabolism, 

Figure 2. Schematic illustration of the multiple parallel hits hypothesis of NAFLD development.
NAFLD develops due to the impaired regulation of several factors, such as gut nutrient-derived signals,
adipokines, and certain pro-inflammatory cytokines.

Two other widely studied genetic modifiers of NAFLD are the transmembrane 6 superfamily
member 2 (TM6SF2) and glucokinase regulator (GCKR) genes. TM6SF2 regulates liver fat metabolism,
influencing triglyceride secretion and hepatic lipid droplet content [52]. The nonsynonymous
rs58542926 variant in TM6SF2 encodes E167K and is associated with increased liver fat levels [53].
Patients with NAFLD show significantly lower TM6SF2 expression in the liver [54]. With regards
to NAFLD risk alleles of TM6SF2, the C (Glu167) allele is correlated with higher cardiovascular
risk via elevated circulating low-density lipoprotein (LDL)-cholesterol levels [55], and the T (Lys167)
allele is associated with NAFLD and NASH [54,56,57]. GCKR encodes the glucokinase regulatory
protein, which controls the activity and intracellular location of glucokinase, a key enzyme in
glucose metabolism [58]. The GCKR missense variant rs780094 is significantly associated with
histological NAFLD [59,60]. Moreover, GCKR mutations reportedly cause maturity-onset diabetes in
young individuals with NAFLD risk factors, such as glucose intolerance and insulin resistance [61].
Histological NAFLD is also significantly associated with variants in or near the neurocan (NCAN) and
lysophospholipase like 1 (LYPLAL1), but not protein phosphatase 1 regulatory subunit 3B (PPP1R3B)
genes [59].

Obesity is another increasingly common global condition that is associated with diseases,
including NAFLD, hypertension, type 2 diabetes mellitus, and hyperlipidemia. In fact, hypertension,
hypertriglyceridemia, and obesity are predictive risk factors for NAFLD [62]. Over the past decade,
visceral obesity has become more common among adults and children worldwide in association with
increased consumption of Western-style diets with high fat and fructose contents [63]. Visceral fat
accumulation is positively correlated with various organ pathologies, including NAFLD, as well as
with insulin resistance in both obese and non-obese individuals. These findings suggest that visceral
fat accumulation influences hepatic steatosis, regardless of the degree of obesity [64].
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3. Peroxisome Proliferator-Activated Receptor β/δ Expression in Liver

Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor
superfamily, which comprises ligand-activated transcription factors. PPARs play important roles in
regulating genes involved in fatty acid uptake and oxidation, lipid and carbohydrate metabolism,
vascular biology, inflammation, cell proliferation, and senescence [65–67]. To be transcriptionally
active, PPARs must heterodimerize with the 9-cis retinoic acid receptor (RXR) (Figure 3) [68].
If an agonist is absent or in the presence of an antagonist, the PPAR-RXR heterodimer associates
with co-repressor proteins. This complex occupies the promoter region within a subset of PPAR target
genes, and consequently blocks their transcription. Such co-repressor proteins include the well-known
silencing mediator of retinoid and thyroid receptors (SMRT), and the nuclear receptor corepressor
(NCoR) [68–70].
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Figure 3. Regulatory mechanisms of gene transcription by peroxisome proliferator-activated receptors
(PPARs). Each PPAR structurally comprises an N-terminal domain (NTD), a DNA-binding domain
(DBD), and a ligand-binding domain (LBD). In the absence of a ligand or in the presence of an antagonist,
the PPAR-RXR heterodimer associates with nuclear receptor co-repressor proteins, leading to repression
of PPAR target genes (Repression). Fatty acid-binding protein (FABP) associates with the ligand/agonist
to transport it into the cell. Upon ligand binding, a conformational change in PPAR leads to
co-repressor dissociation, and co-activators are recruited. The activated PPAR-RXR heterodimer
binds the peroxisome proliferator response element (PPRE) and stimulates target gene transcription
(Transactivation). In macrophages, endothelial cells, and vascular smooth muscles, in the absence of a
PPARβ/δ agonist or ligand, the receptor will scavenge BCL-6 (a PPARβ/δ-associated transcriptional
repressor). Once PPARβ/δ neutralizes BCL-6, transcription factors (TFs) bind to TF-binding sites
(TFBSs), allows transcription of the genes repressed by BCL-6. However, the binding of a PPARβ/δ
ligand to PPARβ/δ will result in BCL-6 dissociation, leading to co-repressor-dependent transrepression
of BCL-6 targeted genes, such as b6rg, which encodes a sequence-specific transcription repressor
(Transrepression). The dashed arrow with a question mark indicates that it is not known how the
antagonist is translocated to the cell nucleus. The curvy arrow indicates the dissociation of the
co-repressor from the transcription factor.
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On the other hand, in the presence of an agonist, PPAR activation results in an exchange within
the co-regulator complex. This involves co-activator recruitment upon co-repressor dissociation.
Activated PPAR-RXR heterodimers bind to peroxisome proliferator response elements (PPREs) located
in the regulatory regions (5′-end region and introns) of PPAR target genes [68,71,72]. This results in
altered expression levels of PPAR target genes. PPAR and RXR bind to the 5′ and 3′ half-sites of the
PPRE, respectively [73]. The 5′ flanking region of the PPRE contributes to the selectivity of binding
of the different PPAR isotypes [74], but the selection of the PPAR target genes to be activated by
a given PPAR isotype in vivo is not yet well understood. It is thought that it results from a complex
interplay between expression levels of the three isotypes in the cell, ligand and cofactor availability,
affinity for a given PPRE, and probably factors binding in the vicinity of the PPRE [72]. Comprehensive
studies integrating expression profiling and genome-wide promoter binding by the PPARs are required
to better understand the promoter-specific mechanisms of PPAR action. Interestingly, PPAR/RXR
heterodimers can induce transcription in response to PPAR or RXR ligand-dependent activation
and the relative levels of cofactor expression are important determinants of the specificity of the
physiological responses to PPAR or RXR agonists [72]. Studies of PPARs’ roles in reducing the
expression of a subset of inflammatory response genes have highlighted a repressive molecular mode
of action, termed transrepression, through which PPARs impact key transcription factor activity.
Transrepression occurs through tethering, in which direct protein–protein interactions inhibit the
binding of transcription factors to DNA. The regulation of gene transcription by PPAR can also take
place through the sequestration of coactivators or the release of corepressors, which stimulates and
represses promoter activity, respectively (Figure 3) [72].

The PPAR family includes three isotypes—PPARα, PPARβ/δ, and PPARγ—which have the
canonical nuclear receptor domain organization [68,75]. The N-terminal A/B domain possesses a weak
ligand-independent transactivation function known as activation function (AF)-1. The C domain
binds DNA via two zinc-finger motifs, and the D domain is a hinge region. The E domain contains
the ligand-binding domain (LBD), possesses the ligand-dependent transactivation function termed
AF-2, and includes the region for dimerization and interaction with regulatory proteins [76,77].
PPARβ/δ also functions in the regulation of gene expression independently of DNA binding,
through cross-talk with other transcription factors, which consequently influences their transrepressor
function. For example, PPARβ/δ associates with the transcriptional repressor B-cell lymphoma-6
(BCL-6) (Figure 3) in macrophages, endothelial cells, and vascular smooth muscle cells [78,79].
In the presence of a PPARβ/δ agonist, BCL-6 dissociates from PPARβ/δ and subsequently binds
to promoter regions of pro-inflammatory genes, such as vascular cell adhesion molecule-1 (VCAM-1)
and E-selectin. With the aid of a co-repressor complex, such binding will repress the transcription of
these genes [29,80,81].

4. Hepatic Functions of PPARβ/δ Compared to PPARα and PPARγ

As mentioned above, Pparα, Pparβ/δ, and Pparγ encode proteins with a highly conserved structure
and molecular mode of action. However, the receptors differ in their tissue distribution patterns and
target genes and, therefore, in the biological functions that they regulate. Below, we briefly review the
roles of PPARα and PPARγ, and then discuss those of PPARβ/δ in greater detail.

4.1. PPARα

PPARα is predominantly expressed in tissues with high levels of fatty acid catabolism, including
the liver, as well as brown adipose tissue, heart, kidney, and skeletal muscle [82–84]. In the liver, PPARα
is involved in fatty acid metabolism through transcriptional upregulation of numerous genes that play
roles in mitochondrial and peroxisomal fatty acid oxidation, and in phospholipid remodeling [85–87].
PPARα also participates in downregulating hepatic inflammatory processes by reducing the effects of
acute exposure to cytokines [88–91].
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Preclinical and clinical studies have demonstrated that PPARα can influence NAFLD and
NASH development [92–97]. Fasting is sufficient to trigger steatosis in PPARα-null mice, indicating
that PPARα activity is required for metabolizing free fatty acids released from adipocytes [98,99].
Since PPARα is expressed and active in many organs, it is possible that the absence of PPARα in these
organs might contribute to the development of fasting-induced steatosis. Therefore, we generated
a hepatocyte-specific Pparα-null mouse and found that hepatocyte-restricted Pparα deletion is sufficient
to promote steatosis [97]. This mouse shows impaired whole-body fatty acid homeostasis not only
during fasting, but also when fed a methionine- and choline-deficient diet or a high-fat diet. Collectively,
these data establish PPARα as a relevant drug target in NAFLD [97].

4.2. PPARγ

The PPARγ protein has two isoforms: PPARγ1 and PPARγ2. Differential promoter usage
and alternate splicing of the PPARγ gene products actually generate three messenger RNAs
(mRNAs)—PPARγ1, PPARγ2, and PPARγ3—with the PPARγ1 and PPARγ3 mRNAs both encoding
the PPARγ1 protein [100]. PPARγ isoforms γ1 and γ2 are highly expressed in white and brown
adipose tissues, where the receptor governs adipocyte differentiation and lipid storage. PPARγ1 is
also expressed in the brain, vascular cells, colon, and immune cells [82,83].

PPARγ is weakly expressed in healthy liver, and steatosis is associated with increased hepatic
expression of the PPARγ2 isoform, as observed in various mouse models of obesity [101,102].
Accordingly, hepatocyte-specific PPARγ deletion reduces hepatic fat content in mice fed a high-fat
diet [103]. Increased PPARγ2 gene expression is also positively correlated with liver steatosis in
obese patients [104,105]. Findings in the hepatocyte-specific PPARγ-knockout model indicated that
PPARγ directly promotes hepatic fat accumulation by increasing lipid uptake, and by promoting
de novo lipogenesis [106–110]. More recently, observations in an original mouse model of inducible
hepatocyte-specific PPARγ deletion have suggested that PPARγ plays a specific role in fatty acid uptake
and diacylglycerol (DAG) synthesis via upregulation of Cd36 and monoacylglycerol O-acyltransferase 1
(Mogat1) [111]. Moreover, PPARγ plays important roles in glucose metabolism by regulating the
expression of hexokinase 2 (HK2) and the M2 isoform of pyruvate kinase (PKM2), resulting in massive
liver steatosis in phosphatase and tensin homologs deleted on chromosome 10 (PTEN)-null mice [112].

4.3. PPARβ/δ

PPARβ/δ is ubiquitously expressed, with the expression level varying among organs, cells,
and species. Hepatic expression is low to moderate in adult humans and rats [82,113–116] and moderate
to high in mice [117]. Pparβ/δ is highly expressed in hepatocytes, liver sinusoidal endothelial cells
(LSECs), and liver-resident macrophages (Kupffer cells) [118]. Pparβ/δ expression is also constitutively
high in hepatic stellate cells (HSCs).

In liver tissue of Pparβ/δ-null mice, transcriptional profiling revealed downregulation of genes
associated with lipoprotein metabolism and glucose utilization pathways, indicating that these genes
are positively regulated by PPARβ/δ. On the other hand, genes involved in innate immunity and
inflammation were upregulated, suggesting their repression by PPARβ/δ. These transcriptional
changes in Pparβ/δ-null mice correlated with increased plasma glucose and triglyceride levels,
and reduced plasma cholesterol levels [119]. These results suggested important roles of PPARβ/δ in
energy metabolism and inflammation, which we discuss below.

4.3.1. PPARβ/δ Roles in Energy Metabolism

In a very informative piece of work, Liu et al. demonstrated that adenovirus-mediated liver-restricted
PPARβ/δ overexpression reduced fasting glucose levels in both chow- and high fat-fed mice.
In parallel an increased hepatic glycogen and lipid deposition was observed accompanied by an
up-regulation of glucose utilization and de novo lipogenesis [28]. PPARβ/δ increased the production
of monounsaturated fatty acids (MUFAs), which activate PPARs, while reducing saturated fatty acid
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levels. Lipid accumulation in the adeno-PPARβ/δ-infected livers reduced cell damage and c-Jun
N-terminal kinase (JNK) stress signaling. The authors proposed that the PPARβ/δ-regulated lipogenic
program may protect against lipotoxicity, and that altered substrate utilization by PPARβ/δ resulted
in AMP-activated protein kinase activation, which may contribute to the glucose-lowering activity
of PPARβ/δ. Taken together, this data suggested that PPARβ/δ impacts hepatic energy substrate
homeostasis by a coordinated control of fatty acid and glucose metabolism [28].

In line with these findings, PPARβ/δ regulates lipogenic genes during the dark/feeding cycle.
Specifically, PPARβ/δ drives MUFA production via stearoyl-CoA desaturase 1 (Scd1) upregulation,
a process that avoids lipotoxicity by increasing fatty acid oxidation or sequestration of saturated
fatty acids. As such, the process inhibits saturated fatty acid-induced cytotoxicity in hepatocytes.
Furthermore, long chain acyl-CoA from MUFA production allows esterification into triglycerides [120].
Interestingly, liver-specific PPARβ/δ activation increases fatty acid uptake in muscle, whereas its
deletion has an opposite effect. Phosphatidylcholine 18:0/18:1 (PC (18:0/18:1)) was identified as a
serum lipid produced in the liver under the control of PPARβ/δ activity, which upon circulating to
muscles stimulates fatty acid catabolism through PPARα activation [121].

For a direct comparison of the roles of Pparα and Pparβ/δ in liver, microarray analysis was
being used to compare the liver transcriptome between Pparα and Pparβ/δ-null mice, revealing a
small overlap in the regulation of genes that are both PPARα- and PPARβ/δ-dependent. In the fed
state, similar numbers of genes exhibited altered expression in Pparα and Pparβ/δ deletion. However,
during fasting, more genes showed altered expression in Pparα-deleted mice compared to Pparβ/δ-null
mice. Analysis of plasma metabolites, including free fatty acids and β-hydroxybutyrate, supported the
notion that PPARα is particularly important during fasting, while PPARβ/δ appears to be important
in both the fed and fasted states [119]. Based on functional similarities to PPARα, PPARβ/δ may be a
master regulator of hepatic intermediary metabolism. In rodents, both receptors play non-redundant
roles in the liver to enhance ketogenesis through induction of Fgf21 and expression of fatty acid
oxidation genes under fasting conditions [122,123]. In fact, PPARα is an important activator of hepatic
fatty acid oxidation [97,99,124]. Interestingly, PPARβ/δ cannot compensate for PPARα in Pparα-null
mice [98].

The differences between PPARα and PPARβ/δ in molecular and biological functions also
corresponded with their antiphasic circadian expression profiles. Indeed, PPARα peaks at the end the
light/resting period, while PPARβ/δ is highly expressed in the liver during the night/feeding period,
according to [86,121], and Montagner et al., unpublished results. Notably, during fasting (usually
light period), PPARβ/δ expression decreases while PPARα is highly expressed [125]. In spite of their
biphasic expression profile, intra- and inter-organ dialogs between PPARβ/δ and PPARα activities have
been described. As mentioned above, increased hepatic PPARβ/δ activity can lead to PPARα activation
in muscle tissue via production of the specific PPARα ligand 16:0/18:1-phosphatidylcholine [121].
This mechanism could also occur in the liver [121,126]. Overall, while both PPARα and PPARβ/δ are
associated with the regulation of hepatic lipid metabolism [127,128], hepatic PPARβ/δ mainly acts
on anabolic metabolic processes and primarily contributes to glucose utilization, MUFA formation,
and anti-inflammatory responses [119,129].

Compared with PPARα and PPARγ, less is known about PPARβ/δ in relation to obesity and
NAFLD [130]. However, the lipogenic activity of PPARβ/δ raises the question of whether PPARβ/δ
activation is associated with steatosis and steatohepatitis. It was recently shown that both PPARβ/δ
and PPARα receptors were necessary for adipose tissue reduction driven by the PPARβ/δ agonist
GW501516 and subsequent development of hepatic steatosis, with PPARβ/δ working upstream of
PPARα [131]. PPARβ/δ is also involved in transforming potentially toxic lipids into less toxic molecules
by regulating MUFA synthesis, a process that increases PPARα activity and could protect against
NAFLD and promote detoxification. In mice with adenovirus-mediated liver-restricted PPARβ/δ
overexpression, examination revealed elevated liver expression of the adiponectin receptor 2 (AdipoR2),
leading to enhanced 5′ adenosine monophosphate-activated protein kinase (AMPK) activity [132].
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This PPARβ/δ-dependent increase in AMPK activity reportedly suppressed lipogenesis and glycogen
synthesis, reduced gluconeogenesis, and increased fatty acid oxidation [25–27]. The AMPK pathway
may act as a negative feedback loop for PPARβ/δ, possibly explaining why long-term PPARβ/δ
agonist treatment does not lead to liver lipid accumulation [133]. Similarly, PPARβ/δ suppresses
lipogenesis by lowering SREBP1c levels, reducing the severity of hepatic steatosis in obese diabetic
db/db mice via stimulation of the insulin-induced gene-1 (Insig-1), the product of which inhibits
SREBP1c [134].

Fibroblast growth factor 21 (FGF21) is a circulating hormone derived from the liver, which plays
important roles in regulating glucose and lipid metabolism [135,136]. Recent evidence shows that
PPARβ/δ and FGF21 exert hepatic regulation of the VLDL receptor, which modulates NAFLD.
Liver tissue of Pparβ/δ-null mice and Pparβ/δ−/− hepatocytes exhibit increased VLDL receptor
expression. Moreover, FGF21 neutralizing antibody treatment resulted in triglyceride accumulation
in Pparβ/δ-null mice [137]. In support of these pre-clinical results, liver biopsies from patients with
moderate and severe hepatic steatosis showed increased VLDL receptor levels and reduced PPARβ/δ
mRNA levels and DNA-binding activity compared to in control subjects. These findings revealed a
novel mechanism in which VLDL receptor levels are controlled by PPARβ/δ and FGF21, impacting
hepatic steatosis development [137].

4.3.2. PPARβ/δ Roles in Inflammation

On a high-fat diet, the PPARβ/δ-dependent increase in hepatocyte MUFA production impacts
liver-resident macrophages and Kupffer cells—resulting in increased PPARβ/δ activation, and reduced
expression of TNFα or interferon gamma (IFNγ) inflammatory markers from these cells—and altering
the immune response [28]. Thus, this finding suggests that PPARβ/δ plays an anti-inflammatory role
in liver. PPARβ/δ and its ligands are also reportedly associated with anti-inflammatory activities
through interference with nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB)
signaling [67,138,139] and through interactions with signal transducer and activator of transcription 3
(STAT3) and extracellular-signal-regulated kinase 5 (ERK5) [140,141].

Kupffer cells are also involved in insulin resistance and fatty liver disease [142], and PPARβ/δ
plays a role in regulating the alternative activation of these cells [143]. In the presence of IL4 and
IL13 stimulation, PPARβ/δ is required for the activation of Kupffer cells to the M2 subtype that
has anti-inflammatory activity. Hematopoietic Pparβ/δ-deficient obese mice exhibited lower insulin
sensitivity and oxidative metabolism, as well as impaired alternative activation of Kupffer cells.
This phenotype was validated by three independent lines of experiments. First, Pparβ/δ deletion in
lean mice resulted in lower expression of genes involved in alternatively activated Kupffer cells, such as
arginase 1 (Arg1), c-type lectin domain containing 7A (Clec7a), jagged 1 (Jag1), programmed cell death
1 ligand 2 (Pdcd1lg2) and chitinase (Chia). However, treatment with PPARβ/δ agonist GW0742 led
to increased expression of these genes in liver. Second, replacing the bone marrow of wild-type mice
with Pparβ/δ-null bone marrow led to insulin resistance and mitochondrial dysfunction in hepatocytes,
eliminating the alternative activation of Kupffer cells. Third, direct co-culturing of Pparβ/δ-null
macrophages with primary hepatocytes induced a significant reduction of oxidative phosphorylation
in the parenchymal cells. The study demonstrated the association between Pparβ/δ-null Kupffer cells
and dysregulation of hepatic metabolism, resulting in increased liver triglycerides [143].

PPARβ/δ is also involved in hepatic stellate cell (HSC) activation; its expression is upregulated
in cultures of activated HSCs and in in vivo fibrogenesis [144,145]. Administration of the PPARβ/δ
agonist L165041 enhances HSC proliferation, and L165041 administration combined with chronic
carbon tetrachloride (CCl4) treatment leads to higher fibrotic marker expression in rats [146]. These data
suggested that PPARβ/δ plays an important role as a signal-transducing factor, leading to HSC
proliferation in the event of acute and chronic liver inflammation [146]. In activated HSCs, PPARβ/δ
enhances the expression of Cd36, which codes for a membrane receptor that facilitates fatty acid
uptake. Moreover, upregulated PPARβ/δ expression is associated with elevated expression of proteins
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involved in retinoid binding and esterification, such as cellular retinol-binding protein 1 (CRBP-1) and
lecithin retinol acyltransferase (LRAT). Overall, PPARβ/δ regulates the expression of genes related to
vitamin A metabolism in HSCs undergoing activation [144].

Interestingly, CCl4-induced hepatic fibrotic response requires PPARβ/δ which enhances expression
of profibrotic and pro-inflammatory genes in mice. This process results in increased macrophage
recruitment and extracellular matrix deposition in the liver [145]. However, this phenotype was not
observed in Pparβ/δ-null mice treated with CCl4 alone or with CCl4 plus GW501516. The same study
further demonstrated that GW501516 administration increased HSC proliferation in CCl4-injured
wild-type mice livers, but not in Pparβ/δ-null mice with the same treatment. In another study,
GW501516-treated db/db mice exhibited higher expression of the lipogenic enzyme acetyl-CoA
carboxylase β and elevated triglyceride levels in the liver [147]. Moreover, investigations of
GW501516 treatment in control and Pparβ/δ-knockdown LX-2 human hepatic stellate cells revealed
that GW501516-stimulated HSC proliferation occurs via p38 and JNK mitogen-activated protein kinase
(MAPK) pathways [145]. However, in the same model of CCl4-induced liver damage, administration
of the PPARβ/δ agonist KD3010 (chemical abstracts service, CAS ID 934760-90-4) ameliorated the
CCl4-induced liver injury with lower deposition of extracellular matrix proteins. KD3010 treatment
of primary hepatocytes provided protection from CCl4-induced cell death or starvation, suggesting
that KD3010 administration could have hepatoprotective and antifibrotic effects in animal models
of liver fibrosis [148]. Further studies are needed to determine the reasons for the different effects of
GW501516 and KD3010 in injured livers [149].

In mice treated with the agonist GW0742, NFκB signaling was attenuated in a PPARβ/δ-dependent
manner. Compared to wild-type mice, Pparβ/δ-null mice exhibited higher TNFα and αSMA expression
in hepatocytes and HSCs, but similar inflammatory signaling in hepatocytes and activation of
HSCs [150]. A recent study using the same PPARβ/δ agonist demonstrated that PPARβ/δ upregulates
serum high-density lipoprotein (HDL) and HDL phospholipids in NAFLD mice, while this effect is
not seen in Pparβ/δ-deficient mice [151].

5. Pharmacological Strategies Targeting PPARβ/δ for NAFLD Treatment

5.1. PPARβ/δ Agonists: GW0742, GW501516

Preclinical studies have investigated long-term treatment with PPARβ/δ agonists such as GW0742
(CAS ID 317318-84-6) and GW501516 (CAS ID 317318-70-0) in animal models, revealing that PPARβ/δ
activation attenuates hepatic steatosis by promoting fatty acid oxidation, reducing lipogenesis,
and enhancing insulin sensitivity [134,152–154]. On the contrary, short-term treatment with PPARβ/δ
agonists reportedly yields a transient increase in hepatic triglyceride levels [131]. Elevated levels of
monounsaturated fatty acids, are accompanied by lower saturated fatty acid levels and no observed
hepatotoxicity [28]. Studies involving PPARβ/δ agonist treatment in humans have demonstrated
reduced hepatic fat content and improved plasma markers of liver function, including carnitine
palmitoyltransferase 1b [155,156]. One study conducted in middle-overweight patients revealed
that GW501516 treatment decreased liver lipid content and insulinemia, with no signs of oxidative
stress [156]. However, LDL cholesterol plasma level was also reduced. This suggests that the protective
effects of PPARβ/δ pharmacological activation are reliant on increased lipid oxidation in muscles.

5.2. PPAR Dual Agonists: Elafibranor, Saroglitazar

The PPARα and PPARβ/δ dual agonist elafibranor (also known as GTF-505, CAS ID 923978-27-2)
has recently emerged as one of the most promising chemical entities for treatment of NAFLD,
especially NASH. Prior studies have demonstrated its efficiency, and it is currently undergoing
phase III testing in NASH patients. It has reportedly improved steatosis, inflammation, and fibrosis
in mouse models of NAFLD [95], and thus appears to be a good candidate for the treatment of
hepatic fibrosis, NAFLD, primary biliary cirrhosis, and NASH. Elafibranor was investigated in a
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randomized, double-blind, placebo-controlled trial including 274 patients in Europe and the USA
(GOLDEN-505 trial; NCT01694849). Post-hoc analysis of those trial results revealed that ALT was
significantly reduced after four to 12 weeks of elafibranor treatment among patients who were in
the top two quartiles at baseline. Non-cirrhotic patients with NASH did not exhibit any worsening
of hepatic fibrosis after 52 weeks of taking elafibranor at 120 mg/day [157]. Liver biopsy analysis
in this patient group further revealed disappearance of hepatocellular ballooning, with no or mild
lobular inflammation. Elafibranor-treated patients also exhibited improvement in liver enzymes, lipid
parameters (triglycerides, low-density lipoprotein, high-density lipoprotein, and cholesterol), serum
inflammation biomarkers, steatosis, and fibrosis. Other studies have reported that elafibranor treatment
improves glucose homeostasis and insulin resistance in diabetic patients [157,158]. Overall, elafibranor
appears to be safe and well-tolerated, with no deaths or cardiovascular incidents reported during
treatment. There is currently an ongoing phase III randomized, double-blind, placebo-controlled trial
of elafibranor use in 2000 liver biopsy-proven NASH patients, to investigate the efficacy against NASH
and the safety regarding fibrosis during longer use (72 weeks) (NCT02704403) [159].

Interestingly, the PPARα/γ dual agonist saroglitazar (CAS ID 495399-09-2) has also exhibited overall
beneficial effects in experimental models of NASH [160]. Moreover, saroglitazar treatment induces a
significant decrease of ALT levels in subjects with biopsy-proven NASH [21]. Since saroglitazar improves
all of the components responsible for NAFLD/NASH in preclinical models, it is also a promising
candidate for the management of these conditions. Further studies are needed to examine the possible
common and different pathways of action of elafibranor and saroglitazar.

5.3. PPAR Pan-Agonists: Bezafibrate, MHY2013, Lanifibranor

The anti-fibrotic and anti-inflammatory effects of PPARs have inspired growing use of PPAR
pan-agonists to treat NAFLD. It is postulated that PPAR pan-agonist may show improved efficacy
compared to targeting a single PPAR isotype [161]. The PPAR pan-agonist bezafibrate (CAS ID 41859-67-0),
which activates PPARα, PPARβ/δ, and PPARγ, has shown beneficial effects in NASH treatment.
In mice fed a methionine- and choline-deficient diet, bezafibrate and GW501516 (selective PPARβ/δ
agonist) treatments have resulted in upregulation of β-oxidation and lipid transport genes in
hepatocytes. They have inhibited NASH development. These treatments also both resulted in reduced
inflammatory gene expression [152]. MHY2013 is another PPAR pan-agonist that also activates all
three PPAR isotypes. In aged Sprague-Dawley (SD) rats, MHY2013 treatment improved age-related
hepatic lipid accumulation, and resulted in upregulated β-oxidation signaling and lower inflammation
in the liver [162]. The PPAR pan-agonist Lanifibranor (CAS ID 927961-18-0) is reportedly effective in
experimental skin and lung fibrosis [163,164]. It has been proposed for use as an anti-fibrotic treatment.
Lanifibranor is currently being tested in a phase 2b randomized, double-blind, placebo-controlled trial
for safety and efficacy in up to 225 patients in 12 European countries (NCT03008070) [165].

6. Conclusions

NAFLD is an alarming health issue that is occurring with rising frequency in developed
countries. It is now well documented that PPARβ/δ is involved in regulating glucose and lipid
metabolism in the liver. An improved understanding of the physiological roles of PPARs, particularly
PPARβ/δ, will likely contribute to the design and development of safe agonists with enhanced
therapeutic potential compared to first-generation agonists. Although much remains unknown about
the physiological impact of PPARβ/δ, prior research has elucidated highly interesting NAFLD-related
functions, as reviewed in this article.

Some results on PPARβ/δ roles seem contradictory, and the reasons for these discrepancies is
unclear. It is conceivable that PPARβ/δ exert different functions in a context- and agonist-specific
manner. For example, one study reported that PPARβ/δ stimulates the de novo lipogenesis
pathway, which is accompanied by lipid deposition. Interestingly, this PPARβ/δ-regulated lipogenic
program is paralleled by reduced JNK stress signaling, suggesting that it may protect against
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lipotoxicity [28]. However, it has also been suggested that PPARβ/δ suppresses hepatic lipogenesis.
PPARβ/δ overexpression enhanced Insig-1 expression, which suppressed SREBP-1 activation and
thus ameliorated hepatic steatosis in obese db/db mice [134]. Similarly, PPARβ/δ agonists GW501516
and KD3010 exerted pro-fibrotic and anti-fibrotic effects, respectively, in CCl4-injured livers [145,146].
Uncovering the causes for these apparent discrepancies will likely elucidate differentiated responses of
PPARβ/δ in specific situations, which will be important for PPARβ/δ as a pharmacological target. We are
in the opinion that detail transcriptomic profiling in combination with a better understanding of the
pharmacological characteristics of candidate drugs, such as half-life, affinity constant, and bioavailability,
may provide insights into their true target and reveal potential off-target effects.

PPARβ/δ also plays an interesting role in the alternative activation of Kupffer cells to
the anti-inflammatory macrophage M2 subtype [143], revealing the direct PPARβ/δ-dependent
involvement of Kupffer cells in liver lipid metabolism. Based on this beneficial role for alternatively
activated Kupffer cells in metabolic syndrome conditions, controlling PPARβ/δ activity in these cells
may contribute to delaying NAFLD progression.
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The fine tuning of PPAR-regulated physiological functions in the liver and other organs is
influenced by the functional interaction between PPARβ/δ and PPARα [121,131]. PPARβ/δ apparently
works upstream of PPARα, controlling the production of MUFAs, as well as PC (18:0/18:1), which activates
muscle PPARα to increase muscle energy use [121]. MUFAs also activate PPARα in the liver itself.
This regulatory circuit couples ligand production and the activities of two receptors that play key roles
in liver energy metabolism.

These complex interactions are certainly of interest for the development of novel PPAR drugs.
PPARα/PPARβ/δ dual agonists may have additional beneficial effects due to the integrated
roles of these two receptors through the abovementioned regulatory circuit they form together.
GFT505 (elafibranor) is the most advanced PPARα/PPARβ/δ dual agonist [158]. It has been tested in
several clinical trials and is currently being evaluated in a clinical phase III study [166]. Several other
PPAR agonists, dual agonists, and pan-agonists of interest have been investigated, and some are now
in clinical studies of safety and efficacy (Figure 4). As PPARs play important roles in regulating genes
involved in fatty acid uptake and oxidation [65–67], we propose that targeting PPARs will be one of
the best possibilities to treat fatty liver diseases.
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ADIPOR2 adiponectin receptor 2
AF activation function
APOB apolipoprotein B
Arg1 arginase 1
CAS chemical abstracts service
CCL4 chronic carbon tetrachloride
CHIA chitinase
CLEC7a c-type lectin comain containing 7A
DAG diacylglycerol
DBD DNA-binding domain
ERK5 extracellular-signal-regulated kinase 5
FABP fatty acid-binding protein
FGF21 fibroblast growth factor 21
GCKR glucokinase regulator
GWAS genome-wide association studies
HCC hepatocellular carcinoma
HK2 hexokinase 2
HSC hepatic stellate cell
IFNγ interferon gamma
IL interleukin
INSIG-1 insulin-induced gene-1
JAG1 jagged 1
JNK c-Jun N-terminal kinase
LBD ligand-binding domain
LDL low-density lipoprotein
LSEC liver sinusoidal endothelial cell
LYPLAL1 lysophospholipase like 1
MOGAT1 monoacylglycerol O-acyltransferase 1
MUFA monounsaturated fatty acids
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NAFLD non-alcoholic fatty liver disease
NASH non-alcoholic steatohepatitis
NCAN neurocan
NCoR nuclear receptor corepressor
NFκB nuclear factor kappa-light-chain-enhancer of activated B cells
NTD N-terminal domain
PC Phosphatidylcholine
Pdcd1lg2 programmed cell death 1 ligand 2
PKM2 M2 isoform of pyruvate kinase
PNAPL3 patatin-like phospholipase domain containing 3
PPAR peroxisome proliferator-activated receptor
PPP1R3B protein phosphatase 1 regulatory subunit 3B
PPRE peroxisome proliferator response element
PTEN phosphatase and tensin homolog deleted on chromosome 10
RXR retinoic acid receptor
SCD1 stearoyl-CoA desaturase 1
SMRT silencing mediator of retinoid and thyroid receptors
SREBP1c sterol-regulated binding protein 1c
STAT3 signal transducer and activator of transcription 3
TF transcription factor
TFBS TF-binding site
TM6SF2 transmembrane 6 superfamily member 2
TNFα tumor necrosis factor α
TZD thiazolidinedione
VCAM-1 vascular cell adhesion molecule-1
VLDL very low-density lipoprotein

References

1. Loomba, R.; Sanyal, A.J. The global NAFLD epidemic. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 686–690.
[CrossRef] [PubMed]

2. Byrne, C.D.; Targher, G. NAFLD: A multisystem disease. J. Hepatol. 2015, 62, S47–S64. [CrossRef] [PubMed]
3. Wieckowska, A.; Papouchado, B.G.; Li, Z.; Lopez, R.; Zein, N.N.; Feldstein, A.E. Increased hepatic and

circulating interleukin-6 levels in human nonalcoholic steatohepatitis. Am. J. Gastroenterol. 2008, 103,
1372–1379. [CrossRef] [PubMed]

4. Cohen, J.C.; Horton, J.D.; Hobbs, H.H. Human fatty liver disease: Old questions and new insights. Science
2011, 332, 1519–1523. [CrossRef] [PubMed]

5. Wong, R.J.; Aguilar, M.; Cheung, R.; Perumpail, R.B.; Harrison, S.A.; Younossi., Z.M.; Ahmed, A.
Nonalcoholic Steatohepatitis Is the Second Leading Etiology of Liver Disease Among Adults Awaiting
Liver Transplantation in the United States. Gastroenterology 2015, 148, 547–555. [CrossRef] [PubMed]

6. Targher, G.; Bertolini, L.; Rodella, S.; Tessari, R.; Zenari, L.; Lippi, G.; Arcaro, G. Prevalence of nonalcoholic
fatty liver disease and its association with cardiovascular disease among Type 2 diabetic patients.
Diabetes Care 2007, 30, 1212–1218. [CrossRef] [PubMed]

7. Machado, M.; Marques-Vidal, P.; Cortez-Pinto, H. Hepatic histology in obese patients undergoing bariatric
surgery. J. Hepatol. 2006, 45, 600–606. [CrossRef] [PubMed]

8. Angulo, P. Obesity and nonalcoholic fatty liver disease. Nutr. Rev. 2007, 65 Pt 2, 57–63. [CrossRef]
9. Lazo, M.; Clark, J.M. The epidemiology of nonalcoholic fatty liver disease: A global perspective. Semin. Liver Dis.

2008, 28, 339–350. [CrossRef] [PubMed]
10. Williams, C.D.; Stengel, J.; Asike, M.I.; Torres, D.M.; Shaw, J.; Contreras, M.; Landt, C.L.; Harrison, S.A.

Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged
population utilizing ultrasound and liver biopsy: A prospective study. Gastroenterology 2011, 140, 124–131.
[CrossRef] [PubMed]

http://dx.doi.org/10.1038/nrgastro.2013.171
http://www.ncbi.nlm.nih.gov/pubmed/24042449
http://dx.doi.org/10.1016/j.jhep.2014.12.012
http://www.ncbi.nlm.nih.gov/pubmed/25920090
http://dx.doi.org/10.1111/j.1572-0241.2007.01774.x
http://www.ncbi.nlm.nih.gov/pubmed/18510618
http://dx.doi.org/10.1126/science.1204265
http://www.ncbi.nlm.nih.gov/pubmed/21700865
http://dx.doi.org/10.1053/j.gastro.2014.11.039
http://www.ncbi.nlm.nih.gov/pubmed/25461851
http://dx.doi.org/10.2337/dc06-2247
http://www.ncbi.nlm.nih.gov/pubmed/17277038
http://dx.doi.org/10.1016/j.jhep.2006.06.013
http://www.ncbi.nlm.nih.gov/pubmed/16899321
http://dx.doi.org/10.1301/nr.2007.jun.S57-S63
http://dx.doi.org/10.1055/s-0028-1091978
http://www.ncbi.nlm.nih.gov/pubmed/18956290
http://dx.doi.org/10.1053/j.gastro.2010.09.038
http://www.ncbi.nlm.nih.gov/pubmed/20858492


Int. J. Mol. Sci. 2018, 19, 1893 15 of 23

11. Nakamuta, M.; Kohjima, M.; Morizono, S.; Kotoh, K.; Yoshimoto, T.; Miyagi, I.; Enjoji, M. Evaluation of
fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease. Int. J. Mol. Med. 2005, 16,
631–635. [PubMed]

12. Ekstedt, M.; Franzén, L.E.; Mathiesen, U.L.; Thorelius, L.; Holmqvist, M.; Bodemar, G.; Kechagias, S.
Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology 2006, 44, 865–873.
[CrossRef] [PubMed]

13. Farrell, G.C.; Larter, C.Z. Nonalcoholic fatty liver disease: From steatosis to cirrhosis. Hepatology 2006,
43 (Suppl. 1), S99–S112. [CrossRef] [PubMed]

14. Bodzin, A.S.; Busuttil, R.W. Hepatocellular carcinoma: Advances in diagnosis, management, and long term
outcome. World J. Hepatol. 2015, 7, 1157–1167. [CrossRef] [PubMed]

15. Marchesini, G.; Bugianesi, E.; Forlani, G.; Cerrelli, F.; Lenzi, M.; Manini, R.; Natale, S.; Vanni, E.; Villanova, N.;
Melchionda, N.; et al. Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology 2003,
37, 917–923. [CrossRef] [PubMed]

16. Adams, L.A.; Waters, O.R.; Knuiman, M.W.; Elliott, R.R.; Olynyk, J.K. NAFLD as a risk factor for the
development of diabetes and the metabolic syndrome: An eleven-year follow-up study. Am. J. Gastroenterol.
2009, 104, 861–867. [CrossRef] [PubMed]

17. Dowman, J.K.; Tomlinson, J.W.; Newsome, P.N. Systematic review: The diagnosis and staging of
non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. Aliment. Pharmacol. Ther. 2010, 33,
525–540. [CrossRef] [PubMed]

18. McCarthy, E.M.; Rinella, M.E. The role of diet and nutrient composition in nonalcoholic Fatty liver disease.
J. Acad. Nutr. Diet. 2012, 112, 401–409. [CrossRef] [PubMed]

19. Promrat, K.; Kleiner, D.E.; Niemeier, H.M.; Jackvony, E.; Kearns, M.; Wands, J.R.; Fava, J.L.; Wing, R.R.
Randomized controlled trial testing the effects of weight loss on nonalcoholic steatohepatitis. Hepatology
2010, 51, 121–129. [CrossRef] [PubMed]

20. St George, A.; Bauman, A.; Johnston, A.; Farrell, G.; Chey, T.; George, J. Effect of a lifestyle intervention in
patients with abnormal liver enzymes and metabolic risk factors. J. Gastroenterol. Hepatol. 2008, 24, 399–407.
[CrossRef] [PubMed]

21. Oseini, A.M.; Sanyal, A.J. Therapies in non-alcoholic steatohepatitis (NASH). Liver Int. 2017, 37 (Suppl. 1),
97–103. [CrossRef] [PubMed]

22. Haukeland, J.W.; Konopski, Z.; Eggesbø, H.B.; von Volkmann, H.L.; Raschpichler, G.; Bjøro, K.; Haaland, T.;
Løberg, E.M.; Birkeland, K. Metformin in patients with non-alcoholic fatty liver disease: A randomized,
controlled trial. Scand. J. Gastroenterol. 2009, 44, 853–860. [CrossRef] [PubMed]

23. Lutchman, G.; Modi, A.; Kleiner, D.E.; Promrat, K.; Heller, T.; Ghany, M.; Borg, B.; Loomba, R.; Liang, T.J.;
Premkumar, A.; et al. The effects of discontinuing pioglitazone in patients with nonalcoholic steatohepatitis.
Hepatology 2007, 46, 424–429. [CrossRef] [PubMed]

24. Aithal, G.P.; Thomas, J.A.; Kaye, P.V.; Lawson, A.; Ryder, S.D.; Spendlove, I.; Austin, A.S.; Freeman, J.G.;
Morgan, L.; Webber, J. Randomized, placebo-controlled trial of pioglitazone in nondiabetic subjects with
nonalcoholic steatohepatitis. Gastroenterology 2008, 135, 1176–1184. [CrossRef] [PubMed]

25. Berlanga, A.; Guiu-Jurado, E.; Porras, J.A.; Auguet, T. Molecular pathways in non-alcoholic fatty liver disease.
Clin. Exp. Gastroenterol. 2014, 7, 221–239. [CrossRef] [PubMed]

26. Yamauchi, T.; Nio, Y.; Maki, T.; Kobayashi, M.; Takazawa, T.; Iwabu, M.; Okada-Iwabu, M.; Kawamoto, S.;
Kubota, N.; Kubota, T.; et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin
binding and metabolic actions. Nat. Med. 2007, 13, 332–339. [CrossRef] [PubMed]

27. Narkar, V.A.; Downes, M.; Yu, R.T.; Embler, E.; Wang, Y.X.; Banayo, E.; Mihaylova, M.M.; Nelson, M.C.;
Zou, Y.; Juguilon, H.; et al. AMPK and PPARdelta agonists are exercise mimetics. Cell 2008, 134, 405–415.
[CrossRef] [PubMed]

28. Liu, S.; Hatano, B.; Zhao, M.; Yen, C.C.; Kang, K.; Reilly, S.M.; Gangl, M.R.; Gorgun, C.; Balschi, J.A.;
Ntambi, J.M.; et al. Role of peroxisome proliferator-activated receptor δ/β in hepatic metabolic regulation.
J. Biol. Chem. 2011, 286, 1237–1247. [CrossRef] [PubMed]

29. Tan, N.S.; Vázquez-Carrera, M.; Montagner, A.; Sng, M.K.; Guillou, H.; Wahli, W. Transcriptional control of
physiological and pathological processes by the nuclear receptor PPARβ/δ. Prog. Lipid Res. 2016, 64, 98–122.
[CrossRef] [PubMed]

30. Day, C.P.; James, O.F. Steatohepatitis: A tale of two “hits”? Gastroenterology 1998, 114, 842–845. [CrossRef]

http://www.ncbi.nlm.nih.gov/pubmed/16142397
http://dx.doi.org/10.1002/hep.21327
http://www.ncbi.nlm.nih.gov/pubmed/17006923
http://dx.doi.org/10.1002/hep.20973
http://www.ncbi.nlm.nih.gov/pubmed/16447287
http://dx.doi.org/10.4254/wjh.v7.i9.1157
http://www.ncbi.nlm.nih.gov/pubmed/26019732
http://dx.doi.org/10.1053/jhep.2003.50161
http://www.ncbi.nlm.nih.gov/pubmed/12668987
http://dx.doi.org/10.1038/ajg.2009.67
http://www.ncbi.nlm.nih.gov/pubmed/19293782
http://dx.doi.org/10.1111/j.1365-2036.2010.04556.x
http://www.ncbi.nlm.nih.gov/pubmed/21198708
http://dx.doi.org/10.1016/j.jada.2011.10.007
http://www.ncbi.nlm.nih.gov/pubmed/22717200
http://dx.doi.org/10.1002/hep.23276
http://www.ncbi.nlm.nih.gov/pubmed/19827166
http://dx.doi.org/10.1111/j.1440-1746.2008.05694.x
http://www.ncbi.nlm.nih.gov/pubmed/19067776
http://dx.doi.org/10.1111/liv.13302
http://www.ncbi.nlm.nih.gov/pubmed/28052626
http://dx.doi.org/10.1080/00365520902845268
http://www.ncbi.nlm.nih.gov/pubmed/19811343
http://dx.doi.org/10.1002/hep.21661
http://www.ncbi.nlm.nih.gov/pubmed/17559148
http://dx.doi.org/10.1053/j.gastro.2008.06.047
http://www.ncbi.nlm.nih.gov/pubmed/18718471
http://dx.doi.org/10.2147/CEG.S62831
http://www.ncbi.nlm.nih.gov/pubmed/25045276
http://dx.doi.org/10.1038/nm1557
http://www.ncbi.nlm.nih.gov/pubmed/17268472
http://dx.doi.org/10.1016/j.cell.2008.06.051
http://www.ncbi.nlm.nih.gov/pubmed/18674809
http://dx.doi.org/10.1074/jbc.M110.138115
http://www.ncbi.nlm.nih.gov/pubmed/21059653
http://dx.doi.org/10.1016/j.plipres.2016.09.001
http://www.ncbi.nlm.nih.gov/pubmed/27665713
http://dx.doi.org/10.1016/S0016-5085(98)70599-2


Int. J. Mol. Sci. 2018, 19, 1893 16 of 23

31. Imajo, K.; Yoneda, M.; Kessoku, T.; Ogawa, Y.; Maeda, S.; Sumida, Y.; Hyogo, H.; Eguchi, Y.; Wada, K.;
Nakajima, A. Rodent Models of Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis. Int. J. Mol. Sci.
2013, 14, 21833–21857. [CrossRef] [PubMed]

32. Delarue, J.; Magnan, C. Free fatty acids and insulin resistance. Curr. Opin. Clin. Nutr. Metab. Care 2007, 10,
142–148. [CrossRef] [PubMed]

33. Kawano, Y.; Cohen, D.E. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease.
J. Gastroenterol. 2013, 48, 434–441. [CrossRef] [PubMed]

34. Fuchs, M. Non-alcoholic Fatty liver disease: The bile Acid-activated farnesoid x receptor as an emerging
treatment target. J. Lipids 2011, 2012, 934396. [CrossRef] [PubMed]

35. Bechmann, L.P.; Hannivoort, R.A.; Gerken, G.; Hotamisligil, G.S.; Trauner, M.; Canbay, A. The interaction of
hepatic lipid and glucose metabolism in liver diseases. J. Hepatol. 2012, 56, 952–964. [CrossRef] [PubMed]

36. Musso, G.; Gambino, R.; Cassader, M. Recent insights into hepatic lipid metabolism in non-alcoholic fatty
liver disease (NAFLD). Prog. Lipid Res. 2008, 48, 1–26. [CrossRef] [PubMed]

37. Argo, C.K.; Northup, P.G.; Al-Osaimi, A.M.; Caldwell, S.H. Systematic review of risk factors for fibrosis
progression in non-alcoholic steatohepatitis. J. Hepatol. 2009, 51, 371–379. [CrossRef] [PubMed]

38. Buzzetti, E.; Pinzani, M.; Tsochatzis, E.A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease
(NAFLD). Metabolism 2016, 65, 1038–1048. [CrossRef] [PubMed]

39. Tilg, H.; Moschen, A.R. Evolution of inflammation in nonalcoholic fatty liver disease: The multiple parallel
hits hypothesis. Hepatology 2010, 52, 1836–1846. [CrossRef] [PubMed]

40. Tomeno, W.; Yoneda, M.; Imajo, K.; Ogawa, Y.; Kessoku, T.; Saito, S.; Eguchi, Y.; Nakajima, A. Emerging
drugs for non-alcoholic steatohepatitis. Expert Opin. Emerg. Drugs 2013, 18, 279–290. [CrossRef] [PubMed]

41. Li, Z.; Yang, S.; Lin, H.; Huang, J.; Watkins, P.A.; Moser, A.B.; Desimone, C.; Song, X.Y.; Diehl, A.M. Probiotics
and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology
2003, 37, 343–350. [CrossRef] [PubMed]

42. Tiniakos, D.G.; Vos, M.B.; Brunt, E.M. Nonalcoholic fatty liver disease: Pathology and pathogenesis.
Annu. Rev. Pathol. 2010, 5, 145–171. [CrossRef] [PubMed]

43. Romeo, S.; Kozlitina, J.; Xing, C.; Pertsemlidis, A.; Cox, D.; Pennacchio, L.A.; Boerwinkle, E.; Cohen, J.C.;
Hobbs, H.H. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet.
2008, 40, 1461–1465. [CrossRef] [PubMed]

44. Sookoian, S.; Pirola, C.J. PNPLA3, the triacylglycerol synthesis/hydrolysis/storage dilemma, and
nonalcoholic fatty liver disease. World J. Gastroenterol. 2012, 18, 6018–6026. [CrossRef] [PubMed]

45. Sookoian, S.; Pirola, C.J. Meta-analysis of the influence of I148M variant of patatin-like phospholipase
domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty
liver disease. Hepatology 2011, 53, 1883–1894. [CrossRef] [PubMed]

46. Sookoian, S.; Castaño, G.O.; Burgueño, A.L.; Gianotti, T.F.; Rosselli, M.S.; Pirola, C.J. A nonsynonymous gene
variant in the adiponutrin gene is associated with nonalcoholic fatty liver disease severity. J. Lipid Res. 2009,
50, 2111–2116. [CrossRef] [PubMed]

47. Valenti, L.; Alisi, A.; Galmozzi, E.; Bartuli, A.; Del Menico, B.; Alterio, A.; Dongiovanni, P.; Fargion, S.;
Nobili, V. I148M patatin-like phospholipase domain-containing 3 gene variant and severity of pediatric
nonalcoholic fatty liver disease. Hepatology 2010, 52, 1274–1280. [CrossRef] [PubMed]

48. Kawaguchi, T.; Sumida, Y.; Umemura, A.; Matsuo, K.; Takahashi, M.; Takamura, T.; Yasui, K.; Saibara, T.;
Hashimoto, E.; Kawanaka, M.; et al. Genetic polymorphisms of the human PNPLA3 gene are strongly
associated with severity of non-alcoholic fatty liver disease in Japanese. PLoS ONE 2012, 7, e38322. [CrossRef]
[PubMed]

49. Chen, W.; Chang, B.; Li, L.; Chan, L. Patatin-like phospholipase domain-containing 3/adiponutrin deficiency
in mice is not associated with fatty liver disease. Hepatology 2010, 52, 1134–1142. [CrossRef] [PubMed]

50. Hao, L.; Ito, K.; Huang, K.H.; Sae-tan, S.; Lambert, J.D.; Ross, A.C. Shifts in dietary carbohydrate-lipid
exposure regulate expression of the non-alcoholic fatty liver disease-associated gene PNPLA3/adiponutrin
in mouse liver and HepG2 human liver cells. Metabolism 2014, 63, 1352–1362. [CrossRef] [PubMed]

51. Qiao, A.; Liang, J.; Ke, Y.; Li, C.; Cui, Y.; Shen, L.; Zhang, H.; Cui, A.; Liu, X.; Liu, C.; et al. Mouse patatin-like
phospholipase domain-containing 3 influences systemic lipid and glucose homeostasis. Hepatology 2011, 54,
509–521. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/ijms141121833
http://www.ncbi.nlm.nih.gov/pubmed/24192824
http://dx.doi.org/10.1097/MCO.0b013e328042ba90
http://www.ncbi.nlm.nih.gov/pubmed/17285001
http://dx.doi.org/10.1007/s00535-013-0758-5
http://www.ncbi.nlm.nih.gov/pubmed/23397118
http://dx.doi.org/10.1155/2012/934396
http://www.ncbi.nlm.nih.gov/pubmed/22187656
http://dx.doi.org/10.1016/j.jhep.2011.08.025
http://www.ncbi.nlm.nih.gov/pubmed/22173168
http://dx.doi.org/10.1016/j.plipres.2008.08.001
http://www.ncbi.nlm.nih.gov/pubmed/18824034
http://dx.doi.org/10.1016/j.jhep.2009.03.019
http://www.ncbi.nlm.nih.gov/pubmed/19501928
http://dx.doi.org/10.1016/j.metabol.2015.12.012
http://www.ncbi.nlm.nih.gov/pubmed/26823198
http://dx.doi.org/10.1002/hep.24001
http://www.ncbi.nlm.nih.gov/pubmed/21038418
http://dx.doi.org/10.1517/14728214.2013.811232
http://www.ncbi.nlm.nih.gov/pubmed/23848366
http://dx.doi.org/10.1053/jhep.2003.50048
http://www.ncbi.nlm.nih.gov/pubmed/12540784
http://dx.doi.org/10.1146/annurev-pathol-121808-102132
http://www.ncbi.nlm.nih.gov/pubmed/20078219
http://dx.doi.org/10.1038/ng.257
http://www.ncbi.nlm.nih.gov/pubmed/18820647
http://dx.doi.org/10.3748/wjg.v18.i42.6018
http://www.ncbi.nlm.nih.gov/pubmed/23155331
http://dx.doi.org/10.1002/hep.24283
http://www.ncbi.nlm.nih.gov/pubmed/21381068
http://dx.doi.org/10.1194/jlr.P900013-JLR200
http://www.ncbi.nlm.nih.gov/pubmed/19738004
http://dx.doi.org/10.1002/hep.23823
http://www.ncbi.nlm.nih.gov/pubmed/20648474
http://dx.doi.org/10.1371/journal.pone.0038322
http://www.ncbi.nlm.nih.gov/pubmed/22719876
http://dx.doi.org/10.1002/hep.23812
http://www.ncbi.nlm.nih.gov/pubmed/20648554
http://dx.doi.org/10.1016/j.metabol.2014.06.016
http://www.ncbi.nlm.nih.gov/pubmed/25060692
http://dx.doi.org/10.1002/hep.24402
http://www.ncbi.nlm.nih.gov/pubmed/21547936


Int. J. Mol. Sci. 2018, 19, 1893 17 of 23

52. Mahdessian, H.; Taxiarchis, A.; Popov, S.; Silveira, A.; Franco-Cereceda, A.; Hamsten, A.; Eriksson, P.;
van’t Hooft, F. TM6SF2 is a regulator of liver fat metabolism influencing triglyceride secretion and hepatic
lipid droplet content. Proc. Natl. Acad. Sci. USA 2014, 111, 8913–8918. [CrossRef] [PubMed]

53. Kozlitina, J.; Smagris, E.; Stender, S.; Nordestgaard, B.G.; Zhou, H.H.; Tybjærg-Hansen, A.; Vogt, T.F.;
Hobbs, H.H.; Cohen, J.C. Exome-wide association study identifies a TM6SF2 variant that confers
susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 2014, 46, 352–356. [CrossRef] [PubMed]

54. Sookoian, S.; Castaño, G.O.; Scian, R.; Mallardi, P.; Fernández Gianotti, T.; Burgueño, A.L.; San Martino, J.;
Pirola, C.J. Genetic variation in transmembrane 6 superfamily member 2 and the risk of nonalcoholic fatty
liver disease and histological disease severity. Hepatology 2015, 61, 515–525. [CrossRef] [PubMed]

55. Holmen, O.L.; Zhang, H.; Fan, Y.; Hovelson, D.H.; Schmidt, E.M.; Zhou, W.; Guo, Y.; Zhang, J.;
Langhammer, A.; Løchen, M.L.; et al. Systematic evaluation of coding variation identifies a candidate
causal variant in TM6SF2 influencing total cholesterol and myocardial infarction risk. Nat. Genet. 2014, 46,
345–351. [CrossRef] [PubMed]

56. Pirola, C.J.; Sookoian, S. The dual and opposite role of the TM6SF2-rs58542926 variant in protecting against
cardiovascular disease and conferring risk for nonalcoholic fatty liver: A meta-analysis. Hepatology 2015, 62,
1742–1756. [CrossRef] [PubMed]

57. Wang, X.; Liu, Z.; Peng, Z.; Liu, W. The TM6SF2 rs58542926 T allele is significantly associated with
non-alcoholic fatty liver disease in Chinese. J. Hepatol. 2015, 62, 1438–1439. [CrossRef] [PubMed]

58. Iynedjian, P.B. Molecular physiology of mammalian glucokinase. Cell. Mol. Life Sci. 2009, 66, 27–42.
[CrossRef] [PubMed]

59. Speliotes, E.K.; Yerges-Armstrong, L.M.; Wu, J.; Hernaez, R.; Kim, L.J.; Palmer, C.D.; Gudnason, V.;
Eiriksdottir, G.; Garcia, M.E.; Launer, L.J.; et al. Genome-wide association analysis identifies variants
associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. PLoS Genet.
2011, 7, e1001324. [CrossRef] [PubMed]

60. Zain, S.M.; Mohamed, Z.; Mohamed, R. Common variant in the glucokinase regulatory gene rs780094 and
risk of nonalcoholic fatty liver disease: A meta-analysis. J. Gastroenterol. Hepatol. 2015, 30, 21–27. [CrossRef]
[PubMed]

61. Dimas, A.S.; Lagou, V.; Barker, A.; Knowles, J.W.; Mägi, R.; Hivert, M.F.; Benazzo, A.; Rybin, D.; Jackson, A.U.;
Stringham, H.M.; et al. Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits
reveals mechanistic heterogeneity. Diabetes 2014, 63, 2158–2171. [CrossRef] [PubMed]

62. Tsuneto, A.; Hida, A.; Sera, N.; Imaizumi, M.; Ichimaru, S.; Nakashima, E.; Seto, S.; Maemura, K.;
Akahoshi, M. Fatty liver incidence and predictive variables. Hypertens. Res. 2010, 33, 638–643. [CrossRef]
[PubMed]

63. Nobili, V.; Svegliati-Baroni, G.; Alisi, A.; Miele, L.; Valenti, L.; Vajro, P. A 360-degree overview of paediatric
NAFLD: Recent insights. J. Hepatol. 2013, 58, 1218–1229. [CrossRef] [PubMed]

64. Eguchi, Y.; Eguchi, T.; Mizuta, T.; Ide, Y.; Yasutake, T.; Iwakiri, R.; Hisatomi, A.; Ozaki, I.; Yamamoto, K.;
Kitajima, Y.; et al. Visceral fat accumulation and insulin resistance are important factors in nonalcoholic fatty
liver disease. J. Gastroenterol. 2006, 41, 462–469. [CrossRef] [PubMed]

65. Kersten, S.; Desvergne, B.; Wahli, W. Roles of ppars in health & disease. Nature 2000, 405, 421–424. [CrossRef]
[PubMed]

66. Burdick, A.D.; Kim, D.J.; Peraza, M.A.; Gonzalez, F.J.; Peters, J.M. The role of peroxisome proliferator-activated
receptor-beta/delta in epithelial cell growth and differentiation. Cell. Signal. 2006, 18, 9–20. [CrossRef]
[PubMed]

67. Wahli, W.; Michalik, L. PPARs at the crossroads of lipid signaling and inflammation. Trends Endocrinol. Metab.
2012, 23, 351–363. [CrossRef] [PubMed]

68. Keller, H.; Dreyer, C.; Medin, J.; Mahfoudi, A.; Ozato, K.; Wahli, W. Fatty acids and retinoids control
lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor
heterodimers. Proc. Natl. Acad. Sci. USA 1993, 90, 2160–2164. [CrossRef] [PubMed]

69. Hörlein, A.J.; Näär, A.M.; Heinzel, T.; Torchia, J.; Gloss, B.; Kurokawa, R.; Ryan, A.; Kamei, Y.; Söderström, M.;
Glass, C.K.; Rosenfeld, M.G. Ligand-independent repression by the thyroid hormone receptor mediated by
a nuclear receptor co-repressor. Nature 1995, 377, 397–404. [CrossRef] [PubMed]

70. Chen, J.D.; Evans, R.M. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature
1995, 377, 454–457. [CrossRef] [PubMed]

http://dx.doi.org/10.1073/pnas.1323785111
http://www.ncbi.nlm.nih.gov/pubmed/24927523
http://dx.doi.org/10.1038/ng.2901
http://www.ncbi.nlm.nih.gov/pubmed/24531328
http://dx.doi.org/10.1002/hep.27556
http://www.ncbi.nlm.nih.gov/pubmed/25302781
http://dx.doi.org/10.1038/ng.2926
http://www.ncbi.nlm.nih.gov/pubmed/24633158
http://dx.doi.org/10.1002/hep.28142
http://www.ncbi.nlm.nih.gov/pubmed/26331730
http://dx.doi.org/10.1016/j.jhep.2015.01.040
http://www.ncbi.nlm.nih.gov/pubmed/25687425
http://dx.doi.org/10.1007/s00018-008-8322-9
http://www.ncbi.nlm.nih.gov/pubmed/18726182
http://dx.doi.org/10.1371/journal.pgen.1001324
http://www.ncbi.nlm.nih.gov/pubmed/21423719
http://dx.doi.org/10.1111/jgh.12714
http://www.ncbi.nlm.nih.gov/pubmed/25167786
http://dx.doi.org/10.2337/db13-0949
http://www.ncbi.nlm.nih.gov/pubmed/24296717
http://dx.doi.org/10.1038/hr.2010.45
http://www.ncbi.nlm.nih.gov/pubmed/20379184
http://dx.doi.org/10.1016/j.jhep.2012.12.003
http://www.ncbi.nlm.nih.gov/pubmed/23238106
http://dx.doi.org/10.1007/s00535-006-1790-5
http://www.ncbi.nlm.nih.gov/pubmed/16799888
http://dx.doi.org/10.1038/35013000
http://www.ncbi.nlm.nih.gov/pubmed/10839530
http://dx.doi.org/10.1016/j.cellsig.2005.07.009
http://www.ncbi.nlm.nih.gov/pubmed/16109478
http://dx.doi.org/10.1016/j.tem.2012.05.001
http://www.ncbi.nlm.nih.gov/pubmed/22704720
http://dx.doi.org/10.1073/pnas.90.6.2160
http://www.ncbi.nlm.nih.gov/pubmed/8384714
http://dx.doi.org/10.1038/377397a0
http://www.ncbi.nlm.nih.gov/pubmed/7566114
http://dx.doi.org/10.1038/377454a0
http://www.ncbi.nlm.nih.gov/pubmed/7566127


Int. J. Mol. Sci. 2018, 19, 1893 18 of 23

71. Chinetti, G.; Fruchart, J.C.; Staels, B. Peroxisome proliferator-activated receptors (PPARs): Nuclear receptors
at the crossroads between lipid metabolism and inflammation. Inflamm. Res. 2000, 49, 497–505. [CrossRef]
[PubMed]

72. Feige, J.N.; Gelman, L.; Michalik, L.; Desvergne, B.; Wahli, W. From molecular action to physiological outputs:
Peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions.
Prog. Lipid Res. 2006, 45, 120–159. [CrossRef] [PubMed]

73. IJpenberg, A.; Jeannin, E.; Wahli, W.; Desvergne, B. Polarity and specific sequence requirements of peroxisome
proliferator-activated receptor (PPAR)/retinoid X receptor heterodimer binding to DNA. A functional
analysis of the malic enzyme gene PPAR response element. J. Biol. Chem. 1997, 272, 20108–20117. [CrossRef]
[PubMed]

74. Juge-Aubry, C.; Pernin, A.; Favez, T.; Burger, A.G.; Wahli, W.; Meier, C.A.; Desvergne, B. DNA binding
properties of peroxisome proliferator-activated receptor subtypes on various natural peroxisome proliferator
response elements. Importance of the 5′-flanking region. J. Biol. Chem. 1997, 272, 25252–25259. [CrossRef]
[PubMed]

75. Dreyer, C.; Krey, G.; Keller, H.; Givel, F.; Helftenbein, G.; Wahli, W. Control of the peroxisomal beta-oxidation
pathway by a novel family of nuclear hormone receptors. Cell 1992, 68, 879–887. [CrossRef]

76. Nolte, R.T.; Wisely, G.B.; Westin, S.; Cobb, J.E.; Lambert, M.H.; Kurokawa, R.; Rosenfeld, M.G.; Willson, T.M.;
Glass, C.K.; Milburn, M.V. Ligand binding and co-activator assembly of the peroxisome proliferator-activated
receptor-gamma. Nature 1998, 395, 137–143. [CrossRef] [PubMed]

77. Moras, D.; Gronemeyer, H. The nuclear receptor ligand-binding domain: Structure and function. Curr. Opin.
Cell Biol. 1998, 10, 384–391. [CrossRef]

78. Fan, Y.; Wang, Y.; Tang, Z.; Zhang, H.; Qin, X.; Zhu, Y.; Guan, Y.; Wang, X.; Staels, B.; Chien, S.; et al.
Suppression of pro-inflammatory adhesion molecules by PPAR-delta in human vascular endothelial cells.
Arterioscler. Thromb. Vasc. Biol. 2008, 28, 315–321. [CrossRef] [PubMed]

79. Zhang, J.; Fu, M.; Zhu, X.; Xiao, Y.; Mou, Y.; Zheng, H.; Akinbami, M.A.; Wang, Q.; Chen, Y.E. Peroxisome
proliferator-activated receptor delta is up-regulated during vascular lesion formation and promotes
post-confluent cell proliferation in vascular smooth muscle cells. J. Biol. Chem. 2002, 277, 11505–11512.
[CrossRef] [PubMed]

80. Lee, C.H.; Chawla, A.; Urbiztondo, N.; Liao, D.; Boisvert, W.A.; Evans, R.M.; Curtiss, L.K. Transcriptional
repression of atherogenic inflammation: Modulation by PPARdelta. Science 2003, 302, 453–457. [CrossRef]
[PubMed]

81. Matsushita, Y.; Ogawa, D.; Wada, J.; Yamamoto, N.; Shikata, K.; Sato, C.; Tachibana, H.; Toyota, N.; Makino, H.
Activation of peroxisome proliferator-activated receptor delta inhibits streptozotocin-induced diabetic
nephropathy through anti-inflammatory mechanisms in mice. Diabetes 2011, 60, 960–968. [CrossRef]
[PubMed]

82. Braissant, O.; Foufelle, F.; Scotto, C.; Dauça, M.; Wahli, W. Differential expression of peroxisome
proliferator-activated receptors (PPARs): Tissue distribution of PPAR-alpha, -beta, and -gamma in the
adult rat. Endocrinology 1996, 137, 354–366. [CrossRef] [PubMed]

83. Michalik, L.; Auwerx, J.; Berger, J.P.; Chatterjee, V.K.; Glass, C.K.; Gonzalez, F.J.; Grimaldi, P.A.; Kadowaki, T.;
Lazar, M.A.; O’Rahilly, S.; et al. International Union of Pharmacology. LXI. Peroxisome proliferator-activated
receptors. Pharmacol. Rev. 2006, 58, 726–741. [CrossRef] [PubMed]

84. Mandard, S.; Patsouris, D. Nuclear control of the inflammatory response in mammals by peroxisome
proliferator-activated receptors. PPAR Res. 2013, 2013, 613864. [CrossRef] [PubMed]

85. Mandard, S.; Müller, M.; Kersten, S. Peroxisome proliferator-activated receptor alpha target genes. Cell. Mol.
Life Sci. 2004, 61, 393–416. [CrossRef] [PubMed]

86. Montagner, A.; Korecka, A.; Polizzi, A.; Lippi, Y.; Blum, Y.; Canlet, C.; Tremblay-Franco, M.; Gautier-Stein, A.;
Burcelin, R.; Yen, Y.C.; et al. Hepatic circadian clock oscillators and nuclear receptors integrate microbiome-derived
signals. Sci. Rep. 2016, 6, 20127. [CrossRef] [PubMed]

87. Régnier, M.; Polizzi, A.; Lippi, Y.; Fouché, E.; Michel, G.; Lukowicz, C.; Smati, S.; Marrot, A.;
Lasserre, F.; Naylies, C.; et al. Insights into the role of hepatocyte PPARα activity in response to fasting.
Mol. Cell. Endocrinol. 2017. [CrossRef]

88. Devchand, P.R.; Keller, H.; Peters, J.M.; Vazquez, M.; Gonzalez, F.J.; Wahli, W. The PPARalpha-leukotriene B4
pathway to inflammation control. Nature 1996, 384, 39–43. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s000110050622
http://www.ncbi.nlm.nih.gov/pubmed/11089900
http://dx.doi.org/10.1016/j.plipres.2005.12.002
http://www.ncbi.nlm.nih.gov/pubmed/16476485
http://dx.doi.org/10.1074/jbc.272.32.20108
http://www.ncbi.nlm.nih.gov/pubmed/9242684
http://dx.doi.org/10.1074/jbc.272.40.25252
http://www.ncbi.nlm.nih.gov/pubmed/9312141
http://dx.doi.org/10.1016/0092-8674(92)90031-7
http://dx.doi.org/10.1038/25931
http://www.ncbi.nlm.nih.gov/pubmed/9744270
http://dx.doi.org/10.1016/S0955-0674(98)80015-X
http://dx.doi.org/10.1161/ATVBAHA.107.149815
http://www.ncbi.nlm.nih.gov/pubmed/18048767
http://dx.doi.org/10.1074/jbc.M110580200
http://www.ncbi.nlm.nih.gov/pubmed/11809753
http://dx.doi.org/10.1126/science.1087344
http://www.ncbi.nlm.nih.gov/pubmed/12970571
http://dx.doi.org/10.2337/db10-1361
http://www.ncbi.nlm.nih.gov/pubmed/21270242
http://dx.doi.org/10.1210/endo.137.1.8536636
http://www.ncbi.nlm.nih.gov/pubmed/8536636
http://dx.doi.org/10.1124/pr.58.4.5
http://www.ncbi.nlm.nih.gov/pubmed/17132851
http://dx.doi.org/10.1155/2013/613864
http://www.ncbi.nlm.nih.gov/pubmed/23577023
http://dx.doi.org/10.1007/s00018-003-3216-3
http://www.ncbi.nlm.nih.gov/pubmed/14999402
http://dx.doi.org/10.1038/srep20127
http://www.ncbi.nlm.nih.gov/pubmed/26879573
http://dx.doi.org/10.1016/j.mce.2017.07.035
http://dx.doi.org/10.1038/384039a0
http://www.ncbi.nlm.nih.gov/pubmed/8900274


Int. J. Mol. Sci. 2018, 19, 1893 19 of 23

89. Tailleux, A.; Wouters, K.; Staels, B. Roles of PPARs in NAFLD: Potential therapeutic targets. Biochim. Biophys. Acta
2012, 1821, 809–818. [CrossRef] [PubMed]

90. Vanden Berghe, W.; Vermeulen, L.; Delerive, P.; De Bosscher, K.; Staels, B.; Haegeman, G. A paradigm for
gene regulation: Inflammation, NF-kappaB and PPAR. Adv. Exp. Med. Biol. 2003, 544, 181–196. [PubMed]

91. Gervois, P.; Kleemann, R.; Pilon, A.; Percevault, F.; Koenig, W.; Staels, B.; Kooistra, T. Global suppression
of IL-6-induced acute phase response gene expression after chronic in vivo treatment with the peroxisome
proliferator-activated receptor-alpha activator fenofibrate. J. Biol. Chem. 2004, 279, 16154–16160. [CrossRef]
[PubMed]

92. Abdelmegeed, M.A.; Yoo, S.H.; Henderson, L.E.; Gonzalez, F.J.; Woodcroft, K.J.; Song, B.J. PPARalpha
expression protects male mice from high fat-induced nonalcoholic fatty liver. J. Nutr. 2011, 141, 603–610.
[CrossRef] [PubMed]

93. Costet, P.; Legendre, C.; Moré, J.; Edgar, A.; Galtier, P.; Pineau, T. Peroxisome proliferator-activated receptor
α-isoform deficiency leads to progressive dyslipidemia with sexually dimorphic obesity and steatosis. J. Biol. Chem.
1998, 273, 29577–29585. [CrossRef] [PubMed]

94. Ip, E.; Farrell, G.C.; Robertson, G.; Hall, P.; Kirsch, R.; Leclercq, I. Central role of PPARalpha-dependent
hepatic lipid turnover in dietary steatohepatitis in mice. Hepatology 2003, 38, 123–132. [CrossRef] [PubMed]

95. Staels, B.; Rubenstrunk, A.; Noel, B.; Rigou, G.; Delataille, P.; Millatt, L.J.; Baron, M.; Lucas, A.; Tailleux, A.;
Hum, D.W.; et al. Hepatoprotective effects of the dual peroxisome proliferator-activated receptor alpha/delta
agonist, GFT505, in rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Hepatology
2013, 58, 1941–1952. [CrossRef] [PubMed]

96. Francque, S.; Verrijken, A.; Caron, S.; Prawitt, J.; Paumelle, R.; Derudas, B.; Lefebvre, P.; Taskinen, M.R.;
Van Hul, W.; Mertens, I.; et al. PPARα gene expression correlates with severity and histological treatment
response in patients with non-alcoholic steatohepatitis. J. Hepatol. 2015, 63, 164–173. [CrossRef] [PubMed]

97. Montagner, A.; Polizzi, A.; Fouché, E.; Ducheix, S.; Lippi, Y.; Lasserre, F.; Barquissau, V.; Régnier, M.;
Lukowicz, C.; Benhamed, F.; Iroz, A.; et al. Liver PPARα is crucial for whole-body fatty acid homeostasis
and is protective against NAFLD. Gut 2016, 65, 1202–1214. [CrossRef] [PubMed]

98. Kersten, S.; Seydoux, J.; Peters, J.M.; Gonzalez, F.J.; Desvergne, B.; Wahli, W. Peroxisome proliferator-activated
receptor alpha mediates the adaptive response to fasting. J. Clin. Investig. 1999, 103, 1489–1498. [CrossRef]
[PubMed]

99. Leone, T.C.; Weinheimer, C.J.; Kelly, D.P. A critical role for the peroxisome proliferator-activated receptor
alpha (PPARα) in the cellular fasting response: The PPARα-null mouse as a model of fatty acid oxidation
disorders. Proc. Natl. Acad. Sci. USA 1999, 96, 7473–7478. [CrossRef] [PubMed]

100. Fajas, L.; Fruchart, J.C.; Auwerx, J. PPARgamma3 mRNA: A distinct PPARgamma mRNA subtype transcribed
from an independent promoter. FEBS Lett. 1998, 438, 55–60. [CrossRef]

101. Rahimian, R.; Masih-Khan, E.; Lo, M.; van Breemen, C.; McManus, BM.; Dubé, G.P. Hepatic over-expression
of peroxisome proliferator activated receptor gamma2 in the ob/ob mouse model of non-insulin dependent
diabetes mellitus. Mol. Cell. Biochem. 2001, 224, 29–37. [CrossRef] [PubMed]

102. Memon, R.A.; Tecott, L.H.; Nonogaki, K.; Beigneux, A.; Moser, A.H.; Grunfeld, C.; Feingold, K.R.
Up-regulation of peroxisome proliferator-activated receptors (PPAR-α) and PPAR-γ messenger ribonucleic
acid expression in the liver in murine obesity: Troglitazone induces expression of PPAR-γ-responsive adipose
tissue-specific genes in the liver of obese diabetic mice. Endocrinology 2001, 141, 4021–4031. [CrossRef]

103. Morán-Salvador, E.; López-Parra, M.; García-Alonso, V.; Titos, E.; Martínez-Clemente, M.; González-Périz, A.;
López-Vicario, C.; Barak, Y.; Arroyo, V.; Clària, J. Role for PPARγ in obesity-induced hepatic steatosis as
determined by hepatocyte- and macrophage-specific conditional knockouts. FASEB J. 2011, 25, 2538–2550.
[CrossRef] [PubMed]

104. Westerbacka, J.; Kolak, M.; Kiviluoto, T.; Arkkila, P.; Sirén, J.; Hamsten, A.; Fisher, R.M.; Yki-Järvinen, H.
Genes involved in fatty acid partitioning and binding, lipolysis, monocyte/macrophage recruitment, and
inflammation are overexpressed in the human fatty liver of insulin-resistant subjects. Diabetes 2007, 56,
2759–2765. [CrossRef] [PubMed]

105. Pettinelli, P.; Videla, L.A. Up-regulation of PPARγ mRNA expression in the liver of obese patients in parallel
with a reinforcement of the lipogenic pathway by SREBP-1c induction. J. Clin. Endocrinol. Metab. 2011, 96,
1424–1430. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.bbalip.2011.10.016
http://www.ncbi.nlm.nih.gov/pubmed/22056763
http://www.ncbi.nlm.nih.gov/pubmed/14713228
http://dx.doi.org/10.1074/jbc.M400346200
http://www.ncbi.nlm.nih.gov/pubmed/14764586
http://dx.doi.org/10.3945/jn.110.135210
http://www.ncbi.nlm.nih.gov/pubmed/21346097
http://dx.doi.org/10.1074/jbc.273.45.29577
http://www.ncbi.nlm.nih.gov/pubmed/9792666
http://dx.doi.org/10.1053/jhep.2003.50307
http://www.ncbi.nlm.nih.gov/pubmed/12829994
http://dx.doi.org/10.1002/hep.26461
http://www.ncbi.nlm.nih.gov/pubmed/23703580
http://dx.doi.org/10.1016/j.jhep.2015.02.019
http://www.ncbi.nlm.nih.gov/pubmed/25703085
http://dx.doi.org/10.1136/gutjnl-2015-310798
http://www.ncbi.nlm.nih.gov/pubmed/26838599
http://dx.doi.org/10.1172/JCI6223
http://www.ncbi.nlm.nih.gov/pubmed/10359558
http://dx.doi.org/10.1073/pnas.96.13.7473
http://www.ncbi.nlm.nih.gov/pubmed/10377439
http://dx.doi.org/10.1016/S0014-5793(98)01273-3
http://dx.doi.org/10.1023/A:1011927113563
http://www.ncbi.nlm.nih.gov/pubmed/11693197
http://dx.doi.org/10.1210/endo.141.11.7771
http://dx.doi.org/10.1096/fj.10-173716
http://www.ncbi.nlm.nih.gov/pubmed/21507897
http://dx.doi.org/10.2337/db07-0156
http://www.ncbi.nlm.nih.gov/pubmed/17704301
http://dx.doi.org/10.1210/jc.2010-2129
http://www.ncbi.nlm.nih.gov/pubmed/21325464


Int. J. Mol. Sci. 2018, 19, 1893 20 of 23

106. Gavrilova, O.; Haluzik, M.; Matsusue, K.; Cutson, J.J.; Johnson, L.; Dietz, K.R.; Nicol, C.J.; Vinson, C.;
Gonzalez, F.J.; Reitman, M.L. Liver peroxisome proliferator-activated receptor gamma contributes to hepatic
steatosis, triglyceride clearance, and regulation of body fat mass. J. Biol. Chem. 2003, 278, 34268–34276.
[CrossRef] [PubMed]

107. Matsusue, K.; Haluzik, M.; Lambert, G.; Yim, S.H.; Gavrilova, O.; Ward, J.M.; Brewer, B., Jr.; Reitman, M.L.;
Gonzalez, F.J. Liver-specific disruption of PPARgamma in leptin-deficient mice improves fatty liver but
aggravates diabetic phenotypes. J. Clin. Investig. 2003, 111, 737–747. [CrossRef] [PubMed]

108. Matsusue, K.; Aibara, D.; Hayafuchi, R.; Matsuo, K.; Takiguchi, S.; Gonzalez, F.J.; Yamano, S. Hepatic PPARγ
and LXRα independently regulate lipid accumulation in the livers of genetically obese mice. FEBS Lett. 2014,
588, 2277–2281. [CrossRef] [PubMed]

109. Schadinger, S.E.; Bucher, N.L.; Schreiber, B.M.; Farmer, S.R. PPARgamma2 regulates lipogenesis and lipid
accumulation in steatotic hepatocytes. Am. J. Physiol. Endocrinol. Metab. 2005, 288, E1195–E1205. [CrossRef]
[PubMed]

110. Zhang, Y.L.; Hernandez-Ono, A.; Siri, P.; Weisberg, S.; Conlon, D.; Graham, M.J.; Crooke, R.M.; Huang, L.S.;
Ginsberg, H.N. Aberrant hepatic expression of PPARgamma2 stimulates hepatic lipogenesis in a mouse
model of obesity, insulin resistance, dyslipidemia, and hepatic steatosis. J. Biol. Chem. 2006, 281, 37603–37615.
[CrossRef] [PubMed]

111. Wolf Greenstein, A.; Majumdar, N.; Yang, P.; Subbaiah, P.V.; Kineman, R.D.; Cordoba-Chacon, J.
Hepatocyte-specific, PPARγ-regulated mechanisms to promote steatosis in adult mice. J. Endocrinol. 2017,
232, 107–121. [CrossRef] [PubMed]

112. Panasyuk, G.; Espeillac, C.; Chauvin, C.; Pradelli, L.A.; Horie, Y.; Suzuki, A.; Annicotte, J.S.; Fajas, L.;
Foretz, M.; Verdeguer, F.; et al. PPARγ contributes to PKM2 and HK2 expression in fatty liver. Nat. Commun.
2012, 3, 672. [CrossRef] [PubMed]

113. Kliewer, S.A.; Forman, B.M.; Blumberg, B.; Ong, E.S.; Borgmeyer, U.; Mangelsdorf, D.J.; Umesono, K.;
Evans, R.M. Differential expression and activation of a family of murine peroxisome proliferator-activated
receptors. Proc. Natl. Acad. Sci. USA 1994, 91, 7355–7359. [CrossRef] [PubMed]

114. Auboeuf, D.; Rieusset, J.; Fajas, L.; Vallier, P.; Frering, V.; Riou, J.P.; Staels, B.; Auwerx, J.; Laville, M.; Vidal, H.
Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated
receptors and liver X receptor-alpha in humans: No alteration in adipose tissue of obese and NIDDM
patients. Diabetes 1997, 46, 1319–1327. [CrossRef] [PubMed]

115. Tugwood, J.D.; Aldridge, T.C.; Lambe, K.G.; Macdonald, N.; Woodyatt, N.J. Peroxisome proliferator-activated
receptors: Structures and function. Ann. N. Y. Acad. Sci. 1996, 804, 252–265. [CrossRef] [PubMed]

116. Mukherjee, R.; Jow, L.; Croston, G.E.; Paterniti, J.R., Jr. Identification, characterization, and tissue distribution
of human peroxisome proliferator-activated receptor (PPAR) isoforms PPARgamma2 versus PPARgamma1
and activation with retinoid X receptor agonists and antagonists. J. Biol. Chem. 1997, 272, 8071–8076.
[CrossRef] [PubMed]

117. Girroir, E.E.; Hollingshead, H.E.; He, P.; Zhu, B.; Perdew, G.H.; Peters, J.M. Quantitative expression patterns
of peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta) protein in mice. Biochem. Biophys.
Res. Commun. 2008, 371, 456–461. [CrossRef] [PubMed]

118. Hoekstra, M.; Kruijt, J.K.; Van Eck, M.; Van Berkel, T.J. Specific gene expression of ATP-binding cassette transporters
and nuclear hormone receptors in rat liver parenchymal, endothelial, and Kupffer cells. J. Biol. Chem. 2003, 278,
25448–25453. [CrossRef] [PubMed]

119. Sanderson, L.M.; Boekschoten, M.V.; Desvergne, B.; Müller, M.; Kersten, S. Transcriptional profiling
reveals divergent roles of PPARalpha and PPARbeta/delta in regulation of gene expression in mouse
liver. Physiol. Genom. 2010, 41, 42–52. [CrossRef] [PubMed]

120. Ricchi, M.; Odoardi, M.R.; Carulli, L.; Anzivino, C.; Ballestri, S.; Pinetti, A.; Fantoni, L.I.; Marra, F.;
Bertolotti, M.; Banni, S.; et al. Differential effect of oleic and palmitic acid on lipid accumulation and
apoptosis in cultured hepatocytes. J. Gastroenterol. Hepatol. 2009, 24, 830–840. [CrossRef] [PubMed]

121. Liu, S.; Brown, J.D.; Stanya, K.J.; Homan, E.; Leidl, M.; Inouye, K.; Bhargava, P.; Gangl, M.R.; Dai, L.;
Hatano, B.; et al. A diurnal serum lipid integrates hepatic lipogenesis and peripheral fatty acid use. Nature
2013, 502, 550–554. [CrossRef] [PubMed]

http://dx.doi.org/10.1074/jbc.M300043200
http://www.ncbi.nlm.nih.gov/pubmed/12805374
http://dx.doi.org/10.1172/JCI200317223
http://www.ncbi.nlm.nih.gov/pubmed/12618528
http://dx.doi.org/10.1016/j.febslet.2014.05.012
http://www.ncbi.nlm.nih.gov/pubmed/24857376
http://dx.doi.org/10.1152/ajpendo.00513.2004
http://www.ncbi.nlm.nih.gov/pubmed/15644454
http://dx.doi.org/10.1074/jbc.M604709200
http://www.ncbi.nlm.nih.gov/pubmed/16971390
http://dx.doi.org/10.1530/JOE-16-0447
http://www.ncbi.nlm.nih.gov/pubmed/27799461
http://dx.doi.org/10.1038/ncomms1667
http://www.ncbi.nlm.nih.gov/pubmed/22334075
http://dx.doi.org/10.1073/pnas.91.15.7355
http://www.ncbi.nlm.nih.gov/pubmed/8041794
http://dx.doi.org/10.2337/diab.46.8.1319
http://www.ncbi.nlm.nih.gov/pubmed/9231657
http://dx.doi.org/10.1111/j.1749-6632.1996.tb18620.x
http://www.ncbi.nlm.nih.gov/pubmed/8993548
http://dx.doi.org/10.1074/jbc.272.12.8071
http://www.ncbi.nlm.nih.gov/pubmed/9065481
http://dx.doi.org/10.1016/j.bbrc.2008.04.086
http://www.ncbi.nlm.nih.gov/pubmed/18442472
http://dx.doi.org/10.1074/jbc.M301189200
http://www.ncbi.nlm.nih.gov/pubmed/12704191
http://dx.doi.org/10.1152/physiolgenomics.00127.2009
http://www.ncbi.nlm.nih.gov/pubmed/20009009
http://dx.doi.org/10.1111/j.1440-1746.2008.05733.x
http://www.ncbi.nlm.nih.gov/pubmed/19207680
http://dx.doi.org/10.1038/nature12710
http://www.ncbi.nlm.nih.gov/pubmed/24153306


Int. J. Mol. Sci. 2018, 19, 1893 21 of 23

122. Christodoulides, C.; Dyson, P.; Sprecher, D.; Tsintzas, K.; Karpe, F. Circulating fibroblast growth factor 21 is induced
by peroxisome proliferator-activated receptor agonists but not ketosis in man. J. Clin. Endocrinol. Metab. 2009, 94,
3594–3601. [CrossRef] [PubMed]

123. Nakamura, M.T.; Yudell, B.E.; Loor, J.J. Regulation of energy metabolism by long-chain fatty acids.
Prog. Lipid Res. 2014, 53, 124–144. [CrossRef] [PubMed]

124. Rando, G.; Tan, C.K.; Khaled, N.; Montagner, A.; Leuenberger, N.; Bertrand-Michel, J.; Paramalingam, E.;
Guillou, H.; Wahli, W. Glucocorticoid receptor-PPARα axis in fetal mouse liver prepares neonates for milk
lipid catabolism. Elife 2016, 5, e11853. [CrossRef] [PubMed]

125. Escher, P.; Braissant, O.; Basu-Modak, S.; Michalik, L.; Wahli, W.; Desvergne, B. Rat PPARs: Quantitative
analysis in adult rat tissues and regulation in fasting and refeeding. Endocrinology 2001, 142, 4195–4202.
[CrossRef] [PubMed]

126. Barroso, E.; Rodríguez-Calvo, R.; Serrano-Marco, L.; Astudillo, A.M.; Balsinde, J.; Palomer, X.;
Vázquez-Carrera, M. The PPARβ/δ activator GW501516 prevents the down-regulation of AMPK caused by
a high-fat diet in liver and amplifies the PGC-1α-Lipin 1-PPARα pathway leading to increased fatty acid
oxidation. Endocrinology 2011, 152, 1848–1859. [CrossRef] [PubMed]

127. Palomer, X.; Barroso, E.; Pizarro-Delgado, J.; Peña, L.; Botteri, G.; Zarei, M.; Aguilar, D.; Montori-Grau, M.;
Vázquez-Carrera, M. PPARβ/δ: A Key Therapeutic Target in Metabolic Disorders. Int. J. Mol. Sci. 2018, 19,
913. [CrossRef] [PubMed]

128. Chakravarthy, M.V.; Pan, Z.; Zhu, Y.; Tordjman, K.; Schneider, J.G.; Coleman, T.; Turk, J.; Semenkovich, C.F.
“New” hepatic fat activates PPARalpha to maintain glucose, lipid, and cholesterol homeostasis. Cell Metab.
2005, 1, 309–322. [CrossRef] [PubMed]

129. Varga, T.; Czimmerer, Z.; Nagy, L. PPARs are a unique set of fatty acid regulated transcription factors
controlling both lipid metabolism and inflammation. Biochim. Biophys. Acta 2011, 1812, 1007–1022. [CrossRef]
[PubMed]

130. Videla, L.A.; Pettinelli, P. Misregulation of PPAR Functioning and Its Pathogenic Consequences Associated
with Nonalcoholic Fatty Liver Disease in Human Obesity. PPAR Res. 2012, 2012, 107434. [CrossRef]
[PubMed]

131. Garbacz, W.G.; Huang, J.T.; Higgins, L.G.; Wahli, W.; Palmer, C.N. PPARα Is Required for PPARδ Action
in Regulation of Body Weight and Hepatic Steatosis in Mice. PPAR Res. 2015, 2015, 927057. [CrossRef]
[PubMed]

132. Horike, N.; Sakoda, H.; Kushiyama, A.; Ono, H.; Fujishiro, M.; Kamata, H.; Nishiyama, K.; Uchijima, Y.;
Kurihara, Y.; Kurihara, H.; et al. AMP-activated protein kinase activation increases phosphorylation of
glycogen synthase kinase 3beta and thereby reduces cAMP-responsive element transcriptional activity and
phosphoenolpyruvate carboxykinase C gene expression in the liver. J. Biol. Chem. 2008, 283, 33902–33910.
[CrossRef] [PubMed]

133. Tanaka, T.; Yamamoto, J.; Iwasaki, S.; Asaba, H.; Hamura, H.; Ikeda, Y.; Watanabe, M.; Magoori, K.; Ioka, R.X.;
Tachibana, K.; et al. Activation of peroxisome proliferator-activated receptor delta induces fatty acid
beta-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc. Natl. Acad. Sci. USA 2003, 100,
15924–15929. [CrossRef] [PubMed]

134. Qin, X.; Xie, X.; Fan, Y.; Tian, J.; Guan, Y.; Wang, X.; Zhu, Y.; Wang, N. Peroxisome proliferator-activated
receptor-delta induces insulin-induced gene-1 and suppresses hepatic lipogenesis in obese diabetic mice.
Hepatology 2008, 48, 432–441. [CrossRef] [PubMed]

135. Markan, K.R.; Naber, M.C.; Ameka, M.K.; Anderegg, M.D.; Mangelsdorf, D.J.; Kliewer, S.A.; Mohammadi, M.;
Potthoff, M.J. Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and
overfeeding. Diabetes 2014, 63, 4057–4063. [CrossRef] [PubMed]

136. Iroz, A.; Montagner, A.; Benhamed, F.; Levavasseur, F.; Polizzi, A.; Anthony, E.; Régnier, M.; Fouché, E.;
Lukowicz, C.; Cauzac, M.; et al. A Specific ChREBP and PPARα Cross-Talk Is Required for the
Glucose-Mediated FGF21 Response. Cell Rep. 2017, 21, 403–416. [CrossRef] [PubMed]

137. Zarei, M.; Barroso, E.; Palomer, X.; Dai, J.; Rada, P.; Quesada-López, T.; Escolà-Gil, J.C.; Cedó, L.; Zali, M.R.;
Molaei, M.; et al. Hepatic regulation of VLDL receptor by PPARβ/δ and FGF21 modulates non-alcoholic
fatty liver disease. Mol. Metab. 2018, 8, 117–131. [CrossRef] [PubMed]

http://dx.doi.org/10.1210/jc.2009-0111
http://www.ncbi.nlm.nih.gov/pubmed/19531592
http://dx.doi.org/10.1016/j.plipres.2013.12.001
http://www.ncbi.nlm.nih.gov/pubmed/24362249
http://dx.doi.org/10.7554/eLife.11853
http://www.ncbi.nlm.nih.gov/pubmed/27367842
http://dx.doi.org/10.1210/endo.142.10.8458
http://www.ncbi.nlm.nih.gov/pubmed/11564675
http://dx.doi.org/10.1210/en.2010-1468
http://www.ncbi.nlm.nih.gov/pubmed/21363937
http://dx.doi.org/10.3390/ijms19030913
http://www.ncbi.nlm.nih.gov/pubmed/29558390
http://dx.doi.org/10.1016/j.cmet.2005.04.002
http://www.ncbi.nlm.nih.gov/pubmed/16054078
http://dx.doi.org/10.1016/j.bbadis.2011.02.014
http://www.ncbi.nlm.nih.gov/pubmed/21382489
http://dx.doi.org/10.1155/2012/107434
http://www.ncbi.nlm.nih.gov/pubmed/23304111
http://dx.doi.org/10.1155/2015/927057
http://www.ncbi.nlm.nih.gov/pubmed/26604919
http://dx.doi.org/10.1074/jbc.M802537200
http://www.ncbi.nlm.nih.gov/pubmed/18801732
http://dx.doi.org/10.1073/pnas.0306981100
http://www.ncbi.nlm.nih.gov/pubmed/14676330
http://dx.doi.org/10.1002/hep.22334
http://www.ncbi.nlm.nih.gov/pubmed/18627005
http://dx.doi.org/10.2337/db14-0595
http://www.ncbi.nlm.nih.gov/pubmed/25008183
http://dx.doi.org/10.1016/j.celrep.2017.09.065
http://www.ncbi.nlm.nih.gov/pubmed/29020627
http://dx.doi.org/10.1016/j.molmet.2017.12.008
http://www.ncbi.nlm.nih.gov/pubmed/29289645


Int. J. Mol. Sci. 2018, 19, 1893 22 of 23

138. Ding, G.; Cheng, L.; Qin, Q.; Frontin, S.; Yang, Q.J. PPARdelta modulates lipopolysaccharide-induced
TNFalpha inflammation signalling in cultured cardiomyocytes. Mol. Cell. Cardiol. 2006, 40, 821–828.
[CrossRef] [PubMed]

139. Rival, Y.; Benéteau, N.; Taillandier, T.; Pezet, M.; Dupont-Passelaigue, E.; Patoiseau, J.F.; Junquéro, D.;
Colpaert, F.C.; Delhon, A. PPARalpha and PPARdelta activators inhibit cytokine-induced nuclear
translocation of NF-kappaB and expression of VCAM-1 in EAhy926 endothelial cells. Eur. J. Pharmacol. 2002,
435, 143–151. [CrossRef]

140. Kino, T.; Rice, K.C.; Chrousos, G.P. The PPARdelta agonist GW501516 suppresses interleukin-6-mediated
hepatocyte acute phase reaction via STAT3 inhibition. Eur. J. Clin. Investig. 2007, 37, 425–433. [CrossRef]
[PubMed]

141. Woo, C.H.; Massett, M.P.; Shishido, T.; Itoh, S.; Ding, B.; McClain, C.; Che, W.; Vulapalli, S.R.; Yan, C.;
Abe, J. ERK5 activation inhibits inflammatory responses via peroxisome proliferator-activated receptor delta
(PPARdelta) stimulation. J. Biol. Chem. 2006, 281, 32164–32174. [CrossRef] [PubMed]

142. Lanthier, N.; Molendi-Coste, O.; Horsmans, Y.; van Rooijen, N.; Cani, P.D.; Leclercq, I.A. Kupffer cell
activation is a causal factor for hepatic insulin resistance. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 298,
G107–G116. [CrossRef] [PubMed]

143. Odegaard, J.I.; Ricardo-Gonzalez, R.R.; Red Eagle, A.; Vats, D.; Morel, C.R.; Goforth, M.H.; Subramanian, V.;
Mukundan, L.; Ferrante, A.W.; Chawla, A. Alternative M2 activation of Kupffer cells by PPARdelta
ameliorates obesity-induced insulin resistance. Cell Metab. 2008, 7, 496–507. [CrossRef] [PubMed]

144. Hellemans, K.; Rombouts, K.; Quartier, E.; Dittié, A.S.; Knorr, A.; Michalik, L.; Rogiers, V.; Schuit, F.;
Wahli, W.; Geerts, A. PPARbeta regulates vitamin A metabolism-related gene expression in hepatic stellate
cells undergoing activation. J. Lipid Res. 2003, 44, 280–295. [CrossRef] [PubMed]

145. Kostadinova, R.; Montagner, A.; Gouranton, E.; Fleury, S.; Guillou, H.; Dombrowicz, D.; Desreumaux, P.;
Wahli, W. GW501516-activated PPARβ/δ promotes liver fibrosis via p38-JNK MAPK-induced hepatic stellate
cell proliferation. Cell Biosci. 2012, 2, 34. [CrossRef] [PubMed]

146. Hellemans, K.; Michalik, L.; Dittie, A.; Knorr, A.; Rombouts, K.; De Jong, J.; Heirman, C.; Quartier, E.;
Schuit, F.; Wahli, W.; et al. Peroxisome proliferator-activated receptor-beta signaling contributes to enhanced
proliferation of hepatic stellate cells. Gastroenterology 2003, 124, 184–201. [CrossRef] [PubMed]

147. Lee, C.H.; Olson, P.; Hevener, A.; Mehl, I.; Chong, L.W.; Olefsky, J.M.; Gonzalez, F.J.; Ham, J.; Kang, H.;
Peters, J.M.; et al. PPARdelta regulates glucose metabolism and insulin sensitivity. Proc. Natl. Acad. Sci. USA
2006, 103, 3444–3449. [CrossRef] [PubMed]

148. Iwaisako, K.; Haimerl, M.; Paik, Y.H.; Taura, K.; Kodama, Y.; Sirlin, C.; Yu, E.; Yu, R.T.; Downes, M.;
Evans, R.M.; et al. Protection from liver fibrosis by a peroxisome proliferator-activated receptor δ agonist.
Proc. Natl. Acad. Sci. USA 2012, 109, E1369–E1376. [CrossRef] [PubMed]

149. Tan, C.K.; Zhuang, Y.; Wahli, W. Synthetic and natural Peroxisome Proliferator-Activated Receptor (PPAR)
agonists as candidates for the therapy of the metabolic syndrome. Expert Opin. Ther. Targets 2017, 21, 333–348.
[CrossRef] [PubMed]

150. Shan, W.; Palkar, P.S.; Murray, I.A.; McDevitt, E.I.; Kennett, M.J.; Kang, B.H.; Isom, H.C.; Perdew, G.H.;
Gonzalez, F.J.; Peters, J.M. Ligand activation of peroxisome proliferator-activated receptor beta/delta
(PPARbeta/delta) attenuates carbon tetrachloride hepatotoxicity by downregulating proinflammatory gene
expression. Toxicol. Sci. 2008, 105, 418–428. [CrossRef] [PubMed]

151. Chehaibi, K.; Cedó, L.; Metso, J.; Palomer, X.; Santos, D.; Quesada, H.; Naceur Slimane, M.; Wahli, W.;
Julve, J.; Vázquez-Carrera, M.; et al. PPAR-β/δ activation promotes phospholipid transfer protein expression.
Biochem. Pharmacol. 2015, 94, 101–108. [CrossRef] [PubMed]

152. Nagasawa, T.; Inada, Y.; Nakano, S.; Tamura, T.; Takahashi, T.; Maruyama, K.; Yamazaki, Y.; Kuroda, J.;
Shibata, N. Effects of bezafibrate, PPAR pan-agonist, and GW501516, PPARdelta agonist, on development of
steatohepatitis in mice fed a methionine- and choline-deficient diet. Eur. J. Pharmacol. 2006, 536, 182–191.
[CrossRef] [PubMed]

153. Wu, H.T.; Chen, C.T.; Cheng, K.C.; Li, Y.X.; Yeh, C.H.; Cheng, J.T. Pharmacological activation of peroxisome
proliferator-activated receptor δ improves insulin resistance and hepatic steatosis in high fat diet-induced
diabetic mice. Horm. Metab. Res. 2011, 43, 631–635. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.yjmcc.2006.03.422
http://www.ncbi.nlm.nih.gov/pubmed/16698033
http://dx.doi.org/10.1016/S0014-2999(01)01589-8
http://dx.doi.org/10.1111/j.1365-2362.2007.01796.x
http://www.ncbi.nlm.nih.gov/pubmed/17461989
http://dx.doi.org/10.1074/jbc.M602369200
http://www.ncbi.nlm.nih.gov/pubmed/16943204
http://dx.doi.org/10.1152/ajpgi.00391.2009
http://www.ncbi.nlm.nih.gov/pubmed/19875703
http://dx.doi.org/10.1016/j.cmet.2008.04.003
http://www.ncbi.nlm.nih.gov/pubmed/18522831
http://dx.doi.org/10.1194/jlr.M200376-JLR200
http://www.ncbi.nlm.nih.gov/pubmed/12576510
http://dx.doi.org/10.1186/2045-3701-2-34
http://www.ncbi.nlm.nih.gov/pubmed/23046570
http://dx.doi.org/10.1053/gast.2003.50015
http://www.ncbi.nlm.nih.gov/pubmed/12512042
http://dx.doi.org/10.1073/pnas.0511253103
http://www.ncbi.nlm.nih.gov/pubmed/16492734
http://dx.doi.org/10.1073/pnas.1202464109
http://www.ncbi.nlm.nih.gov/pubmed/22538808
http://dx.doi.org/10.1080/14728222.2017.1280467
http://www.ncbi.nlm.nih.gov/pubmed/28092722
http://dx.doi.org/10.1093/toxsci/kfn142
http://www.ncbi.nlm.nih.gov/pubmed/18622026
http://dx.doi.org/10.1016/j.bcp.2015.01.016
http://www.ncbi.nlm.nih.gov/pubmed/25662586
http://dx.doi.org/10.1016/j.ejphar.2006.02.028
http://www.ncbi.nlm.nih.gov/pubmed/16574099
http://dx.doi.org/10.1055/s-0031-1280781
http://www.ncbi.nlm.nih.gov/pubmed/21725906


Int. J. Mol. Sci. 2018, 19, 1893 23 of 23

154. Bojic, L.A.; Telford, D.E.; Fullerton, M.D.; Ford, R.J.; Sutherland, B.G.; Edwards, J.Y.; Sawyez, C.G.; Gros, R.;
Kemp, B.E.; Steinberg, G.R.; et al. PPARδ activation attenuates hepatic steatosis in Ldlr−/− mice by
enhanced fat oxidation, reduced lipogenesis, and improved insulin sensitivity. J. Lipid Res. 2014, 55,
1254–1266. [CrossRef] [PubMed]

155. Bays, H.E.; Schwartz, S.; Littlejohn, T.; Kerzner, B.; Krauss, R.M.; Karpf, D.B.; Choi, Y.J.; Wang, X.; Naim, S.;
Roberts, B.K. MBX-8025, a novel peroxisome proliferator receptor-delta agonist: Lipid and other metabolic
effects in dyslipidemic overweight patients treated with and without atorvastatin. J. Clin. Endocrinol. Metab.
2011, 96, 2889–2897. [CrossRef] [PubMed]

156. Risérus, U.; Sprecher, D.; Johnson, T.; Olson, E.; Hirschberg, S.; Liu, A.; Fang, Z.; Hegde, P.; Richards, D.;
Sarov-Blat, L.; et al. Activation of peroxisome proliferator-activated receptor (PPAR)delta promotes reversal
of multiple metabolic abnormalities, reduces oxidative stress, and increases fatty acid oxidation in moderately
obese men. Diabetes 2008, 57, 332–339. [CrossRef] [PubMed]

157. Ratziu, V.; Harrison, S.A.; Francque, S.; Bedossa, P.; Lehert, P.; Serfaty, L.; Romero-Gomez, M.; Boursier, J.;
Abdelmalek, M.; Caldwell, S.; et al. Elafibranor, an Agonist of the Peroxisome Proliferator-Activated
Receptor-α and -δ, Induces Resolution of Nonalcoholic Steatohepatitis without Fibrosis Worsening.
Gastroenterology 2016, 150, 1147–1159. [CrossRef] [PubMed]

158. Cariou, B.; Hanf, R.; Lambert-Porcheron, S.; Zaïr, Y.; Sauvinet, V.; Noël, B.; Flet, L.; Vidal, H.; Staels, B.;
Laville, M. Dual peroxisome proliferator-activated receptor α/δ agonist GFT505 improves hepatic and
peripheral insulin sensitivity in abdominally obese subjects. Diabetes Care 2013, 36, 2923–2930. [CrossRef]
[PubMed]

159. Perazzo, H.; Dufour, J.F. The therapeutic landscape of non-alcoholic steatohepatitis. Liver Int. 2017, 37,
634–647. [CrossRef] [PubMed]

160. Jain, M.R.; Giri, S.R.; Bhoi, B.; Trivedi, C.; Rath, A.; Rathod, R.; Ranvir, R.; Kadam, S.; Patel, H.; Swain, P.; et al.
Dual PPARα/γ agonist saroglitazar improves liver histopathology and biochemistry in experimental NASH
models. Liver Int. 2017. [CrossRef] [PubMed]

161. Wettstein, G.; Luccarini, J.M.; Poekes, L.; Faye, P.; Kupkowski, F.; Adarbes, V.; Defrêne, E.; Estivalet, C.;
Gawronski, X.; Jantzen, I.; et al. The new-generation pan-peroxisome proliferator-activated receptor agonist
IVA337 protects the liver from metabolic disorders and fibrosis. Hepatol. Commun. 2017, 1, 524–537.
[CrossRef] [PubMed]

162. An, H.J.; Lee, B.; Kim, S.M.; Kim, D.H.; Chung, K.W.; Ha, S.G.; Park, K.C.; Park, Y.J.; Kim, S.J.; Yun, H.Y.; et al.
A PPAR Pan Agonist, MHY2013 Alleviates Age-Related Hepatic Lipid Accumulation by Promoting Fatty
Acid Oxidation and Suppressing Inflammation. Biol. Pharm. Bull. 2018, 41, 29–35. [CrossRef] [PubMed]

163. Ruzehaji, N.; Frantz, C.; Ponsoye, M.; Avouac, J.; Pezet, S.; Guilbert, T.; Luccarini, J.M.; Broqua, P.; Junien, J.L.;
Allanore, Y. Pan PPAR agonist IVA337 is effective in prevention and treatment of experimental skin fibrosis.
Ann. Rheum. Dis. 2016, 75, 2175–2183. [CrossRef] [PubMed]

164. Avouac, J.; Konstantinova, I.; Guignabert, C.; Pezet, S.; Sadoine, J.; Guilbert, T.; Cauvet, A.; Tu, L.;
Luccarini, J.M.; Junien, J.L.; et al. Pan-PPAR agonist IVA337 is effective in experimental lung fibrosis
and pulmonary hypertension. Ann. Rheum. Dis. 2017, 76, 1931–1940. [CrossRef] [PubMed]

165. Sumida, Y.; Yoneda, M. Current and future pharmacological therapies for NAFLD/NASH. J. Gastroenterol.
2018, 53, 362–376. [CrossRef] [PubMed]

166. 10 Studies Found for: GFT505. Available online: https://www.clinicaltrials.gov/ct2/results?term=GFT505&
Search=Search (accessed on 15 May 2018).

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1194/jlr.M046037
http://www.ncbi.nlm.nih.gov/pubmed/24864274
http://dx.doi.org/10.1210/jc.2011-1061
http://www.ncbi.nlm.nih.gov/pubmed/21752880
http://dx.doi.org/10.2337/db07-1318
http://www.ncbi.nlm.nih.gov/pubmed/18024853
http://dx.doi.org/10.1053/j.gastro.2016.01.038
http://www.ncbi.nlm.nih.gov/pubmed/26874076
http://dx.doi.org/10.2337/dc12-2012
http://www.ncbi.nlm.nih.gov/pubmed/23715754
http://dx.doi.org/10.1111/liv.13270
http://www.ncbi.nlm.nih.gov/pubmed/27727520
http://dx.doi.org/10.1111/liv.13634
http://www.ncbi.nlm.nih.gov/pubmed/29164820
http://dx.doi.org/10.1002/hep4.1057
http://www.ncbi.nlm.nih.gov/pubmed/29404476
http://dx.doi.org/10.1248/bpb.b17-00371
http://www.ncbi.nlm.nih.gov/pubmed/29311481
http://dx.doi.org/10.1136/annrheumdis-2015-208029
http://www.ncbi.nlm.nih.gov/pubmed/26961294
http://dx.doi.org/10.1136/annrheumdis-2016-210821
http://www.ncbi.nlm.nih.gov/pubmed/28801346
http://dx.doi.org/10.1007/s00535-017-1415-1
http://www.ncbi.nlm.nih.gov/pubmed/29247356
https://www.clinicaltrials.gov/ct2/results?term=GFT505&Search=Search
https://www.clinicaltrials.gov/ct2/results?term=GFT505&Search=Search
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Hallmark of NAFLD 
	Two-Hit Hypothesis 
	Multiple Parallel Hit Hypothesis 

	Peroxisome Proliferator-Activated Receptor / Expression in Liver 
	Hepatic Functions of PPAR/ Compared to PPAR and PPAR 
	PPAR 
	PPAR 
	PPAR/ 
	PPAR/ Roles in Energy Metabolism 
	PPAR/ Roles in Inflammation 


	Pharmacological Strategies Targeting PPAR/ for NAFLD Treatment 
	PPAR/ Agonists: GW0742, GW501516 
	PPAR Dual Agonists: Elafibranor, Saroglitazar 
	PPAR Pan-Agonists: Bezafibrate, MHY2013, Lanifibranor 

	Conclusions 
	References

