T. Halasa, K. Huijps, O. Osteras, and H. Hogeveen, Economic effects of bovine mastitis and mastitis management: a review, Vet Q, vol.29, issue.1, pp.18-31, 2007.

S. J. Wells, S. L. Ott, and A. H. Seitzinger, Key health issues for dairy cattle-new and old, J Dairy Sci, vol.81, issue.11, pp.3029-3064, 1998.

S. Akira and K. Takeda, Toll-like receptor signalling, Nat Rev Immunol, vol.4, issue.7, pp.499-511, 2004.

C. Burvenich, V. Van-merris, J. Mehrzad, A. Diez-fraile, and L. Duchateau, Severity of E. coli mastitis is mainly determined by cow factors, Vet Res, vol.34, issue.5, pp.521-64, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00902764

C. Riollet, P. Rainard, and B. Poutrel, Differential induction of complement fragment C5a and inflammatory cytokines during intramammary infections with Escherichia coli and Staphylococcus aureus, Clin Diagn Lab Immunol, vol.7, issue.2, pp.161-168, 2000.

D. E. Shuster, M. E. Kehrli, P. Rainard, and M. Paape, Complement fragment C5a and inflammatory cytokines in neutrophil recruitment during intramammary infection with Escherichia coli, Infect Immun, vol.65, issue.8, pp.3286-92, 1997.

J. Gunther, D. Koczan, W. Yang, G. Nurnberg, D. Repsilber et al., Assessment of the immune capacity of mammary epithelial cells: comparison with mammary tissue after challenge with Escherichia coli, Vet Res, vol.40, issue.4, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00903077

E. J. Carroll, O. W. Schalm, and J. Lasmanis, Experimental Coliform (Aerobacter Aerogenes) Mastitis: Characteristics of the Endotoxin and Its Role in Pathogenesis, Am J Vet Res, vol.25, pp.720-726, 1964.

S. Akashi, Y. Nagai, H. Ogata, M. Oikawa, K. Fukase et al., Human MD-2 confers on mouse Toll-like receptor 4 species-specific lipopolysaccharide recognition, Int Immunol, vol.13, issue.12, pp.1595-1604, 2001.

J. Wang, C. Guo, Z. Wei, X. He, J. Kou et al., Morin suppresses inflammatory cytokine expression by downregulation of nuclear factor-kappaB and mitogen-activated protein kinase (MAPK) signaling pathways in lipopolysaccharide-stimulated primary bovine mammary epithelial cells, J Dairy Sci, vol.99, issue.4, pp.3016-3038, 2016.

B. Beutler and E. T. Rietschel, Innate immune sensing and its roots: the story of endotoxin, Nat Rev Immunol, vol.3, issue.2, pp.169-76, 2003.

H. Dosogne, E. Meyer, A. Sturk, J. Van-loon, A. M. Massart-leen et al., Effect of enrofloxacin treatment on plasma endotoxin during bovine Escherichia coli mastitis, Inflamm Res, vol.51, issue.4, pp.201-206, 2002.

C. M. Mcdermott, J. L. Morrill, and B. W. Fenwick, Deacylation of endotoxin during natural cases of bovine mastitis, J Dairy Sci, vol.74, issue.4, pp.78278-78285, 1991.

R. S. Munford and C. L. Hall, Detoxification of bacterial lipopolysaccharides (endotoxins) by a human neutrophil enzyme, Science, vol.234, issue.4773, pp.203-208, 1986.

R. Stenutz, A. Weintraub, and G. Widmalm, The structures of Escherichia coli O-polysaccharide antigens, FEMS Microbiol Rev, vol.30, issue.3, pp.382-403, 2006.

D. J. Horvath, A. S. Patel, M. A. Storm, D. W. Singh, C. Li et al., Association of O-Antigen Serotype with the Magnitude of Initial Systemic Cytokine Responses and Persistence in the Urinary Tract, J Bacteriol, vol.198, issue.6, pp.964-72, 2016.

P. Reeves, Role of O-antigen variation in the immune response, Trends Microbiol, vol.3, issue.10, pp.381-387, 1995.

R. Rautemaa and S. Meri, Complement-resistance mechanisms of bacteria, Microbes Infect, vol.1, issue.10, pp.785-94, 1999.

Y. Han, X. Han, S. Wang, Q. Meng, Y. Zhang et al., The waaL gene is involved in lipopolysaccharide synthesis and plays a role on the bacterial pathogenesis of avian pathogenic Escherichia coli, Vet Microbiol, vol.172, issue.3-4, pp.486-91, 2014.

A. J. Bramley, Variations in the susceptibility of lactating and non-lactating bovine udders to infection when infused with Escherichia coli, J Dairy Res, vol.43, issue.2, pp.205-216, 1976.

P. Roussel, A. Porcherie, M. Reperant-ferter, P. Cunha, C. Gitton et al., Escherichia coli mastitis strains: In vitro phenotypes and severity of infection in vivo, PLoS One, vol.12, issue.7, p.178285, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01605691

A. W. Hill, Factors influencing the outcome of Escherichia coli mastitis in the dairy cow, Res Vet Sci, vol.31, issue.1, pp.107-119, 1981.

P. Roussel, P. Cunha, A. Porcherie, W. Petzl, F. B. Gilbert et al., Investigating the contribution of IL-17A and IL-17F to the host response during Escherichia coli mastitis, Vet Res, vol.46, p.56, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01169024

W. J. Dower, J. F. Miller, and C. W. Ragsdale, High efficiency transformation of E. coli by high voltage electroporation, Nucleic Acids Res, vol.16, issue.13, pp.6127-6172, 1988.

G. A. O'toole and R. Kolter, Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis, Mol Microbiol, vol.28, issue.3, pp.449-61, 1998.

A. Porcherie, P. Cunha, A. Trotereau, P. Roussel, F. B. Gilbert et al., Repertoire of Escherichia coli agonists sensed by innate immunity receptors of the bovine udder and mammary epithelial cells, Vet Res, vol.43, issue.1, p.22330199, 2012.

P. Rainard, C. Riollet, P. Berthon, P. Cunha, A. Fromageau et al., The chemokine CXCL3 is responsible for the constitutive chemotactic activity of bovine milk for neutrophils, Mol Immunol, vol.45, issue.15, pp.4020-4027, 2008.

P. J. Hitchcock and T. M. Brown, Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels, J Bacteriol, vol.154, issue.1, pp.269-77, 1983.

U. K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, vol.227, issue.5259, pp.680-685, 1970.

C. M. Tsai and C. E. Frasch, A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels, Anal Biochem, vol.119, issue.1, pp.115-124, 1982.

B. L. Ridley, B. S. Jeyaretnam, and R. W. Carlson, The type and yield of lipopolysaccharide from symbiotically deficient Rhizobium lipopolysaccharide mutants vary depending on the extraction method, Glycobiology, vol.10, issue.10, pp.1013-1036, 2000.

J. P. Pais-de-barros, T. Gautier, W. Sali, C. Adrie, H. Choubley et al., Quantitative lipopolysaccharide analysis using HPLC/MS/MS and its combination with the limulus amebocyte lysate assay, J Lipid Res, vol.56, issue.7, pp.1363-1372, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01687093

S. Bougarn, P. Cunha, F. B. Gilbert, A. Harmache, G. Foucras et al., Staphylococcal-associated molecular patterns enhance expression of immune defense genes induced by IL-17 in mammary epithelial cells, Cytokine, vol.56, issue.3, pp.749-59, 2011.

T. Iwaki and F. J. Castellino, A single plasmid transfection that offers a significant advantage associated with puromycin selection in Drosophila schneider S2 cells expressing heterologous proteins, Cytotechnology, vol.57, issue.1, pp.45-54, 2008.

O. Rendueles, C. Beloin, P. Latour-lambert, and J. M. Ghigo, A new biofilm-associated colicin with increased efficiency against biofilm bacteria, ISME J, vol.8, issue.6, pp.1275-88, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01381817

S. Bougarn, P. Cunha, F. B. Gilbert, F. Meurens, and P. Rainard, Technical note: Validation of candidate reference genes for normalization of quantitative PCR in bovine mammary epithelial cells responding to inflammatory stimuli, J Dairy Sci, vol.94, issue.5, 2011.

J. W. Lee, D. D. Bannerman, M. J. Paape, M. K. Huang, and X. Zhao, Characterization of cytokine expression in milk somatic cells during intramammary infections with Escherichia coli or Staphylococcus aureus by real-time PCR, Vet Res, vol.37, issue.2, pp.219-248, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00903018

F. B. Gilbert, P. Cunha, K. Jensen, E. J. Glass, G. Foucras et al., Differential response of bovine mammary epithelial cells to Staphylococcus aureus or Escherichia coli agonists of the innate immune system, Vet Res, vol.44, issue.1, p.40, 2013.

J. E. Lopez-meza, A. Gutierrez-barroso, and A. Ochoa-zarzosa, Expression of tracheal antimicrobial peptide in bovine mammary epithelial cells, Res Vet Sci, vol.87, issue.1, pp.59-63, 2009.

S. Roosen, K. Exner, S. Paul, J. M. Schroder, E. Kalm et al., Bovine beta-defensins: identification and characterization of novel bovine beta-defensin genes and their expression in mammary gland tissue, Mamm Genome, vol.15, issue.10, p.15520886, 2004.

K. Swanson, S. Gorodetsky, L. Good, S. Davis, D. Musgrave et al., Expression of a betadefensin mRNA, lingual antimicrobial peptide, in bovine mammary epithelial tissue is induced by mastitis, Infect Immun, vol.72, issue.12, pp.7311-7315, 2004.

B. S. Schonwetter, E. D. Stolzenberg, and M. A. Zasloff, Epithelial antibiotics induced at sites of inflammation, Science, vol.267, issue.5204, pp.1645-1653, 1995.

A. J. Molenaar, D. P. Harris, G. H. Rajan, M. L. Pearson, M. R. Callaghan et al., The acute-phase protein serum amyloid A3 is expressed in the bovine mammary gland and plays a role in host defence, Biomarkers, vol.14, issue.1, pp.26-37, 2009.

P. D. Eckersall, F. J. Young, C. Mccomb, C. J. Hogarth, S. Safi et al., Acute phase proteins in serum and milk from dairy cows with clinical mastitis, Vet Rec, vol.148, issue.2, pp.35-41, 2001.

I. Zanoni, C. Bodio, A. Broggi, R. Ostuni, M. Caccia et al., Similarities and differences of innate immune responses elicited by smooth and rough LPS, Immunol Lett, vol.142, issue.1-2, pp.41-48, 2012.

M. Huber, C. Kalis, S. Keck, Z. Jiang, P. Georgel et al., R-form LPS, the master key to the activation ofTLR4/MD-2-positive cells, Eur J Immunol, vol.36, issue.3, pp.701-712, 2006.

E. Pupo, B. Lindner, H. Brade, and A. B. Schromm, Intact rough-and smooth-form lipopolysaccharides from Escherichia coli separated by preparative gel electrophoresis exhibit differential biologic activity in human macrophages, FEBS J, vol.280, issue.4, pp.1095-111, 2013.

Z. Jiang, P. Georgel, X. Du, L. Shamel, S. Sovath et al., CD14 is required for MyD88-independent LPS signaling, Epub 2005/05/17, vol.6, pp.565-70, 2005.

P. J. Godowski, A smooth operator for LPS responses, Nat Immunol, vol.6, issue.6, pp.544-550, 2005.

K. A. Fitzgerald, D. C. Rowe, B. J. Barnes, D. R. Caffrey, A. Visintin et al., LPS-TLR4 signaling to IRF-3/ 7 and NF-kappaB involves the toll adapters TRAM and TRIF, J Exp Med, vol.198, issue.7, pp.1043-55, 2003.

J. Gunther, K. Esch, N. Poschadel, W. Petzl, H. Zerbe et al., Comparative kinetics of Escherichia coli-and Staphylococcus aureus-specific activation of key immune pathways in mammary epithelial cells demonstrates that S. aureus elicits a delayed response dominated by interleukin-6 (IL-6) but not by IL-1A or tumor necrosis factor alpha, Infect Immun, vol.79, issue.2, pp.695-707, 2011.

P. A. Spears, L. M. Temple, and P. E. Orndorff, A role for lipopolysaccharide in turkey tracheal colonization by Bordetella avium as demonstrated in vivo and in vitro, Mol Microbiol, vol.36, issue.6, pp.1425-1460, 2000.

J. W. Lee, M. J. Paape, and X. Zhao, Recombinant bovine soluble CD14 reduces severity of experimental Escherichia coli mastitis in mice, Vet Res, vol.34, issue.3, pp.307-323, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00902746

J. W. Lee, M. J. Paape, T. H. Elsasser, and X. Zhao, Recombinant soluble CD14 reduces severity of intramammary infection by Escherichia coli, Infect Immun, vol.71, issue.7, pp.4034-4043, 2003.

A. H. Linton, K. Howe, W. J. Sojka, and C. Wray, A note on the range of Escherichia coli O-serotypes causing clinical bovine mastitis and their antibiotic resistance spectra, J Appl Bacteriol, vol.46, issue.3, pp.585-90, 1979.

A. H. Linton and T. C. Robinson, Studies on the association of Escherichia coli with bovine mastitis, Br Vet J, vol.140, issue.4, pp.368-73, 1984.