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Heïdi Serra,2 Filipe Borges,1 Joe Simorowski,1 Evan Ernst,1 Yannick Jacob,1,5

Ian R. Henderson,2 and Robert A. Martienssen1
1Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor,
New York 11724, USA; 2Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom

Eukaryotic centromeres contain the kinetochore, which connects chromosomes to the spindle allowing segregation. During

meiosis, centromeres are suppressed for inter-homolog crossover, as recombination in these regions can cause chromosome

missegregation and aneuploidy. Plant centromeres are surrounded by transposon-dense pericentromeric heterochromatin

that is epigenetically silenced by histone 3 lysine 9 dimethylation (H3K9me2), and DNA methylation in CG and non-CG

sequence contexts. However, the role of these chromatin modifications in control of meiotic recombination in the pericen-

tromeres is not fully understood. Here, we show that disruption of Arabidopsis thaliana H3K9me2 and non-CG DNA meth-

ylation pathways, for example, via mutation of the H3K9 methyltransferase genes KYP/SUVH4 SUVH5 SUVH6, or the CHG
DNAmethyltransferase gene CMT3, increases meiotic recombination in proximity to the centromeres. Using immunocyto-

logical detection of MLH1 foci and genotyping by sequencing of recombinant plants, we observe that H3K9me2 and non-

CG DNAmethylation pathway mutants show increased pericentromeric crossovers. Increased pericentromeric recombina-

tion in H3K9me2/non-CG mutants occurs in hybrid and inbred backgrounds and likely involves contributions from both

the interfering and noninterfering crossover repair pathways. We also show that meiotic DNA double-strand breaks (DSBs)

increase in H3K9me2/non-CG mutants within the pericentromeres, via purification and sequencing of SPO11-1-oligonucle-

otides. Therefore, H3K9me2 and non-CG DNA methylation exert a repressive effect on both meiotic DSB and crossover

formation in plant pericentromeric heterochromatin. Our results may account for selection of enhancer trap Dissociation
(Ds) transposons into the CMT3 gene by recombination with proximal transposon launch-pads.

[Supplemental material is available for this article.]

Eukaryotic centromeres are the sites of kinetochore attachment to
spindle microtubules that allow chromosome segregation
(McKinley and Cheeseman 2015). Centromere identity is gov-
erned by nucleosomes containing CENPA/CENH3-related histone
variants, which occupy large arrays of tandemly repeated satellite
sequences (Allshire and Karpen 2008; Malik and Henikoff
2009). A conserved feature of centromeres shared across eukary-
otes is suppression of meiotic crossover (Lambie and Roeder
1988; Copenhaver et al. 1999; Vincenten et al. 2015; Nambiar
and Smith 2016). Crossover suppression is important for fertility,
as centromere-proximal recombination events have been associat-
ed with chromosome segregation errors and aneuploidy (Koehler
et al. 1996; Lamb et al. 1996; Rockmill et al. 2006). Plants, animals,
and fungi also typically possess repetitive pericentromeric hetero-
chromatin, containing a high density of transposable elements
(Allshire and Karpen 2008; Malik and Henikoff 2009; Nambiar
and Smith 2016). In crop genomes, including wheat, barley,

maize, and tomato, extensive pericentromeric heterochromatin
occupies more than half of the chromosome and is also cross-
over-suppressed (Lhuissier et al. 2007; Wei et al. 2009; Mayer
et al. 2012; Choulet et al. 2014). However, the genetic and epige-
netic factors that shapemeiotic recombination patterns in eukary-
ote centromeric and pericentromeric regions remain to be fully
understood.

Arabidopsis thaliana centromeres consist of megabase tandem
arrays of the 178- to 180-base pair CEN180 satellite repeat (Co-
penhaver et al. 1999; Kumekawa et al. 2000; Nagaki et al. 2003;
Ito et al. 2007). The centromeric regions are also densely DNA
methylated and enriched for H3K9me2 and histone variant
H2A.W (Lippman et al. 2004; Lister et al. 2008; Stroud et al.
2013; Yelagandula et al. 2014). Within the centromeric satellite
arrays, a subset of repeats are occupied by nucleosomes containing
the centromeric variant histone H3 CENH3 (Nagaki et al. 2003;
Maheshwari et al. 2017). Surrounding the CEN180 satellite arrays
are repetitive, transposon-dense regions of pericentromeric hetero-
chromatin (Lippman et al. 2004; Lister et al. 2008; Stroud et al.
2013; Yelagandula et al. 2014). Plant transposable elements are
transcriptionally silenced byH3K9me2 andDNA cytosinemethyl-
ation in CG and non-CG (CHG and CHH, where H = A, C, or T)
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sequence contexts (Lippman et al. 2004; Du et al. 2012; Stroud
et al. 2013, 2014). A. thaliana mutants that lose maintenance of
CG or non-CG DNA methylation show elevated transposon tran-
scription and mobility at high and moderate levels, respectively
(Miura et al. 2001; Singer et al. 2001; Kato et al. 2003; Mirouze
et al. 2009; Reinders et al. 2009; Teixeira et al. 2009; Tsukahara
et al. 2012; Marí-Ordóñez et al. 2013; Stroud et al. 2014).

In A. thaliana, the chromodomain cytosine methyltransfer-
ases CHROMOMETHYLASE2 (CMT2) and CHROMOMETHY-
LASE3 (CMT3) recognize heterochromatic H3K9me2 via BAH
and chromodomains, and methylate-associated DNA in CHH
and CHG contexts, respectively (Bartee et al. 2001; Lindroth
et al. 2001; Du et al. 2012; Stroud et al. 2013, 2014; Zemach
et al. 2013; Dubin et al. 2015). Methylation of histone H3K9
requires the SET domain methyltransferases KRYPTONITE/SUP-
PRESSOR OF VARIEGATION HOMOLOG4 (KYP/SUVH4), SUP-
PRESSOR OF VARIEGATION HOMOLOG5 (SUVH5), and
SUPPRESSOR OF VARIEGATION HOMOLOG6 (SUVH6), which
are recruited to methylated DNA by SRA methyl-cytosine binding
domains (Jackson et al. 2002; Malagnac et al. 2002; Ebbs and
Bender 2006; Johnson et al. 2007; Stroud et al. 2013, 2014; Du
et al. 2014). The de novoDNAmethyltransferase DOMAINS REAR-
RANGED METHYLTRANSFERASE2 (DRM2) is also required for
maintenance methylation of non-CG contexts and thus can also
affect H3K9me2 (Cao and Jacobsen 2002; Cao et al. 2003; Stroud
et al. 2013, 2014). The kyp suvh5 suvh6 mutant abolishes almost
all H3K9me2 andCHG/CHHmethylation, but CGmethylation re-
mains intact, while cmt3 mutants lose CHG methylation and
H3K9me2 is reduced, but CHH methylation and CG methylation
are largely unchanged (Bartee et al. 2001; Lindroth et al. 2001;
Jackson et al. 2002; Malagnac et al. 2002; Inagaki et al. 2010;
Stroud et al. 2013, 2014; Yelagandula et al. 2014). In contrast to
plants, in fission yeast, which lacks DNA methylation, the SET
domain histone lysine methyltransferase CRYPTIC LOCI REGU-
LATOR4 (CLR4) is recruited to methylated H3K9me2 directly via
its chromodomain (Allshire and Ekwall 2015). Thus, by separating
chromodomains (CMT2 and CMT3) from SET domains (KYP/
SUVH5/SUVH6), plants have introduced non-CG DNA methyla-
tion as an additional layer of epigenetic control underlying
H3K9me2. Alongside these mechanisms, the METHYLTRANSER-
FERASE1 (MET1) cytosine methyltransferase, VARIANT IN METH-
YLATION1 (VIM1) family proteins, and the DECREASE IN DNA
METHYLATION1 (DDM1) SWI/SNF chromatin remodeling pro-
tein are required formaintenance of CG context DNAmethylation
(Kankel et al. 2003; Saze et al. 2003; Lippman et al. 2004; Lister
et al. 2008; Woo et al. 2008; Stroud et al. 2013). In this work, we
use mutations in A. thaliana heterochromatic silencing pathways
to investigate epigenetic control of meiotic recombination in the
pericentromeric regions.

Meiotic crossovers form via inter-homolog repair of DNA
double-strand breaks (DSBs) that are generated by SPO11 topo-
isomerase-related complexes (Szostak et al. 1983; Keeney et al.
1997; Robert et al. 2016; Vrielynck et al. 2016). Diverse eukaryotes
have evidence for recombination hotspots, which are approxi-
mately kilobase-size regions with an elevated frequency of meiotic
DSBs or crossovers, compared to the genome average or surround-
ing regions (Kauppi et al. 2004; De Massy 2013; Choi and
Henderson 2015). Hotspots in different eukaryotic lineages are
controlled to varying degrees by genetic and epigenetic informa-
tion (Kauppi et al. 2004; De Massy 2013; Choi and Henderson
2015). At the chromosome-scale, A. thaliana crossover frequency
is highest in gene-dense euchromatin, whereas the heterochro-

matic centromeres are crossover-suppressed (Copenhaver et al.
1999; Giraut et al. 2011; Salomé et al. 2012; Yelina et al. 2015).
At the fine-scale, plant crossover hotspots occur at gene promoters
and terminators, and recombination is promoted by euchromatic
modifications, including histone variant H2A.Z (Choi et al. 2013;
Hellsten et al. 2013; Wijnker et al. 2013; Shilo et al. 2015).
Acquisition of DNA methylation and H3K9me2 via the RNA-di-
rected DNA methylation (RdDM) pathway is sufficient to silence
A. thaliana euchromatic crossover hotpots (Yelina et al. 2015).
This is consistent with DNA methylation suppressing meiotic
DNA double-strand breaks in mouse (Zamudio et al. 2015), and si-
lencing crossovers in Ascobolus (Maloisel and Rossignol 1998).
Furthermore, loss of RNAi and Clr4-dependent H3K9me2 elevates
centromeric crossovers in fission yeast (Ellermeier et al. 2010), and
Drosophila position effect variegation (PEV) suppressor mutations
(Suppressor of Variegation) can modify centromeric crossover fre-
quency (Westphal and Reuter 2002). Interestingly, the A. thaliana
met1 and ddm1 CG methylation mutants associate with remodel-
ing of meiotic recombination along chromosomes, with crossover
increases in the chromosome arms and decreases across the peri-
centromeres (Colomé-Tatché et al. 2012; Melamed-Bessudo and
Levy 2012; Mirouze et al. 2012; Yelina et al. 2012, 2015). However,
how non-CG DNA methylation and other epigenetic silencing
pathways contribute to recombination landscapes along plant
chromosomes has not been fully explored. In this study, we
address the roles of H3K9me2 and non-CG DNA methylation in
suppression of meiotic DSBs and crossovers within A. thaliana
pericentromeric heterochromatin.

Results

Epigenetic activation of pericentromeric crossovers

in non-CG/H3K9me2 mutants

To investigate meiotic recombination frequency in A. thaliana
non-CG DNA methylation and H3K9me2 mutants, we used fluo-
rescent crossover reporter lines (fluorescent tagged lines, FTLs)
(Melamed-Bessudo et al. 2005; Berchowitz and Copenhaver
2008). FTLs express different colors of fluorescent protein under
seed (NapA)- or pollen (LAT52)-specific promoters, from linked
T-DNAs insertions (Fig. 1A). The scoring of fluorescent color inher-
itance in the progeny seed or pollen (male gametes) of FTL hemi-
zygotes allows the measurement of sex-averaged or male-specific
crossover frequency, respectively, in defined chromosomal inter-
vals (Fig. 1A; Melamed-Bessudo et al. 2005; Berchowitz and
Copenhaver 2008; Yelina et al. 2013).

We first analyzed crossover frequency within the 5.4-mega-
base (Mb) CEN3 FTL interval, which spans the centromere and
pericentromeric heterochromatin of Chromosome 3, in wild
type versus non-CG/H3K9me2 pathway mutants (Fig. 1B; Yelina
et al. 2015). Genetic ablation of the H3K9 methyltransferases
(kyp suvh5 suvh6) or the non-CG DNA methyltransferases (drm1
drm2 cmt2 cmt3) eliminates both H3K9me2 and non-CG DNA
methylation, while single and double mutants have intermediate
effects (Cao et al. 2003; Stroud et al. 2013, 2014). We observed
that mutations that disrupt H3K9me2 and non-CG DNA methyl-
ation to progressively greater extents resulted in progressively
greater increases in CEN3 crossover frequency (drm1 drm2 < kyp <
cmt3 < drm1 drm2 cmt3 < kyp suvh5 suvh6; all χ2 P < 2.0 × 10−16)
(Fig. 1C; Supplemental Table S1; Stroud et al. 2013, 2014). The
suvh5 suvh6 and cmt2mutants did not show significant differences
compared to wild type (Fig. 1C; Supplemental Table S1).
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We used published bisulfite sequencing data to analyze DNA
methylation levels within the CEN3 interval in the genotypes an-
alyzed for crossover frequency (Stroud et al. 2013). Within this se-
ries of mutants, levels of CHG DNA methylation showed a strong
negative correlation with CEN3 genetic distance (Pearson’s r =
−0.93, P = 2.36 × 10−3), whereas CG and CHH methylation were
not significantly correlated (Fig. 1D,E; Supplemental Table S2;
Stroud et al. 2013). In contrast to non-CG/H3K9me2mutants, het-
erozygous ddm1/+, met1/+, or homozygous met1 mutants, which
inherit chromosomes hypomethylated in the CG context, have re-
duced CEN3 recombination, as reported previously (Fig. 1C;
Supplemental Table S1; Colomé-Tatché et al. 2012; Melamed-
Bessudo and Levy 2012; Mirouze et al. 2012; Yelina et al.
2012, 2015). We confirmed release of crossover suppression
in cmt3 across the Chromosome 5 centromere and pericentro-
meric heterochromatin, using additional FTLs in Col (CTL5.11,

χ2 P = 1.30 × 10−3) and Ler (LTL5.4,
χ2 P = 2.09 × 10−9) inbred backgrounds
(Supplemental Fig. S1; Supplemental
Tables S3, S4). We also crossed cmt3 al-
leles in Col (cmt3-11) and Ler (cmt3-7) ac-
cessions together to generate Col/Ler F1
progeny that were cmt3 mutant and car-
ried the CEN3 FTL (Fig. 2A; Lindroth
et al. 2001).Weobserved significantly in-
creased CEN3 genetic distance in cmt3
hybrids (χ2 P = 1.27 × 10−86), similar to
the increase observed for inbreds (Fig.
2B; Supplemental Tables S1, S5). In con-
trast, recombination in the euchromatic
420 FTL interval on Chromosome 3 did
not significantly change in cmt3 inbreds
and slightly decreased in hybrids (χ2 P =
1.96 × 10−3), compared to wild type (Fig.
2C; Supplemental Table S6). Together,
these data indicate that mutations in
the H3K9me2/non-CG pathway primari-
ly activate crossover frequency in prox-
imity to the centromeres.

Genome-wide mapping of crossovers in

chromomethylase3 mutants

We next sought to map crossovers ge-
nome-wide in wild type compared with
a H3K9me2/non-CG mutant back-
ground,using segregationof singlenucle-
otide polymorphisms (SNPs). We used
cmt3 mutant alleles in both Col (cmt3-
11) and Ler (cmt3-7) backgrounds
(Bartee et al. 2001; Lindroth et al. 2001;
Stroud et al. 2013, 2014) to generate
wild type (Col × Ler) and cmt3 (cmt3-
11 × cmt3-7) F2 populations of >700 indi-
viduals each (Fig. 2A). To assess centro-
meric recombination levels in these
populations, we genotyped Col/Ler sim-
ple sequence length polymorphism
(SSLP) markers on Chromosomes 1 and
3 (Supplemental Table S7). This con-
firmed significant increases in pericen-
tromeric recombination in the cmt3

population compared to wild type, consistent with our previous
FTL measurements (Supplemental Table S7). To map crossovers at
high resolution, we performed genotyping by sequencing (GBS)
of 437 wild-type and 384 cmt3 F2 individuals, which identified
3320 and 2803 crossovers, respectively (Fig. 2D–F; Supplemental
Table S8; Rowan et al. 2015; Choi et al. 2016; Serra et al. 2018).
The crossovers weremapped betweenCol/Ler SNPs to amean reso-
lutionof 887bp. The total numberof crossoversperwild-typeF2 in-
dividual (mean = 7.6)was comparable to that observed in similar F2
populations (Giraut et al. 2011; Salomé et al. 2012) andwas not sig-
nificantly different in cmt3 (mean = 7.3; Mann–Whitney–
Wilcoxon test, P = 0.101) (Fig. 2E; Supplemental Table S8).

To analyze crossover distributions throughout the genome,
we defined centromeres as the crossover-suppressed regions that
surround gaps in the chromosome assembly (Copenhaver et al.
1999; Kumekawa et al. 2000), the pericentromeres as the

Figure 1. Progressive increases of pericentromeric crossover frequency in H3K9me2 and non-CG DNA
methylation pathway mutants. (A) Measurement of crossover frequency using segregation of hemizy-
gous fluorescent tagged line (FTL) T-DNAs. A representative fluorescent micrograph is shown of FTL/+
pollen, reproduced from Choi et al. (2016). (B) A rolling mean of gene (red) and transposon (blue) den-
sity (number of start coordinates per adjacent 10-kb window) are plotted along Chromosome 3, with the
location of CEN3 FTL T-DNAs indicated by vertical lines. Mean values are indicated by the horizontal dot-
ted lines and the centromere assembly gap by the vertical dotted line. (C) CEN3 crossover frequency (cM)
in DNA methylation mutants. Data for met1 and met1/+ are reproduced from Yelina et al. (2015). Black
dots represent replicate measurements and red dots show mean values. (D) Published BS-seq data
(Stroud et al. 2013) were used to analyze CHG DNA methylation density along chromosome telo-
mere-centromere axes in wild type and H3K9me2/non-CG DNA methylation mutants. Lines are colored
according to CEN3 cM (blue = highest, red = intermediate, green = lowest). (E) Correlation between
CEN3 cM and CHG DNA methylation from published BS-seq data (Stroud et al. 2013).
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contiguous regions flanking the centromeres with higher than av-
erage DNA methylation, and chromosome arms as the remainder
of the genome (Supplemental Table S9). Consistent with our FTL
analysis, we observed that GBS-mapped crossovers were signifi-
cantly increased in the cmt3 pericentromeric regions (24.6%versus

27.8% of events were pericentromeric in wild type versus cmt3, χ2

P = 5.60 × 10−3), which are strongly depleted of CHGDNAmethyl-
ation in cmt3 (Fig 2D,F; Supplemental Table S10; Stroud et al.
2013). We also observed elevated centromeric crossovers (n = 13)
in cmt3 (χ2 P = 2.63 × 10−4), which were completely absent in

Figure 2. Genome-widemapping of crossover frequency in cmt3 non-CGmutants. (A) Crossing scheme used to analyze recombination in cmt3mutants.
Col chromosomes are black and Ler chromosomes are blue. The CEN3 FTL T-DNAs are indicated by red and green triangles. (B) CEN3 crossover frequency
(cM) in wild type and cmt3, in Col/Col inbreds, or Col/Ler F1 hybrids. Replicate measurements are shown in black andmean values in red. (C) 420 crossover
frequency in wild type and cmt3, in Col/Col inbreds, or Col/Ler F1 hybrids, as shown for B. (D) Plots of the A. thaliana chromosomes on a continuous x-axis
are shown. Analysis of DNA methylation frequency in CG (red), CHG (green), and CHH (blue) from published data in wild type (Col) or cmt3-11 (Stroud
et al. 2013) (left panels). A differential (cmt3 −wild type = ΔDNA methylation) plot is also shown. Vertical dotted lines indicate the position of the centro-
mere assembly gaps and vertical solid lines indicate telomeres. The pericentromeres, defined by higher than average DNA methylation, are indicated by
light blue shading. The normalized frequency of crossovers mapped by GBS in wild type (red) and cmt3 (blue) F2 populations is plotted (right panels), in
addition to the cmt3 −wild type differential (ΔCrossovers). (E) Histograms of crossovers per F2 individual for wild-type and cmt3 populations. Red dotted
lines indicate mean values. (F) Normalized crossover frequency analyzed along chromosome telomere (TEL) to centromere (CEN) axes in wild-type (red)
and cmt3 (blue) populations. CHG DNA methylation was analyzed and plotted similarly for wild type (red) or cmt3 (blue) (Stroud et al. 2013).
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wild type (Supplemental Table S10). The chromosome arms
showed a significant decrease of crossovers in cmt3 (χ2 P = 1.50 ×
10−3) (Supplemental Table S10). These data confirm that cross-
overs increase in proximity to cmt3 centromeres, but that the in-
crease is strongest in the flanking pericentromeric regions (Fig.
2D,F). However, we note that some pericentromeric regions
showedhigher crossover frequency inwild type than cmt3—for ex-
ample, the right pericentromere of Chromosome 2—and there-
fore, region-specific effects also likely play an important role,
such as structural genetic variation.

Meiotic immunocytology of chromatin and recombination

in non-CG/H3K9me2 mutants

To assess H3K9me2 patterns during meiosis, we performed immu-
nocytological staining using antibodies against this histone mod-

ification and the chromosome axis HORMA domain protein
ASYNAPTIC1 (ASY1) (Fig. 3A; Armstrong et al. 2002). During mei-
osis, A. thaliana centromeres and pericentromeres undergo pro-
gressive clustering during prophase-I (Fig. 3A; Armstrong et al.
2001). We observed that the heterochromatic clusters, detected
by DAPI staining of DNA, stain strongly for H3K9me2 throughout
leptotene, zygotene, and pachytene (Fig. 3A), which are the key
meiotic stages during which DSB formation and crossover matura-
tion occur (Armstrong et al. 2001; Sanchez-Moran et al. 2007). At
the leptotene stage, whenmeiotic DSBs initiate, the H3K9me2 sig-
nal was significantly reduced to background levels in kyp suvh5
suvh6 (Mann–Whitney–Wilcoxon test, P = 7.47 × 10−9). Although
the mean H3K9me2 signal was lower in cmt3 compared to wild-
type controls, the difference was not statistically significant (Fig.
3B,D; Supplemental Fig. S2; Supplemental Tables S11, S12), consis-
tent with intermediate reductions in H3K9me2 observed previous-

ly in cmt3 somatic cells (Inagaki et al.
2010; Yelagandula et al. 2014). Thus,
H3K9me2 accumulates strongly in A.
thaliana heterochromatin during meio-
sis, and its loss or reduction results in in-
creased pericentromeric crossover.

Crossovers can be detected by
immunostaining forMLH1,whichmarks
class I interfering crossover foci (Cris-
mani et al. 2012). Therefore, we scored
MLH1 foci associated with euchromatin
orheterochromatin, basedonDAPI stain-
ing, inwild type and kyp suvh5 suvh6mu-
tants (Fig. 3C,E; SupplementalTable S13).
We observed a slight but significant
increase in MLH1 foci numbers in kyp
suvh5 suvh6 (mean = 11.1) compared
to wild type (mean = 9.4) at diakinesis
(Mann–Whitney–Wilcoxon test, P =
1.64 × 10−7) (Fig. 3C,E; Supplemental
Table S13). Importantly, MLH1 foci
were also significantly increased in kyp
suvh5 suvh6 heterochromatin (mean =
2.9), compared to wild type (mean = 1.7;
Mann–Whitney–Wilcoxon test, P =
4.22 × 10−5) (Fig. 3C,E; Supplemental
Table S14). This provides cytological sup-
port for our crossover mapping data and
indicates that MLH1-dependent repair
contributes to the increase in pericentro-
meric crossovers observed in H3K9me2/
non-CG DNAmethylation mutants.

As MLH1 foci were increased in kyp
suvh5 suvh6, we further investigated the
relationship of class I and class II cross-
over pathways to the observed recombi-
nation changes. Approximately 85% of
A. thaliana crossovers are dependent on
the class I repair pathway and are inter-
ference-sensitive (Higgins et al. 2004;
Mercier et al. 2005). Mutants in the class
I pathway, for example, zip4, cause a
strong reduction in crossovers and fertil-
ity (Mercier et al. 2005; Chelysheva et al.
2007). The fancmmutation restores fertil-
ity in fancm zip4 double mutants by

Figure 3. Meiotic heterochromatin is enriched for H3K9me2 and shows increased MLH1 foci in kyp
suvh5 suvh6. (A) Wild-type (Col) male meiocytes immunostained for ASY1 (red) and H3K9me2 (green)
and stained for DNA (DAPI, blue), at leptotene, zygotene, and pachytene stages. Scale bar, 10 µM. (B)
As for A, but showing leptotene stage cells from wild type (Col), cmt3-11, and kyp suvh5 suvh6. (C)
Male meiocytes at diakinesis stained for DAPI and immunostained for MLH1 (green) in wild type and
kyp suvh5 suvh6. Bivalent chromosomes are evident that are associated with MLH1 foci at crossover sites.
(D) Quantification of H3K9me2 immunostaining in wild type (Col), cmt3, and kyp suvh5 suvh6 meiotic
cells. (E) Quantification of MLH1 foci in wild type and kyp suvh5 suvh6.
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increasing class II noninterfering crossovers (Crismani et al. 2012).
Therefore, we constructed cmt3 zip4 and cmt3 fancm double mu-
tants and compared CEN3 crossover frequency and fertility to
wild type and single mutants (Fig. 4A–C; Supplemental Tables
S14, S15). Unlike fancm, cmt3 was unable to suppress zip4 infertil-
ity (Fig. 4A,B; Supplemental Table S15). However, a small but sig-
nificant CEN3 crossover increase was observed in cmt3 zip4,
compared with zip4 alone (χ2 P = 2.99 × 10−9), which indicates
that the class II pathway may contribute to increased crossovers
in cmt3 mutant centromeres (Fig. 4C; Supplemental Table S14).
Additionally, the cmt3 fancm double mutant shows an additive in-
crease in CEN3 crossover frequency, compared with cmt3 (χ2 P =
3.34 × 10−10) and fancm (χ2 P = 2.66 × 10−7) single mutants (Fig.
4C; Supplemental Table S14). From these data, we conclude that
increased pericentromeric crossovers in H3K9me2 and non-CG
DNA methylation mutants may involve contributions from both
interfering and noninterfering repair pathways.

Meiotic DSBs are elevated in the pericentromeres of non-CG/

H3K9me2 mutants

During A. thaliana meiosis, SPO11-1 acts with SPO11-2 and
MTOPVIB to generate DSBs, which can undergo inter-homolog re-
pair to form crossovers (Grelon et al. 2001; Hartung et al. 2007;
Vrielynck et al. 2016). SPO11 enzymes are related to topoisomer-
ase-VI transesterases and become covalently bound to ∼20- to
50-base target site oligonucleotides during DSB formation
(Keeney and Kleckner 1995; Pan et al. 2011; Lange et al. 2016).
We have purified and sequenced A. thaliana SPO11-1-oligos in or-
der tomap patterns ofmeioticDSBs genome-wide, using a comple-
menting SPO11-1-Myc spo11-1 line (Choi et al. 2018). In order to
profile meiotic DSBs in H3K9me2/non-CG DNA methylation
mutants, we generated a SPO11-1-Myc spo11-1 kyp suvh5 suvh6
line and used this to purify and sequence SPO11-1-oligos
(Supplemental Table S16). The coverage of combined unique and
multiple mapped SPO11-1-oligo reads were normalized by library
size. Replicate libraries showed significant correlation at multiple
scales (Supplemental Table S17). For example, Pearson’s r values
between replicate libraries at the 10-kb scale were between 0.91
and 0.99 (Supplemental Table S17). Further normalization was
performed using a single-ended Col genomic DNA library
with reads trimmed to 50 base pairs, which were aligned as for
SPO11-1-oligos, and then used to calculate log2(SPO11-1-oligo/
gDNA) values. Finally, z-score standardization was applied, such
that scores represent the signed number of standard deviations

from the mean, and these values were used for downstream
analysis.

To analyze chromosome-scale patterns, SPO11-1-oligo levels
were calculated in 10-kb adjacent windows and plotted along the
chromosomes using a rolling average. We also calculated a
SPO11-1-oligo differential (Δ) by subtracting wild-type from kyp
suvh5 suvh6 values.Weobserved that the centromeric and pericen-
tromeric regions showed a striking increase in SPO11-1-oligos in
kyp suvh5 suvh6 (Fig. 5A,B). We similarly calculated mean CG,
CHG, and CHHmethylation levels in 10-kbwindows and calculat-
ed kyp suvh5 suvh6 differential values in the same way, using pub-
lished data (Stroud et al. 2013). The kyp suvh5 suvh6mutant shows
strong reduction of CHG and CHHmethylation in the pericentro-
meric regions, which was significantly correlated with the SPO11-
1-oligo Δ differential (Pearson’s CHG r =−0.751, P <2.2 × 10−16,
CHG r =−0.737, P = <2.2 × 10−16) (Fig. 5A,B). The increase in
SPO11-1-oligos in kyp suvh5 suvh6 occurred more strongly within
the genetically defined centromeres, compared with the crossover
changes in cmt3, which occurred most strongly within the adja-
cent pericentromeres (Figs. 2D,F, 5A,B). Hence, while bothmeiotic
DSBs and crossovers increase in H3K9me2/non-CG mutant het-
erochromatin, they were elevated in adjacent centromeric and
pericentromeric regions, respectively.

We next analyzed DSB frequency around copies of the
CEN180 satellite repeat, which are found in proximity to the cen-
tromeres (Fig. 5C). Each A. thaliana chromosome sequence con-
tains a centromere gap, which contains megabase arrays of
CEN180 repeats (Copenhaver et al. 1999; Kumekawa et al. 2000;
Ito et al. 2007; Maheshwari et al. 2017). Further matches to the
CEN180 consensus flank these gaps, andwe identified 3397 repeats
in the Col reference genome that generally occur in tandemly re-
peated arrays (Fig. 5C). SPO11-1-oligo density was analyzed in 20-
kb windows around these repeat positions and compared to the
same number of randomly chosen windows, in wild type and kyp
suvh5 suvh6 (Fig. 5D). Consistent with the SPO11-1-oligo increase
in centromeric regions at the chromosome scale (Fig. 5A), we ob-
served a pronounced increase in SPO11-1-oligo density within
the CEN180 repeats at the fine-scale in kyp suvh5 suvh6 (Fig. 5D).
The pattern of SPO11-1-oligos within the CEN180 repeat units is
also altered in kyp suvh5 suvh6 (Fig. 5D). Together, this shows
thatmeioticDSBs increase in theCEN180 repeats inH3K9me2mu-
tant backgrounds. A relatively small number (141) of transposons
are transcriptionally up-regulated in kyp suvh5 suvh6mutants and
associated with decreased non-CG methylation (Stroud et al.
2012, 2013). Some of these elements were associated with elevated

SPO11-1-oligonucleotides in kyp suvh5
suvh6 mutants, but others were not
(Supplemental Fig. S3), indicating that
transcriptional activation is not strictly
coupled to up-regulation of meiotic
SPO11-1-oligo formation at A. thaliana
transposons.

Transposon insertions into CMT3 appear
to induce meiotic recombination

In a large scale screen for de novo inser-
tions of the nonautonomous maize
transposable element Dissociation (Ds)
introduced into A. thaliana, a transgene
strongly expressing the Activator (Ac)
transposase was crossed to plants

Figure 4. Genetic interactions between class I and class II crossover pathways and H3K9me2/non-CG
methylation. (A) Silique length inwild type (Col), zip4, cmt3, and cmt3 zip4. (B) Seed set per silique inwild
type (Col), zip4, cmt3, and cmt3 zip4. Replicatemeasurements are shown in black andmean values in red.
(C ) CEN3 crossover frequency (cM) in wild type, cmt3, zip4, and fancm mutant backgrounds. Replicate
measurements are shown in black and mean values in red.
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containingDs “launch-pads,” triggeringDs transposition in clonal
cell lineages within F1 plants (Sundaresan et al. 1995). As Ds ele-
ments are known to preferentially transpose to linked sites
(Jones et al. 1990; Bancroft andDean 1993), a positive–negative se-
lection scheme was implemented in F2 progeny to select against
the Ds launch-pad and for transposed Ds (Sundaresan et al.
1995). In this way, recovery of F2 transpositions was dependent
on recombination between the transposed Ds and the launch-
pad and should be mostly unlinked.

Three launch-pads on Chromosome 1,DsE2,DsE3, andDsE6
(Fig. 6), were used to generate 9622 independent transpositions,
which were mapped using TAIL-PCR (Springer et al. 1995).
Unexpectedly, we recovered a dramatic enrichment of homozy-
gous and heterozygous insertions into and nearby the CMT3 lo-
cus (214 out of 4044 insertions in total), but only when Ds
elements were launched from a closely linked (∼360 kb) centro-
mere-proximal locus on Chromosome 1 (DsE3) and not from a
centromere-distal locus (DeE6) located a comparable distance

Figure 5. Elevated SPO11-1-oligonucleotides levels in centromeres of kyp suvh5 suvh6 H3K9me2mutants. (A) Plots of the A. thaliana chromosomes on a
continuous x-axis are shown. Analysis of DNAmethylation frequency in CG (red), CHG (green), and CHH (blue) from published data in wild type (Col) (top)
or kyp suvh5 suvh6 (middle) (Stroud et al. 2013). A kyp suvh5 suvh6 minus wild type differential (ΔDNA methylation) plot is also shown (bottom). Vertical
dotted lines indicate the position of the centromere assembly gaps and vertical solid lines indicate telomeres. The pericentromeres, defined by higher than
average DNA methylation, are indicated by light blue shading. (B) Plots showing log2(SPO11-1-oligos/gDNA) (SPO11-1-oligos) in wild type (Col, black)
and kyp suvh5 suvh6 (red) (top), in addition to the kyp suvh5 suvh6-wild type differential (ΔSPO11-1-oligos) (middle), which is also overlaid with the ΔDNA
methylation from A (bottom). Plots are annotated as in A. (C) Plots of the A. thaliana chromosomes showing the density of CEN180 repeats on forward
(black) and reverse (red) strands. The TAIR10 centromeric assembly gaps are shown by the dotted blue line. The plots on the left showwhole chromosomes,
whereas the plots on the right show a close-up of the regions surrounding the centromere assembly gaps. (D) The density of log2(SPO11-1-oligos/gDNA)
(SPO11-1-oligos) was analyzed in ±10-kb windows surroundingmatches to the CEN180 consensus in wild type (black) or kyp suvh5 suvh6 (blue). The lower
plot corresponds to a blow-up of a 1-kbwindowaround the center of the upper plot. The lower plot highlights the approximate positions of CEN180 repeats
using arrows and red dotted lines. Also shown is an identical analysis performed for the same number of randomly chosen sites.
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from CMT3 (∼624 kb) (Fig. 6). One possible explanation was that
flowers carrying homozygous cmt3 insertions arose by transposi-
tion into CMT3, followed by imprecise excision and mitotic re-
combination. Subsequent meiotic recombination between
heterozygous transposed Ds elements and the launch-pad might
be enhanced in cmt3 anthers, leading to increased recovery of F2
“transposant” progeny carrying insertions near CMT3. Ac ele-
ments inmaize andDs elements inA. thaliana can stimulatemitot-
ic recombination between flanking repeats (Athma and Peterson
1991; Xiao et al. 2000), but the excision/recombination scenario
envisioned here has not been previously observed. Further work
will be required to investigate the role of mitotic and meiotic re-
combination in the enhanced recovery of Ds insertions near
CMT3, and the extent that this might be caused by disruption of
the non-CG DNA methylation/H3K9me2 pathway is currently
unknown.

Discussion

Meiotic crossover in proximity to centromeres has been associated
with chromosome missegregation and aneuploidy in fungi and

animals (Koehler et al. 1996; Lamb et al.
1996; Rockmill et al. 2006). Hence, sup-
pression of crossovers within centro-
meres is thought to play an important
role in maintaining fidelity of genome
transmission during meiosis. However,
abundant evidence for recombination-
associated polymorphism in centromeric
repeats exists, consistent with the effects
of replication slippage, unequal cross-
over, and gene conversion (Ma and
Bennetzen 2006; Nambiar and Smith
2016; Wolfgruber et al. 2016). For exam-
ple, maize centromeric CRM retrotrans-
posons have been observed to undergo
meiotic gene conversion but not cross-
over (Shi et al. 2010), which indicates ini-
tiation of meiotic DSBs but downstream
inhibition of recombination leading to
crossover. We also observe evidence for
SPO11-1-dependent DSBs within the A.
thaliana CEN180 repeats, meaning that
meiotic recombination may contribute
to polymorphism within centromeric
satellite repeat arrays in this species (Ito
et al. 2007; Maheshwari et al. 2017).

As centromeric DSBs increase in kyp
suvh5 suvh6 mutants, this demonstrates
that epigenetic information, including
H3K9me2 and non-CG DNA methyla-
tion, plays important roles in suppress-
ing initiation of meiotic recombination
in these regions. However, our data also
reveal complexity in how chromatin
shapes meiotic recombination around
plant centromeres. First, while the genet-
ically defined centromeric regions show
increased DSBs in kyp suvh5 suvh6, in
cmt3 we observed that crossovers were
most elevated in adjacent pericentro-
meric regions. An important distinction

between these experiments is that SPO11-1-oligos were mapped
in a Col/Col homozygous background, whereas mapping cross-
over necessitates use of polymorphic Col/Ler hybrids. In a Col/
Ler hybrid context, centromeric crossovers are likely to be addi-
tionally suppressed by structural polymorphisms. For example,
the inhibitory effect of structural polymorphism is evident within
the ∼1.17-Mb heterochromatic knob inversion on Chromosome
4, which is suppressed for crossovers in both wild-type and cmt3
populations (Fig. 2D; Fransz et al. 2000, 2016). Following DSB for-
mation, resection occurs to generate 3′ single-stranded DNA that
can perform strand invasion of homologous chromosomes
(Keeney and Neale 2006). Inter-homolog recombination down-
stream from strand invasion is sensitive to heterology between
the recombining chromosomes, which can have a local inhibitory
effect on crossover formation and instead promote noncrossover
repair and gene conversion (Dooner 1986; Borts and Haber
1987). A. thaliana centromeric regions exhibit extensive structural
variation, including within Gypsy retroelements (Kumekawa et al.
2000; Ito et al. 2007; Quadrana et al. 2016; Stuart et al. 2016),
which may therefore suppress centromeric crossover formation
downstream from inter-homolog strand invasion, despite

Figure 6. Transposon insertions in CMT3 appear to induce recombination. Enhancer trap DNA
transposons (DsE) based on the maize transposable element Dissociation (Ds) were introduced into the
A. thaliana genome on a T-DNA with a negative selectable marker (Sundaresan et al. 1995). Three inde-
pendent DsE launch-pads were mapped to Chromosome 1: DsE2 (633,819 bp, blue triangle), DsE3
(25,893,665 bp, red triangle), and DsE6 (26,877,449 bp, green triangle). After introducing Activator
transposase, 9622 transpositions of DsE were isolated in F2 progeny by selecting for the transposon,
but against the launch-pad, to select against linked transpositions which would otherwise be highly fa-
vored. New DsE insertions were mapped by sequencing flanking DNA. Transpositions from each
Chromosome 1 launch-pad are displayed in 100-kb bins, and most were unlinked, including two hot-
spots corresponding to nucleolar organizer regions at the ends of Chromosomes 2 and 4. However,
two much sharper insertions hotspots, on Chromosome 1, were specific for closely linked launch-
pads, DsE3 (red triangle) and DsE6 (green triangle), respectively. The hotspot immediately distal to
DsE3 (∼4% of transpositions launched from DsE3) was in and immediately around the CMT3 gene
(26,248,318–26,253,585 bp).
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activationofmeioticDSBs in non-CG/H3K9me2mutants. It is also
possible that additional chromatin or epigenetic features enriched
within the centromeres suppress crossover repair. For example, the
kinetochore, CENH3 nucleosomes, or further heterochromatic
marks such as H2A.W may be differentially enriched within the
centromeric versus pericentromeric regions and cause inhibition
of crossover maturation (Yelagandula et al. 2014; Vincenten
et al. 2015).

An important question raised by our study is why pericentro-
meric crossover frequency increases in the H3K9me2/non-CG
pathway mutants reported here, but not in met1 and ddm1 where
reduced pericentromeric crossover frequency is observed (Colomé-
Tatché et al. 2012;Melamed-Bessudo and Levy 2012;Mirouze et al.
2012; Yelina et al. 2012, 2015), despite both kyp suvh5 suvh6 and
met1 showing increased SPO11-1-oligos in proximity to centro-
meres (Choi et al. 2018). MET1 and DDM1 play major roles in
the maintenance of DNA methylation in the CG context.
However, their molecular roles in other respects are distinct: (1)
Non-CG DNA methylation is reduced in ddm1 to a greater extent
than met1 (Stroud et al. 2013); (2) gene body methylation is elim-
inated inmet1 but not ddm1 (Stroud et al. 2013); and (3) H3K9me2
is reduced more strongly in ddm1 compared with met1 (Gendrel
et al. 2002; Deleris et al. 2012). Therefore, we postulate that their
common feature, loss of CGmethylationwithin heterochromatin,
alters progression and maturation of the meiotic recombination
pathway, such that crossovers are favored in the chromosome
arms, at the expense of the pericentromeres (Colomé-Tatché
et al. 2012; Melamed-Bessudo and Levy 2012; Mirouze et al.
2012; Yelina et al. 2012, 2015). In contrast, H3K9me2/non-CG
pathway mutants activate recombination in the heterochromatic
regions such that maturation of crossovers in the pericentromeres
is increased. Indeed, distinctions in recombination phenotype are
consistent with the different effects on transcription, transposi-
tion, and chromosomal conformation associated with loss of CG
versus non-CG DNA methylation maintenance pathways (Miura
et al. 2001; Singer et al. 2001; Kato et al. 2003; Lippman et al.
2004; Zhang et al. 2006; Henderson and Jacobsen 2008; Lister
et al. 2008; Colomé-Tatché et al. 2012; Melamed-Bessudo and
Levy 2012; Mirouze et al. 2012; Stroud et al. 2012, 2013, 2014;
Feng et al. 2014; Yelina et al. 2015).

We propose that, while both CG and non-CG DNAmethyla-
tion inhibit centromeric meiotic DSBs (Choi et al. 2018), only
non-CG methylation and/or H3K9me2 inhibit crossovers. In
agreement with this idea, euchromatic crossover hotspots in
A. thaliana canbe silencedbyRNA-directedDNAmethylation asso-
ciated with gain of H3K9me2 and both CG and non-CGmethyla-
tion (Yelina et al. 2015). Furthermore, in fission yeast, arrested
recombination intermediates accumulate strongly in wild-type
heterochromatin, but not in clr4 and rik1 (Recombination In K) het-
erochromatin, which loseH3K9me2 andundergomitotic andmei-
otic recombination (Ellermeier et al. 2010; Zaratiegui et al. 2011).
Mouse dnmt3l mutants also have altered DNA methylation and
chromatin signatures and increased DSB initiation within
retrotransposons, which is associated with meiotic catastrophe
and infertility (Zamudio et al. 2015). In contrast, A. thaliana
H3K9me2 and DNA methylation mutants are fully fertile, despite
increased recombination initiation in the centromeric regions,
suggesting that increased meiotic DSBs in transposons do not,
per se, cause infertility. Suppression of heterochromatic re-
combination is a major barrier to introducing genetic diversity in
crop plants like maize and wheat, where the majority of the chro-
mosome is composed of pericentromeric heterochromatin and

yet contains important genetic variation in functional genes and
traits (Gore et al. 2009; Choulet et al. 2014). Therefore, an exciting
prospect will be tomodulate H3K9me2 and non-CGDNAmethyl-
ation to unlock pericentromeric crossovers in crop breeding
programs.

Methods

Plant material

A. thaliana plants were grown under long-day conditions (16 h
light/8 h dark, at 150 µmol light intensity) at 20°C. We used the
following mutant alleles: kyp-6 (SALK_041474) (Chan et al.
2006), cmt3-11 (SALK_148381) (Chan et al. 2006), cmt3-7
(Lindroth et al. 2001), kyp suvh5 suvh6 (SALK_041474, GK-
263C05, SAIL_1244_F04) (Johnson et al. 2008), drm1-2 drm2-2
(SALK_031705, SALK_150863) (Chan et al. 2006), drm1-2 drm2-2
cmt3-11 (SALK_031705, SALK_150863, SALK_148381) (Chan
et al. 2006), cmt2-3 (SALK_012874) (Stroud et al. 2014), ddm1
(SALK_000590), zip4-2 (SALK_068052) (Chelysheva et al. 2007),
and fancm-1 (EMS point mutant) (Crismani et al. 2012). The cen-
tromeric FTLs CTL5.11 and LTL5.4 were obtained from the
Traffic line population (Wu et al. 2015).

Mapping of Ds insertion sites

Generation of theDs transposant lines was previously reported.Ds
insertion sites were amplified by TAIL-PCR (Springer et al. 1995;
Sundaresan et al. 1995).

Measuring crossovers using fluorescent pollen and seed

Crossover scoring using the pollen FTL CEN3 was performed by
flow cytometry, as previously reported (Yelina et al. 2013).
Crossover scoring using seed FTLs (420, CTL5.11, LTL5.4) was per-
formed by fluorescent imaging, as previously reported (Ziolkowski
et al. 2015). Statistical analysis of fluorescent count data was per-
formed as described (Yelina et al. 2015; Ziolkowski et al. 2015).

Genotyping-by-sequencing

Illumina sequencing libraries were constructed in 96-well format,
as previously reported (Rowan et al. 2015; Yelina et al. 2015),
with the following minor modifications. DNA was extracted
from three rosette leaves of 5-wk-old plants and 150 ng of DNA
used as input for each library. DNA shearing was carried out for
20 min at 37°C with 0.4 units of DNA Shearase (Zymo Research).
Each set of 96 libraries was sequenced on an Illumina NextSeq
500 (300-cycle Mid Output run). Sequencing data was analyzed
to identify crossovers as previously reported, using the TIGERpipe-
line (Rowan et al. 2015; Yelina et al. 2015). Three hundred eighty-
four cmt3-11 × cmt3-7 F2 individuals were sequenced. Wild-type
crossovers (CO) were mapped by sequencing 245 Col × Ler F2 indi-
viduals, which were combined with data from 192 F2 individuals
(Choi et al. 2016).

The coordinates of crossover intervals called by TIGER were
used for subsequent analysis. Centromeres were genetically de-
fined as contiguous regions flanking the TAIR10 centromeric as-
sembly gap that show an absence of crossovers in wild type
(Copenhaver et al. 1999; Giraut et al. 2011; Salomé et al. 2012).
We define the pericentromeric regions as regions flanking the cen-
tromeres with higher than chromosome average levels of DNA
methylation. The euchromatic arms constitute the remainder of
the chromosomes, from the telomeres to the pericentromeres
(Supplemental Table S9). Crossovers (midpoints) were counted in
these regions andcompared to those expected at randomaccording
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to physical distance and χ2 tests performed (Supplemental Table
S10).

For chromosomal plots of crossovers and DNA methylation,
crossovers were tallied in 10-kb windows along the chromosomes,
and crossover/10-kb values were then divided by the number of F2
individuals analyzed for each genotype. For DNA methylation,
mean values were calculated in 10-kb windows. Finally, for both
crossovers and DNA methylation data, a rolling mean calculation
was applied to smooth the data prior to plotting using the R func-
tion filter (R Core Team 2012). The crossover and DNA methyla-
tion differentials were calculated by subtracting wild-type from
cmt3 values.

For telomere-centromere analysis, chromosome arms were
first oriented such that each began at the telomere and ended at
the centromere. The arms were then divided into windows repre-
senting 1% of their proportional lengths and crossovers assigned
to these windows. Crossover values were divided by the number
of F2 individuals analyzed for each genotype. These values were av-
eraged across all chromosome arms and then plotted along the
telomere-centromere axis with smoothing applied using the R
function smooth.spline. For DNAmethylation analysis along telo-
mere-centromere axes, values were first calculated in 10-kb win-
dows along the chromosomes. Chromosome arms were then
oriented such that each began at the telomere and ended at the
centromere and divided into windows representing 0.5% of their
proportional lengths. Methylation values were then averaged
across all chromosome arms and plotted along the telomere-cen-
tromere axis.

SPO11-1-oligonucleotide sequencing

A detailed protocol and analysis methodology are provided in an
accompanying manuscript (Choi et al. 2018). A complementing
SPO11-1-Myc spo11-1 line was crossed with kyp suvh5 suvh6 triple
mutants and SPO11-1-Myc spo11-1 kyp suvh5 suvh6 plants identi-
fied for analysis. The CEN180 consensus sequence (5′-AACCTTC
TTCTTGCTTCTCAAAGCTTTCATGGTGTAGCCAAAGTCCATATG
AGTCTTTGGCTTTGTGTCTTCTAACAAGGAAACACTACTTAGGC
TTTTAAGATCCGGTTGCGGTTTAAGTTCTTATACTCAATCATAC
ACATGACATCAAGTCATATTCGACTCCAAAACACTAACC-3′) was
matched to the TAIR10 reference sequence using the R function
matchPattern with max.mismatch set to 90. The coverage value
of normalized SPO11-1-oligonucleotides was analyzed in 20-kb
windows around CEN180 matches and compared with analysis
of the same number of randomly chosen positions.

Meiotic immunocytology

Chromosome spreads ofA. thalianapollenmother cells and immu-
nostaining of ASY1 and H3K9me2 were performed using fresh
buds, as described (Armstrong et al. 2002). Immunostaining of
MLH1was performed on acetic acid chromosome spreads on fixed
buds, as described (Chelysheva et al. 2010). The following antibod-
ieswere used: α-ASY1 (rabbit, 1/500 dilution, gift fromChris Frank-
lin [University of Birmingham]) (Armstrong et al. 2002), α-
H3K9me2 (mouse, 1/200 dilution, Abcam, ab1220), and α-MLH1
(rabbit, 1/200 dilution, gift from Mathilde Grelon [INRA, Ver-
sailles]) (Chelysheva et al. 2010). Microscopy was conducted using
a DeltaVision Personal DV microscope (Applied Precision/GE
Healthcare) equipped with a CDD CoolSNAP HQ2 camera (Photo-
metrics). Image capture was performed using softWoRx software
version 5.5 (Applied Precision/GE Healthcare). All slides within
an experiment (e.g., Col, cmt3, and kyp suvh5 suvh6) were prepared
alongside one another and images captured using the same expo-
sure time. The staining pattern of ASY1 andDNAwas used to iden-

tify cells at leptotene, zygotene, or pachytene stage (Sanchez-
Moran et al. 2007). Wild-type (Col) cells were first analyzed and
a threshold pixel intensity value identified that removed back-
ground signal. This threshold was then applied to all images prior
to further processing. Individual cell images were acquired as Z-
stacks of 16 optical sections of 0.25 µm each, and the maximum
intensity projection of the cell was reconstructed using ImageJ,
as described (Lambing et al. 2015). The boundaries of each cell
were manually defined and the total signal intensity within the
cell measured. An adjacent region outside of the cell was used to
measure mean background intensity and this value used to sub-
tract from the within-cell intensity. The same methods were
used for analysis of meiotic and somatic cells.

Data access

All data from this study have been submitted to ArrayExpress
(https://www.ebi.ac.uk/arrayexpress/): SPO11-1-oligonucleotide
sequencing data in wild type and kyp suvh5 suvh6 under accession
number E-MTAB-5041; control libraries for SPO11-1-oligonucleo-
tide sequencing under accession number E-MTAB-6257; and GBS
crossover data from wild type and cmt3 populations under acces-
sion numbers E-MTAB-4657, E-MTAB-5476, and E-MTAB-6577
(GBS).
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