, Normandie (Frédéric Pétel), PACA (Véronique Vassal)

J. Matte and G. Demortier, Seine-Normandie (Marie Berdoulay). -Private consultancies: AQUABIO

T. Bere, T. Mangadze, and T. Mwedzi, The application and testing of diatom-based indices of stream water quality in Chinhoyi Town, Zimbabwe. Water SA, vol.40, p.503, 2014.

C. Bigler, V. Gälman, and I. Renberg, Numerical simulations suggest that counting sums and taxonomic resolution of diatom analyses to determine IPS pollution and ACID acidity indices can be reduced, J. Appl. Phycol, vol.22, pp.541-548, 2010.

D. A. Bohan, C. Vacher, A. Tamaddoni-nezhad, A. Raybould, A. J. Dumbrell et al., Next-generation global biomonitoring: largescale, automated reconstruction of ecological networks, Trends Ecol. Evol, vol.32, pp.477-487, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01606909

B. J. Callahan, P. J. Mcmurdie, and S. P. Holmes, Exact sequence variants should replace operational taxonomic units in marker-gene data analysis, ISME J, vol.11, pp.2639-2643, 2017.

B. J. Callahan, P. J. Mcmurdie, M. J. Rosen, A. W. Han, A. J. Johnson et al., DADA2: high-resolution sample inference from illumina amplicon data, Nat. Methods, vol.13, pp.581-583, 2016.

J. M. Chambers and H. , Linear models, Statistical Models, p.608, 1992.

W. Chen, C. K. Zhang, Y. Cheng, S. Zhang, and H. Zhao, A comparison of methods for clustering 16S rRNA sequences into OTUs, PLoS ONE, vol.8, p.70837, 2013.

T. Chonova, R. Kurmayer, F. Rimet, J. Labanowski, V. Vasselon et al., Benthic diatom communities in an alpine river impacted by waste water treatment effluents as revealed using DNA metabarcoding, Front. Microbiol, vol.10, p.653, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02381793

T. Cordier, P. Esling, F. Lejzerowicz, J. Visco, A. Ouadahi et al., Predicting the ecological quality status of marine environments from eDNA metabarcoding data using supervised machine learning, Environ. Sci. Technol, vol.51, pp.9118-9126, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01577896

T. Cordier, D. Forster, Y. Dufresne, C. I. Martins, T. Stoeck et al., Supervised machine learning outperforms taxonomybased environmental DNA metabarcoding applied to biomonitoring, Mol. Ecol. Resour, vol.18, pp.1381-1391, 2018.

M. Coste, Etude des méthodes biologiques quantitatives d'appréciation de la qualité des eaux. Rapport Division Qualité des Eaux Lyon, PLoS ONE, vol.10, p.121945, 1982.

R. C. Edgar, UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing, vol.081257, 2016.

R. C. Edgar, Updating the 97% identity threshold for 16S ribosomal RNA OTUs, Bioinformatics, vol.34, pp.2371-2375, 2018.

V. Elbrecht, E. E. Vamos, D. Steinke, L. , and F. , Estimating intraspecific genetic diversity from community DNA metabarcoding data, PeerJ, vol.6, p.4644, 2018.

, Directive 2000/60/EC of the European parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy, Off. J. Eur. Commun, vol.327, pp.1-73, 2000.

, Water Quality -Guidance Standard for the Identification, Enumeration and Interpretation of Benthic Diatom Samples from Running Waters, European Committee for Standardization, 2014.

, Water Quality -Guidance Standard for the Routine Sampling and Pretreatment of Benthic Diatoms from Rivers, European Committee for Standardization, 2016.

D. Forster, G. Lentendu, S. Filker, E. Dubois, T. A. Wilding et al., Improving eDNA-based protist diversity assessments using networks of amplicon sequence variants, Environ. Microbiol, 2019.

T. G. Frøslev, R. Kjøller, H. H. Bruun, R. Ejrnaes, A. K. Brunbjerg et al., Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates, Nat. Commun, vol.8, p.1188, 2017.

K. Hardge, S. Neuhaus, E. S. Kilias, C. Wolf, K. Metfies et al., Impact of sequence processing and taxonomic classification approaches on eukaryotic community structure from environmental samples with emphasis on diatoms, Mol. Ecol. Resour, vol.18, pp.204-216, 2018.

P. D. Hebert, A. Cywinska, S. L. Ball, and J. R. , Biological identifications through DNA barcodes, Proc. R. Soc. Lond. B Biol. Sci, vol.270, pp.313-321, 2003.

M. Hollander and D. A. Wolfe, Nonparametric Statistical Methods. 2nd Edn, 1973.

L. W. Hugerth, A. , and A. F. , Analysing microbial community composition through amplicon sequencing: from sampling to hypothesis testing, Front. Microbiol, vol.8, p.1561, 2017.

J. Prygiel and P. C. , Determination of the biological diatom index (IBD NF T 90-354): results of an intercomparison exercise, J. Appl. Phycol, vol.14, pp.27-39, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02580502

M. Kahlert, M. Kelly, R. Albert, S. F. Almeida, T. Be?ta et al., Identification versus counting protocols as sources of uncertainty in diatom-based ecological status assessments, Hydrobiologia, vol.695, pp.109-124, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02597346

F. Keck, V. Vasselon, K. Tapolczai, F. Rimet, and A. Bouchez, Freshwater biomonitoring in the information age, Front. Ecol. Environ, vol.15, pp.66-274, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01604509

M. Kelly, L. King, and B. Chatháin, The conceptual basis of ecologicalstatus assessments using diatoms, Biol. Environ. Proc. R. Ir. Acad, vol.109, pp.175-189, 2009.

M. G. Kelly and B. A. Whitton, The trophic diatom index: a new index for monitoring eutrophication in rivers, J. Appl. Phycol, vol.7, pp.433-444, 1995.

L. Kermarrec, A. Franc, F. Rimet, P. Chaumeil, J. Frigerio et al., A next-generation sequencing approach to river biomonitoring using benthic diatoms, Freshw. Sci, vol.33, pp.349-363, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02632667

L. Kermarrec, A. Franc, F. Rimet, P. Chaumeil, J. F. Humbert et al., Next-generation sequencing to inventory taxonomic diversity in eukaryotic communities: a test for freshwater diatoms, Mol. Ecol. Resour, vol.13, pp.607-619, 2013.
URL : https://hal.archives-ouvertes.fr/bioemco-00840234

F. Leese, F. Altermatt, A. Bouchez, T. Ekrem, D. Hering et al., DNAqua-net: developing new genetic tools for bioassessment and monitoring of aquatic ecosystems in, Europe. Res. Ideas Outcomes, vol.2, p.11321, 2016.

P. K. Lindeque, H. E. Parry, R. A. Harmer, P. J. Somerfield, and A. Atkinson, Next generation sequencing reveals the hidden diversity of zooplankton assemblages, PLoS ONE, vol.8, p.81327, 2013.

C. Linhart and R. Shamir, The degenerate primer design problem, Bioinformatics, vol.18, pp.172-181, 2002.

N. J. Loman, R. V. Misra, T. J. Dallman, C. Constantinidou, S. E. Gharbia et al., Performance comparison of benchtop high-throughput sequencing platforms, Nat. Biotechnol, vol.30, pp.434-439, 2012.

F. Mahé, T. Rognes, C. Quince, C. Vargas, . De et al., Swarm v2: highly-scalable and high-resolution amplicon clustering, PeerJ, vol.3, p.1420, 2015.

M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads, EMBnet. J, vol.17, pp.10-12, 2011.

A. Mortágua, V. Vasselon, R. Oliveira, C. L. Elias, C. Chardon et al., Applicability of DNA metabarcoding approach in the bioassessment of Portuguese rivers using diatoms, Ecol. Indic, vol.106, p.105470, 2019.

M. Mysara, Y. Saeys, N. Leys, J. Raes, and P. Monsieurs, CATCh, an ensemble classifier for chimera detection in 16S rRNA sequencing studies, Appl. Environ. Microbiol, vol.81, pp.1573-1584, 2015.

J. T. Nearing, G. M. Douglas, A. M. Comeau, and M. G. Langille, Denoising the denoisers: an independent evaluation of microbiome sequence error-correction approaches, PeerJ, vol.6, p.5364, 2018.

J. Oksanen, F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre et al., vegan: Community Ecology Package, vol.27, 2016.

I. Pardo, C. Gómez-rodríguez, J. Wasson, R. Owen, W. Van-de-bund et al., The European reference condition concept: a scientific and technical approach to identify minimally-impacted river ecosystems, Sci. Total Environ, vol.420, pp.33-42, 2012.

J. Pawlowski, M. Kelly-quinn, F. Altermatt, L. Apothéloz-perret-gentil, P. Beja et al., The future of biotic indices in the ecogenomic era: integrating (e)DNA metabarcoding in biological assessment of aquatic ecosystems, Sci. Total Environ, pp.637-638, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02629210

J. Pawlowski, F. Lejzerowicz, L. Apotheloz-perret-gentil, J. Visco, and P. Esling, Protist metabarcoding and environmental biomonitoring: time for change, Eur. J. Protistol, vol.55, pp.12-25, 2016.

P. R. Peres-neto, J. , and D. A. , How well do multivariate data sets match? The advantages of a procrustean superimposition approach over the mantel test, Oecologia, vol.129, pp.169-178, 2001.

T. M. Porter and M. Hajibabaei, Scaling up: a guide to highthroughput genomic approaches for biodiversity analysis, Mol. Ecol, vol.27, pp.313-338, 2018.

M. G. Potapova, D. F. Charles, K. C. Ponader, and D. M. Winter, Quantifying species indicator values for trophic diatom indices: a comparison of approaches, Hydrobiologia, vol.517, pp.25-41, 2004.

S. P. Preheim, A. R. Perrotta, A. M. Martin-platero, A. Gupta, A. et al., Distribution-based clustering: using ecology to refine the operational taxonomic unit, Appl. Environ. Microbiol, vol.79, pp.6593-6603, 2013.

, R: A language and Environment for Statistical Computing, 2008.

S. F. Rivera, V. Vasselon, S. Jacquet, A. Bouchez, D. Ariztegui et al., Metabarcoding of lake benthic diatoms: from structure assemblages to ecological assessment, Hydrobiologia, vol.807, pp.37-51, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02621047

P. D. Schloss, S. L. Westcott, T. Ryabin, J. R. Hall, M. Hartmann et al., Introducing mothur: open-source, platformindependent, community-supported software for describing and comparing microbial communities, Appl. Environ. Microbiol, vol.75, pp.7537-7541, 2009.

T. S. Schmidt, J. F. Rodrigues, and C. V. Mering, Ecological consistency of SSU rRNA-based operational taxonomic units at a global scale, PLoS Comput. Biol, vol.10, p.1003594, 2014.

S. C. Schneider, S. Hilt, J. E. Vermaat, K. , and M. , The "Forgotten" Ecology Behind Ecological Status Evaluation: Re-Assessing the Roles of Aquatic Plants and Benthic Algae in Ecosystem Functioning, 2016.

S. Shokralla, J. L. Spall, J. F. Gibson, and M. Hajibabaei, Next-generation sequencing technologies for environmental DNA research, Mol. Ecol, vol.21, pp.1794-1805, 2012.

E. Stackebrandt and B. M. Goebel, Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology, Int. J. Syst. Evol. Microbiol, vol.44, pp.846-849, 1994.

C. Stenger-kovács, Ó. Buczk, K. Hajnal, É. Padisák, and J. , Epiphytic, littoral diatoms as bioindicators of shallow lake trophic status: Trophic Diatom Index for Lakes (TDIL) developed in Hungary, Hydrobiologia, vol.589, pp.141-154, 2007.

P. Taberlet, E. Coissac, F. Pompanon, C. Brochmann, and E. Willerslev, Towards next-generation biodiversity assessment using DNA metabarcoding, Mol. Ecol, vol.21, pp.2045-2050, 2012.

K. Tapolczai, A. Bouchez, C. Stenger-kovács, J. Padisák, and F. Rimet, Taxonomy-or trait-based ecological assessment for tropical rivers? Case study on benthic diatoms in Mayotte island (France, Indian Ocean), Sci. Total Environ, pp.1293-1303, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01604595

K. Tapolczai, V. Vasselon, A. Bouchez, C. Stenger-kovács, J. Padisák et al., The impact of OTU sequence similarity threshold on diatom-based bioassessment: a case study of the rivers of Mayotte, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02619428

, Ecol. Evol, vol.9, pp.166-179

M. Tikhonov, R. W. Leach, and N. S. Wingreen, Interpreting 16S metagenomic data without clustering to achieve sub-OTU resolution, ISME J, vol.9, pp.68-80, 2015.

U. S. Congress, Federal Water Pollution Control Act Amendments, 1972.

V. Vasselon, A. Bouchez, F. Rimet, S. Jacquet, R. Trobajo et al., Avoiding quantification bias in metabarcoding: application of a cell biovolume correction factor in diatom molecular biomonitoring, Methods Ecol. Evol, vol.9, pp.1060-1069, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02623786

V. Vasselon, I. Domaizon, F. Rimet, M. Kahlert, and A. Bouchez, Application of high-throughput sequencing (HTS) metabarcoding to diatom biomonitoring: do DNA extraction methods matter?, Freshw. Sci, vol.36, pp.162-177, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01606868

V. Vasselon, F. Rimet, K. Tapolczai, and A. Bouchez, Assessing ecological status with diatoms DNA metabarcoding: scaling-up on a WFD monitoring network (Mayotte island, France), Ecol. Indic, vol.82, pp.1-12, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02622658

W. N. Venables and B. D. Ripley, Modern Applied Statistics with S. 4th Edn, vol.27, 2002.

J. A. Visco, L. Apothéloz-perret-gentil, A. Cordonier, P. Esling, L. Pillet et al., Environmental monitoring: inferring the diatom index from next-generation sequencing data, Environ. Sci. Technol, vol.49, pp.7597-7605, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01245156

S. L. Westcott and P. D. Schloss, OptiClust, an improved method for assigning amplicon-based sequence data to operational taxonomic units, vol.2, pp.73-90, 2017.

M. Zelinka and P. Marvan, Zur präzisierung der biologischen klassifikation der reinheit flies sender gewässer, Arch. Hydrobiol, vol.57, pp.389-407, 1961.

J. Zimmermann, G. Glöckner, R. Jahn, N. Enke, and B. Gemeinholzer, Metabarcoding vs. morphological identification to assess diatom diversity in environmental studies, Mol. Ecol. Resour, vol.15, pp.526-542, 2015.