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E C O L O G Y

Tropical forests did not recover from the strong  
2015–2016 El Niño event
Jean-Pierre Wigneron1*†, Lei Fan1,2*†, Philippe Ciais3, Ana Bastos4, Martin Brandt5, 
Jérome Chave6, Sassan Saatchi7,8, Alessandro Baccini9,10, Rasmus Fensholt5

Severe drought and extreme heat associated with the 2015–2016 El Niño event have led to large carbon emissions 
from the tropical vegetation to the atmosphere. With the return to normal climatic conditions in 2017, tropical 
forest aboveground carbon (AGC) stocks are expected to partly recover due to increased productivity, but the 
intensity and spatial distribution of this recovery are unknown. We used low-frequency microwave satellite data 
(L-VOD) to feature precise monitoring of AGC changes and show that the AGC recovery of tropical ecosystems was 
slow and that by the end of 2017, AGC had not reached predrought levels of 2014. From 2014 to 2017, tropical 
AGC stocks decreased by   1.3 1.2  1.5   Pg C due to persistent AGC losses in Africa ( −  0.9 −1.1  −0.8   Pg C) and America ( −  0.5 −0.6  −0.4   Pg C). 
Pantropically, drylands recovered their carbon stocks to pre–El Niño levels, but African and American humid forests 
did not, suggesting carryover effects from enhanced forest mortality.

INTRODUCTION
A major El Niño episode developed in mid-2015 and lasted until mid-
2016 with dry and hot conditions affecting tropical terrestrial ecosystems 
(1). The episode was among the strongest since the 1950s, character-
ized by record-breaking temperatures and by a doubling of areas ex-
posed to drought anomalies compared with the 1997–1998 extreme 
El Niño (2). Tropical primary productivity, and consequently the global 
terrestrial carbon sink, markedly decreased (3, 4), resulting in an in-
crease in the atmospheric CO2 growth rate (3, 5). The atmospheric CO2 
growth rate returned close to reference levels in 2017, suggesting re-
covery of the global land carbon sink as a whole (5). A key question is 
whether tropical vegetation contributed to this global land sink re-
covery. In Amazonian forests, previous El Niño events were associated 
with a decrease in net primary productivity and an increase in mortal-
ity (6–9). Recent studies have shown that the inability of the Amazon 
forests to recover after extreme droughts might lead to long-term forest 
loss (8, 10). Less is known about the response of Asian and African 
forests to drought and heat stress. Further, there are very few plot data 
in dry tropical forests and woodlands, ecosystems that are more sensi-
tive to interannual variations in climate than humid forests (11). Thus, 
the contribution of tropical drylands to climatic anomalies is also a 
large source of uncertainty in the tropical carbon balance.

The return of wetter conditions and less extreme temperatures 
over the tropics after mid-2016 is expected to have stimulated a 

recovery of primary productivity leading to increased carbon storage 
by the vegetation (12). On the other hand, dead trees decompose for 
many years after a mortality event, resulting in a delayed carbon 
source to the atmosphere (13). Simulations from land-surface models 
used in the global carbon budget (GCB) (5) suggest a strong re-
invigoration of the tropical land sink after the 2015–2016 El Niño. 
However, models and atmospheric inversions display large diver-
gences in tropical CO2 fluxes during the 2017 recovery event (4, 5). 
For instance, models predict a total net land sink recovery (2017 
sink minus the 2015–2016 average sink) ranging from 0.3 to 2.6 Pg C 
(mean = 1.5 Pg C), and the land sink recovery estimated from five 
atmospheric inversions (table S1) ranges from −0.08 to +1.92 Pg C 
(mean = 0.9 Pg C). Moreover, the modeled net land sink differs with 
that estimated as a residual of the other terms in the GCB. Land- 
surface models simulate processes that reduce productivity during 
drought conditions, but mortality and associated carbon losses are 
poorly described (14). Atmospheric inversions that infer the distri-
bution of CO2 fluxes using transport models and concentration data 
from surface in situ networks or satellites also confirm a partial 
recovery since late 2016, but the results of different inversions show 
a large spread in the tropics (4, 5) due to the scarcity of stations and 
uncertainties in atmospheric transport simulations.

RESULTS
Here, we map the changes in aboveground biomass carbon (AGC) 
stock from 2014 to 2017, using L-VOD (L-band vegetation optical 
depth) remote sensing of microwave emissivity in the L-band at 25-km 
resolution across the tropics (15–17). L-VOD is sensitive to the biomass 
of stems, branches, and leaves. AGC is computed from L-VOD based 
on an empirical calibration using reference AGC gridded datasets. The 
soil moisture and ocean salinity (SMOS) L-VOD product adds, thus, a 
temporal dimension to static biomass maps, assuming that a “space for 
time” substitution holds true. Therefore, the absolute accuracy of the 
AGC estimates inferred from L-VOD relies on that of the benchmark 
biomass maps used for the calibration (fig. S1). This relationship 
did not saturate up to AGC levels of 200 tC ha−1 (fig. S1), in contrast 
to optical greenness indexes and previous VOD products mainly 
detecting canopy properties, which saturated for AGC larger than 
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approximately 50 tC ha−1 (16, 17). We generated an uncertainty range 
associated with the AGC values by propagating the uncertainty as-
sociated with the empirical relationships between L-VOD and AGC 
(16, 17). The range associated with the AGC changes was estimated 
from 10 different calibrations of L-VOD with different benchmark bio-
mass datasets (see the Supplementary Materials; fig. S1 and table S2).

A time series of AGC provides a direct estimate of changes in AGC 
stocks (17), as shown in Fig. 1. The results show a large decrease of 
 −  1.6 −1.8  

−1.4   Pg C during 2015–2016 (2015–2016 average compared with pre-
drought conditions of year 2014; Fig. 1A) across the tropics. This AGC 
decrease partitioned into losses of  −  0.9 −1.1  

−0.7
   Pg C in tropical Africa and 

 −  0.7 −0.8  
−0.5

   Pg C in tropical America (Fig. 1, C and E, and Table 1). In 
tropical Asia, by contrast, a large AGC loss was observed in 2015, followed 
by a large gain in 2016, leading to almost neutral changes from 2014 
to 2015–2016 (Fig. 1G and Table 1).

The decline in tropical AGC started at the end of 2014, before the 
onset of El Niño conditions, as defined by the multivariate El Niño/
Southern Oscillation (ENSO) index (MEI) (18). This early decline in 
the AGC stocks was attributed to changes in tropical Africa (Fig. 1, 
A and C) and related to a regional drought trend over Africa in 2014, 
as revealed by the declining trend in the cumulative precipitation − 
evapotranspiration (P − ET, mm) index during 2014 over the continent 
(fig. S2C). In tropical America, the decline in the cumulative P − ET 
index started later, beginning of 2015 (fig. S2E), while in tropical Asia, 
the decline in the cumulative P − ET index was ongoing in 2014, as for 
tropical Africa (fig. S2G). These results are consistent with those of 
land-surface models (3), which simulate an early decline of the ter-
restrial land sink in the tropics, with negative anomalies of the multi-
model average net biome productivity at the beginning of 2015 during 
the pre–El Niño conditions.

Fig. 1. Anomalies of AGC stocks estimated from the L-VOD index in tropical regions. (A), (C), (E), and (G) are time variations in annual AGC over the pantropical, 
tropical Africa, tropical America, and tropical Asia regions, respectively. In each region, AGC changes are separated (B, D, F, and H) into three biome groups [including (i) forests, 
(ii) shrublands and savannas, and (iii) grasslands and croplands] using a classification based on MODIS IGBP 2001–2010. The background shading shows the intensity of 
La Niña (blue) and El Niño (red) events defined by the multivariate ENSO index (MEI). The AGC anomalies at the continental scale were computed by summing the deseasonal-
ized AGC anomalies estimated separately over each pixel. The latter was computed at the pixel scale, by estimating the time series of AGC to which we removed the 
average seasonal cycle of AGC. This average cycle was computed over 2010–2017. AGC stocks were computed from the L-VOD index (see the Supplementary Materials).
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From 2015–2016 to 2017, a partial AGC recovery of  +  0.3 +0.2  +0.4   Pg C 
was observed over the tropics (Fig. 1A and Table 1). AGC stocks in-
creased in tropical America and Asia (similar increase of  +  0.17 +0.1  +0.3   Pg C; 
Fig. 1, E to G, and Table 1) but remained stable in tropical Africa 
(Fig. 1C and Table 1).

We then stratified the AGC change map into drylands versus 
humid regions using the ratio between annual precipitation and 
potential evapotranspiration (16, 17, 19), and into three main vege-
tation classes: (i) tropical forests, (ii) shrublands and savannas, and 
(iii) grasslands and croplands (see land cover and humidity classes in 
the Supplementary Materials; fig. S3). The 2017 recovery in tropical 
AGC (Fig. 1B) occurred predominantly in shrublands and savannas 
and in grasslands and croplands, while forest AGC stocks remained 
at the level of 2016 (Fig. 1B). In tropical Africa, the strong recovery 
of shrublands and savannas in 2017 was offset by continued loss of 
AGC over forests balancing recovery gains at a continental scale 
(Fig. 1, C and D). The continuous decrease in C stocks in African 
forests was in humid areas, while drylands almost recovered to the 
pre–2015–2016 El Niño state (fig. S2) despite considerable carbon 
losses during the major 2013 to 2016 drought, one of the driest 
periods in the last three decades (16). Forests in tropical Asia and 
America also showed little or no recovery in 2017 (Fig. 1, F and H). 
In tropical Asia, a small post–El Niño AGC increase was observed 
in shrublands and savannas, as well as in grasslands and croplands, 
resulting in AGC being  +  0.1 −0.0  +0.2   Pg C larger in 2017 than before the 
event in 2014. In tropical America, however, shrublands and savannas 
did not show any strong post–El Niño recovery.

The cumulative water balance, as estimated by the P − ET deficit, 
displayed different trends for drylands and humid areas over the 
tropics (fig. S2 B, D, F, and H). In tropical Africa and tropical America, 
the cumulative water balance declined more rapidly in humid areas 
than in drylands, and it did not show recovery during 2017. In tropical 
Asia, the cumulative water balance declined rapidly in humid areas, 
but it shows a clear recovery during 2016–2017, while for drylands, the 
P − ET index showed a continuous and slow decline over 2014–2017. 
The AGC trends inferred from L-VOD are generally consistent with 
these results. For the humid tropical Africa, the continuing AGC 
decline is consistent with a lack of recovery in the cumulative water 
balance, and the conjunction of the El Niño anomaly and the pre-

existing drought led to a massive cumulative soil moisture depletion 
at the end of 2016. In tropical America, the low recovery in the AGC 
stocks over humid areas is consistent, as for tropical Africa, with the 
lack of recovery in the cumulative P − ET index. In tropical Asia, the 
AGC stocks in drylands remained relatively stable during 2014 to 2017 
despite a slow but continuing declining trend of the P − ET deficit. 
The AGC stocks for the humid areas were affected, end of 2015, by 
the declining trend of the cumulative water balance during 2014–2015 
and then recovered from mid-2016.

In summary, the recovery from the 2015–2016 El Niño event mainly 
took place in drylands in Africa and, to a lesser extent, in America, 
and it concerned shrublands, savannas, grasslands, and croplands. 
By contrast, humid forests showed weak signs of recovery in America 
and Asia and a continuing decline in Africa (Fig. 1, A and B, and fig. S2). 
Thus, pantropical AGC stocks did not fully recover in 2017. This 
contrasts with results estimated from the multimodel mean of land- 
surface models and from atmospheric inversions, which showed a 
nearly complete recovery of the tropical carbon balance, including 
soil and biomass changes (5).

Relative to 2010–2017 (corresponding to the line y = 0 in Fig. 1, 
A to H), the anomaly in 2017 of AGC carbon stocks derived from 
L-VOD was net negative over the tropics (a net loss of  −  0.5 −0.6  −0.4   Pg C) 
partitioned into negative anomalies for tropical Africa and America 
( −  0.35 −0.4  −0.3   and  −  0.43 −0.5  −0.3   Pg C, respectively) and a small positive 
anomaly in tropical Asia ( +  0.25 +0.2  +0.3   Pg C). Relative to the predrought 
conditions of 2014, the lack of recovery becomes even more apparent: 
AGC stocks decreased by  −  1.3 −1.5  −1.1   Pg C over the tropics from 2014 
to 2017, mainly due to AGC losses in tropical Africa ( −  0.9 −1.1  −0.8   Pg C), 
contributing approximately 70% to the net loss, and tropical America 
( −  0.50 −0.6  −0.4   Pg C). The dynamics of the decrease in AGC was compa-
rable in deforested or nondeforested areas of tropical America and 
Asia [deforestation was defined over the period of 2014–2017, based 
on the forest area loss map produced by (20)], while it was higher in 
nondeforested areas for Africa, suggesting climate to be one of the main 
causes of the AGC stock decrease across continents (figs. S4 and S5).

The partial recovery in tropical AGC did not necessarily take 
place in the same regions that were affected by drought in 2015–2016. 
To explore this point, we compared the spatial patterns of AGC 
changes from 2014 to 2015–2016 (AGCEN) and from 2015–2016 

Table 1. AGC (Pg) changes over the whole tropics and over tropical regions of Africa, America, and Asia. Changes are given (positive sign for a CO2 land 
surface sink) between two periods in time given in the first column (for instance, 2014/2015–2016 corresponds to the change in AGC between year 2014 and 
the period 2015–2016). As in (17), the range in brackets represents the minimum and maximum of AGC changes estimated by 10 calibrations (see the 
Supplementary Materials). 

Tropics Africa America Asia

2014/2015–2016 −1.63
[−1.79, −1.37]

−0.91
[−1.06, −0.75]

−0.66
[−0.80, −0.53]

−0.06
[−0.17, −0.00]

2015–2016/2017 +0.30
[+0.21, +0.34]

−0.04
[−0.06, +0.00]

+0.17
[+0.13, +0.23]

+0.17
[+0.11, +0.21]

2016/2017 +0.89
[+0.66, +1.01]

+0.06
[+0.02, 0.12]

+0.50
[+0.40, +0.56]

+0.33
[+0.24 + 0.40]

2014/2017 −1.33
[−1.46, −1.15]

−0.94
[−1.09, −0.79]

−0.49
[−0.58, −0.37]

+0.11
[−0.02, +0.21]

2010–2017/2017 −0.53
[−0.64, −0.44]

−0.35
[−0.42, −0.28]

−0.43
[−0.51, −0.32]

+0.25
[+0.16, +0.32]
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to 2017 (AGCR) (Fig. 2, A and B, respectively; subscripts “R” and 
“EN” mean “recovery” and “El Niño,” respectively). We found that most 
tropical regions were affected by AGC losses due to the 2015–2016 
El Niño drought. Epicenters of AGC losses (dark red values of 
AGCEN in Fig. 2A) are located in the eastern Amazon, in central 
and southern tropical Africa, and in tropical Asia. Southeastern 
tropical America and northeastern tropical Asia were less affected 
by the 2015–2016 El Niño drought. In 2017, a strong recovery 
(i.e., positive values of AGCR corresponding to blue areas in Fig. 2B) 
was found in northern tropical America, in central-western and 
southern Africa, and in India, but AGC continued to decrease 
over southern Amazon and Central America and in the central and 
central-eastern regions of Africa (Fig. 2, A and B).

We defined an AGC recovery ratio by the ratio AGCR/AGCEN 
(Fig. 2C). This recovery ratio only accounts for aboveground changes 
and excludes the soil carbon pool. High-recovery ratios were found 
in the northernmost parts of tropical America, the western part of 
the Congo Basin, southern Africa, and central India. These regions 
generally experienced early recovery dates in 2016 (the date at which 
the derivative of AGC changed from a negative to a positive sign; see 
the Supplementary Materials; Fig. 3). We found that from 2015–2016 
to 2017, the partial recovery ( +  0.3 +0.2  +0.4   Pg C) of tropical AGC stocks 
(Table 1) accounted only for 18% of the global net land sink recovery 
(+1.7 Pg C) diagnosed from the global CO2 budget [the value of 1.7 Pg C 
includes both natural and land-use change land fluxes computed by 
considering fossil fuel emissions, to which we subtracted the ocean 
carbon sink and the growth rate in atmospheric CO2 concentration 
(5)]. This suggests either that tropical litter and soil carbon storage 
increased [as would be expected from increased production of 
coarse woody debris that have not yet decomposed 1 year after 
enhanced mortality (21)], which are not measured by L-VOD data, or 
that an increased northern hemisphere sink (22) contributed to the 
global land sink recovery. The net tropical sink recovery estimated 
from four atmospheric inversions (table S1) varies between −0.08 and 

+1.04 Pg C [CarboScope-s76, CarboScope-s85, Japan Agency for 
Marine-Earth Science and Technology (JAMSTEC), and Carbon-
Tracker Europe; a higher value of +1.92 Pg C was obtained for 
Copernicus Atmosphere Monitoring Service (CAMS)]. Hence, 
atmospheric inversions generally support our results indicating 
that the recovery of the tropical carbon sink only partly explains the 
recovery in the global land carbon uptake in 2017 (+1.7 Pg C). 
Compared to atmospheric inversions, L-VOD–based estimates of 
AGC values predict a lower contribution of the tropics ( +  0.3 +0.2  +0.4   Pg C) 
to this global terrestrial carbon uptake. This can be partly explained, 
as mentioned above, by the fact that the AGC estimates do not 
account for changes in stocks of coarse woody debris produced in 
2015–2016 and changes in soil carbon.

DISCUSSION
The key result of this study is that AGC stocks in the tropics had 
not recovered from the strong 2015–2016 El Niño event by the end 
of 2017. This lack of recovery in AGC stocks was revealed relatively 
to (i) the predrought conditions of 2014 and (ii) the multiyear 
(2010–2017) AGC average. It was mainly due to decreases in AGC 
stocks of forests in tropical Africa and tropical America. Notably, 
humid forests showed weak signs of recovery in America and Asia 
and showed continuous decline in Africa. Our results point to a 
large contribution of the African continent to tropical carbon losses 
during the 2015–2016 El Niño, losses in Africa representing 56% of 
the −1.6 PgC carbon losses during that event. These results are con-
sistent with recent findings obtained from two independent satellite 
datasets of column CO2 (23). Northern tropical Africa appeared 
to be responsible for an unexpectedly large net source of carbon 
during that period.

Effects from human management on the carbon cycle, in particular 
the role of tropical deforestation, may affect the results of the study. 
Our calculations remove the average seasonal cycle of AGC and, 

Fig. 2. Spatial patterns of AGC changes corresponding to “El Niño” and “Recovery.” AGC changes (A) from 2014 to 2015–2016 (AGCEN) and (B) from 2015–2016 to 
2017 (AGCR) (subscripts “R” and “EN” mean “recovery” and “El Niño,” respectively). In (C), the recovery strength was estimated as the ratio AGCR/AGCEN and expressed 
in percentage. AGC stocks were computed from the L-VOD index as described in the Supplementary Materials. Masked pixels (gray) correspond to pixels where no recovery 
was identified, namely, pixels where either AGCEN > −1 Mg C ha−1 (no losses or very low losses during El Niño 2015–2016) or AGCR < 0 (no recovery in 2017). White areas 
correspond to areas where no L-VOD data were available after applying quality flag filtering criteria (see the Supplementary Materials).
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thus, account for seasonal trends in deforestation activities but not 
its interannual variability. In Africa, high AGC losses were found 
in areas where no large-scale deforestation could be detected by 
monitoring programs, suggesting that either climate conditions or 
unaccounted deforestation/degradation is the main cause of the AGC 
stock decreases.

It would be interesting to compare our results to the dynamics of 
AGC recovery that occurred during former El Niño or drought events. 
However, this is not straightforward, as no large-scale observational 
product, comparable to the L-VOD dataset, is currently available to 
investigate the previous events. Further, each El Niño or drought 
event and subsequent recovery of vegetation carbon stocks may have 
a specific signature, both in spatial extent and intensity (9, 24, 25). 
The continuing decline in AGC stocks in African forests in 2017 
may be compared with previous results from the Amazon in relation 
to the 2005 severe drought that revealed persistent postdrought 
effects with tree height decreases in the area exposed to severe 
drought, lagging the precipitation recovery (9, 26). A decline in 
long-lived components of canopy structure, such as loss of branches 
or tree falls, can lead to recovery times exceeding 3 to 4 years (9). 
Further, Yang et al. (26) outlined the persistence of lower carbon 
biomass stocks even several years after the drought, pointing to linger-
ing impacts of droughts on the Amazon forests. In addition, long-
term plot records in the Amazon forest suggest a delayed mortality 
and legacy of carbon emissions after a severe drought (6, 21, 27), which 
may also apply to other tropical forests. Analysis in (28) linked the 
California forest die-off during the 2012–2015 drought to delayed 
mortality effects, namely, mortality, which can be explained by cumula-
tive soil moisture depletion. Thus, the forest die-off in California 
was not attributed to a single extreme dry and warm event in 2015, 
but rather to a multiyear deep-rooting-zone drought. A similar phe-
nomenon could have occurred over the tropics, where the lack of 
recovery in the carbon stocks in 2017 could also be explained by 
cumulative soil moisture depletion, related to low precipitation and 
enhanced evapotranspiration effects, particularly in the northern 
regions of tropical Africa. The latter regions were affected by successive 
years of shortage in water storage since 2002 (23). Thus, the hypothesis 
of delayed mortality effects is consistent with continued negative 
anomalies in the climatic conditions observed over large tropical 
areas in 2017 (fig. S6). In 2017, persistent negative anomalies (z scores) 
for precipitation, surface soil moisture (SM), maximum climatological 
water deficit [MCWD; an estimate of drought intensity and a correlate 
of forest tree mortality (6, 24)], and the cumulative P − ET deficit, 
combined with positive anomalies for land surface temperature and 
vapor pressure deficit (VPD) were observed in tropical America and 
central and eastern tropical Africa (fig. S6, C to H). The spatial patterns 
of the anomalies in AGC are in good agreement with those derived 
independently from other remote sensing vegetation indices, such as 
the enhanced vegetation index (EVI) and solar-induced chlorophyll 

fluorescence (SIF) (fig. S6, B and I). Northwestern and northeastern 
regions of tropical Africa showing low recovery (fig. S2B) and 
negative anomalies (fig. S6A) in the AGC stocks in 2017 coincide 
with those revealed from satellite-based record of column CO2 from 
2009 onward (23). These regions also showed precipitation and 
cumulative soil moisture deficits, as estimated by the cumulative 
P − ET values (fig. S1G). Generally, the largest loci found in (23) of 
(i) carbon emissions in the northern regions of tropical Africa, in 
the central-eastern regions in tropical America, and in the Borneo 
island, and of (ii) carbon sinks in the western and southern regions 
of tropical America, the Congo Basin, and the northern regions of 
tropical Asia are also quite consistent with our results (fig. S1A). 
Notably, anomalies in climate variables consistent with low drought 
stress are predominantly found over tropical Asia and explain the 
AGC stock recovery in this region.

Our AGC estimates based on L-band microwave observations 
feature low saturation effects up to AGC levels of ~200 tC ha−1 (fig. S1) 
(16, 17). However, it cannot be excluded that saturation effects may 
affect some AGC estimates at very high biomass levels (>200 tC ha−1) 
that can be found mainly in the moist tropical forests of the Amazon 
and Congo Basins. Also, the spatial resolution of the space-borne 
L-VOD observations limits the ability of L-VOD to accurately attribute 
C stock changes to climate and/or anthropogenic drivers. However, 
L-VOD integrates the impact of this range of drivers, providing 
direct estimates of C stocks and, thus, key inputs for the GCB. These 
integrated estimates of changes in AGC could be valuable to carry 
out large-scale validation of other products associated specifically 
with different aspects of the tropical carbon budget [for instance, 
mapping and evaluating the impacts of C stocks from fires and 
deforestation (29, 30) and associated regrowth processes (31)].

Our results demonstrate how the L-VOD dataset, retrieved from 
passive L-band observations, supports the assessment of the tropical 
forest carbon balance (32), and the study confirms the high-value 
L-VOD to monitor the impact of large climate anomalies on the 
terrestrial C-stock in near real time. In particular, our findings show that 
soil moisture depletion associated with El Niño events in large tropical 
regions followed ongoing drought events, leading to enhanced cumula-
tive P − ET decline, and important carbon stock losses as revealed 
here especially in tropical Africa. These findings have important im-
plications for the long-term vulnerability of carbons stocks in the 
tropics, as large-scale droughts and El Niño events are expected to 
intensify, in terms of both frequency and intensity (33), and their suc-
cession may have marked cumulative effects on deep-rooting-zone 
drying and, consequently, on AGC stock losses. Thus, the L-VOD data 
provide unique large-scale observations of changes in vegetation 
carbon stocks at a critical time where improved understanding of the 
impacts of climate change on ecosystems is essential. So, ensuring 
continuity in the long-term records of these observations is important, 
but next-generation spatial missions have not yet been decided.

Fig. 3. Map of the AGC “recovery” date. The date was defined here as the date of the minimum value in the AGC stocks over year 2016. To ensure that this date 
corresponded well to a minimum (the inflexion point in the AGC anomaly curve), we excluded recovery dates at the very beginning or at the very end of 2016. Gray and 
white areas are defined in the caption of Fig. 2. An estimate of the uncertainty value associated with the recovery date is presented in the Supplementary Materials.
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MATERIALS AND METHODS
Land cover and humidity classes
Land cover types were derived from the IGBP (International 
Geosphere-Biosphere Programme) scheme of land cover classifica-
tion for 2015 (34). The IGBP scheme considers 17 cover types 
(fig. S3). The data were aggregated to 25-km resolution by dominant 
class within each SMOS L-VOD grid cell. “Dominant” refers to the 
class that has the largest number of 500-m native resolution pixels 
within each SMOS grid cell. We used the 500-m Moderate Resolu-
tion Imaging Spectroradiometer (MODIS)–based global land cover 
climatology map based on 10 years (2001–2010) of the MODIS 
MCD12Q1 product, which contains land cover information.

We merged the original IGBP classes to reduce the number of 
classes to three biomes (forests, shrublands and savannas, and 
grasslands and croplands), sorted by potentially decreasing woody 
cover and carbon density. Forests include IGBP classes 1 to 5 (ever-
green needleleaf forest, evergreen broadleaf forest, deciduous needle-
leaf forest, deciduous broadleaf forest, and mixed forest); shrublands 
and savannas include IGBP classes 6 to 9 (closed and open shrublands, 
woody savannas, and savannas); and grasslands and croplands 
include classes 10, 12, and 14 (grasslands, croplands, and cropland/
natural vegetation mosaics).

The deforested and nondeforested areas in the tropics were 
defined on the basis of the forest area loss map produced by (20). 
Pixels with more than 5% forest losses (covering 16% of the tropics) 
are considered to correspond to deforested areas. Forest percentage 
loss rates during the study period of 2014–2017 were calculated at 
the resolution of SMOS as the proportion of the summed areas of 
forest loss (detected by the “yearloss” map) within each SMOS grid 
cell (~25 km).

We masked the nonvegetated SMOS pixels, where SMOS re-
trievals of L-VOD and SM do not apply, dominated by “wetland,” 
“urban and built-up,” “snow and ice,” “water,” and “barren or sparsely 
vegetated,” based on the aggregated 25-km IGBP land cover map. 
The map of drylands versus humid regions was defined using the 
aridity index (AI) corresponding to the ratio between annual pre-
cipitation and total annual potential evapotranspiration (16, 17, 18), 
with drylands having an AI lower than 0.65 as proposed by the 
United Nations Environment Programme (UNEP). This map was 
later referred to as the UNEP map. To evaluate the sensitivity of the 
results shown in fig. S2 to the ratio of 0.65, we applied a different 
map separating drylands and humid regions. This second map was 
computed from a global AI (GAI), which is calculated as the ratio of 
precipitation to potential evapotranspiration (P/PET) and is provided 
by the GAI and Potential Evapotranspiration (ET0) Climate Data-
base v2, where drylands are defined by GAI ≤0.65 (35). This map is 
referred to as the GAI map. We changed the threshold of the GAI 
map up and down by 5% threshold intervals, and five different 
thresholds values (0.59, 0.62, 0.65, 0.68, and 0.72) were tested to 
define new maps of drylands. On the basis of these new maps, we 
computed AGC anomalies and compared them to results given in 
fig. S2 based on the UNEP map.

The new results based on the GAI maps for the different threshold 
values are shown in fig. S7. It can be seen that (i) results obtained 
with the GAI and UNEP maps are very similar, and (ii) there is a 
rather low sensitivity of the results to the threshold values used to 
define drylands in the GAI maps. A larger sensitivity of the results 
to the threshold value was found in tropical Asia at the end of 2017, 
with a low impact on the main conclusions of this study.

Vegetation and climate variables
To evaluate the impact of the drought stress on the carbon uptake 
by plants, we used several vegetation indexes and climate variables 
(fig. S6):

1) MEI (18)
2) Precipitation at a spatial resolution of 0.25° from datasets of 

the Tropical Rainfall Measuring Mission (TRMM 3B43 v7) from 
1998 to 2017 (36)

3) MCWD [an estimate of drought intensity at a spatial resolu-
tion of 0.25° calculated from TRMM precipitation (37)]

4) SM obtained, as for L-VOD, from the SMOS-IC product, 
V105 (16, 17, 38), from 2010 to 2017. The multiangular and dual- 
polarization SMOS observations ensure a good decoupling between 
the effects of soil moisture and vegetation, parameterized here by 
the L-VOD index (15, 17). SMOS-IC SM has been recently evaluated 
with other recently reprocessed global SM products against in situ 
International Soil Moisture Network (ISMN) datasets and performs 
very well (39, 40); in (40), it was found to be the most performant 
remote sensing SM product in dense vegetation conditions

5) Land surface temperature at a spatial resolution of 0.25° 
obtained from skin temperature data produced by the European 
Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric 
reanalysis ERA-Interim during 1979 and 2017 (38)

6) VPD at a spatial resolution of 1° from 2002 to 2017, calculated 
using near-surface air temperature and surface relative humidity from 
both the daytime and nighttime overpasses (1:30 p.m. and 1:30 a.m., 
respectively) of the Atmospheric Infrared Sounder (version 6) (41)

7) Cumulative water balance was computed by cumulating precip-
itation minus evapotranspiration (P − ET, mm) starting 1 January 2010, 
as for the L-VOD time series analyzed in this study. Precipitation was 
estimated as defined above from the TRMM 3B43 v7 data. Evapo-
transpiration was obtained from the GLEAM v3 satellite- based 
dataset (42). As in (17), the spatial patterns of the anomalies in AGC 
were compared with those derived independently from other re-
mote sensing vegetation indices, such as the EVI and SIF. The EVI 
was obtained from the monthly MODIS Vegetation Index product 
(MOD13C2 Climate Modeling Grid) at a spatial resolution of 0.05° 
from 2010 to 2017. SIF was obtained from version 27 global monthly 
(level 3) product at a spatial resolution of 0.5° from 2007 to 2017 
retrieved from the Global Ozone Monitoring Experiment 2 (GOME-2) 
instrument.

Precipitation, land surface temperature, EVI, and SIF were aggre-
gated to an annual composite at 25 -km spatial resolution by averag-
ing or bilinear interpolation from their original resolution to match 
the L-VOD grid. In fig. S6, yearly anomalies were calculated using 
the z score: (value − mean)/SD.

Benchmark maps of AGC density
Brandt et al. (16) have used the maps produced by Baccini et al. (43) 
for calibrating the L-VOD/AGC relationship for Africa. Here, as in 
(17), we used four static AGC benchmark maps (fig. S1) to calibrate 
L-VOD and retrieve AGC to decrease the dependence of our results 
on the accuracy of a single biomass map. These maps include three 
pantropical maps published by (43, 44, 45), hereafter referred to as 
the “Saatchi,” “Avitabile,” and “Baccini” maps, respectively. The 
Saatchi map used in the present study is an updated version, which 
represents AGC circa 2015 (46). A fourth map covering only Africa 
and hereinafter referred to as the “Bouvet-Mermoz” map was used 
(17). The original units of aboveground biomass density (Mg ha−1) 
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were converted to AGC density (Mg C ha−1) by multiplying the 
original values by a factor of 0.5 (16). All AGC maps were aggregated 
to 25-km spatial resolution to match the spatial resolution of the 
SMOS data by averaging AGC pixels within the SMOS grid cells.

Retrieved AGC products and uncertainty associated 
with the AGC estimates
As in (16, 17), changes in AGC were estimated from the L-VOD pro-
duct using SMOS datasets in the newly developed SMOS-IC version 
(38). In the SMOS-IC algorithm, L-VOD and SM are retrieved simul-
taneously without external vegetation or hydrologic products as in-
puts in the L-band microwave emission of the biosphere inversion 
model. L-VOD retrievals, thus, depend only on temperature fields 
from the ECMWF for calculating the effective surface temperature 
and are independent of any vegetation index. This improvement 
makes this new product very robust for applications in ecology and 
climate change studies (3, 16, 17).

The root mean square error (RMSE) between the measured and 
simulated brightness temperature (referred to as RMSE-TB) associated 
with the SMOS-IC product was used to filter out observations affected 
by radio frequency interference (RFI), which perturbs the natural 
microwave emission from Earth surface measured by passive micro-
wave systems. We excluded daily observations, influenced by RFI 
effects, for which RMSE-TB was larger than 6 K (38). Robust estimates 
of annual L-VOD and SM were then obtained as the medians of all 
high-quality ascending and descending retrievals with more than 
30 valid observations per year. This filtering left a large fraction 
of the original SMOS pixels available for the analysis in tropical 
biomes over America (74%), Africa (94%), and Asia (72%).

Over woody vegetation, L-VOD is mainly sensitive to the vegeta-
tion water content (VWC) of stems and branches (kg/m2) (15), which 
can be computed from the values of biomass and of the moisture 
content of vegetation (Mg, %). Assuming that the yearly average of 
Mg is relatively constant between years at the spatial scale of the SMOS 
grid (25 km × 25 km), yearly average values of VWC and biomass 
are strongly correlated over time. This explains that several studies 
have reported a strong relationship between L-VOD and biomass 
for woody vegetation, which is almost linear and independent of the 
year of calculation (16, 17). The yearly average of L-VOD, through 
its strong link to VWC, can thus be considered as a robust proxy 
of biomass.

The method used here to compute AGC from L-VOD is the same 
as the one used in (17), where it is described in detail. The L-VOD 
dataset allows computation of annual AGC values at a resolution of 
25 km, but these values cannot be validated directly, as no other 
dataset has this capability to date. So, indirect validation of the 
L-VOD–derived AGC values has been made in (16, 17) against 
numerous datasets evaluating changes in forest area, spatial patterns 
of greening/browning trends computed from optical remote sensing 
observations, climate variables, and atmospheric modeling of carbon 
sinks and sources in the tropics. An extensive analysis of the un-
certainties associated with the L-VOD–derived AGC estimates has 
been made as well in the Supplementary Materials of (17), and rela-
tive uncertainties associated with changes in the carbon stocks over 
the tropics have been estimated to be in the order of 20 to 25% (for 
instance, this corresponds to an uncertainty of 0.15 Pg C for estimated 
changes in the carbon stocks of 0.66 Pg C over the tropics). We will 
not duplicate these analyses in this study, and we refer the readers to 
(17) on the questions related to uncertainties and validation of the 

AGC values computed from the new SMOS-IC L-VOD satellite data. 
However, for a better understanding of the use of the new L-VOD 
dataset, the main steps of the computation of the AGC values as 
detailed in (17) are given in the following.

The yearly L-VOD data were ranked from low to high VOD 
values and were pooled into bins of 250 grid cells as in (47). The 
mean of the corresponding AGC distribution in the reference map 
was calculated for each L-VOD bin to obtain an AGC curve as a 
function of L-VOD. The curve was fitted using the four-parameter 
function (47)

  AGC = a ×   arctan(b × (VOD − c ) ) − arctan(− b × c)   ───────────────────────   arctan(b × (Inf − c ) ) − arctan(− b × c)   + d  (1)

where a, b, c, and d are four best-fit parameters (table S2) and VOD 
is the yearly L-VOD data. As in (16, 17), we used here the year 2011 
(the year used for calibration proved to have very little impact on 
the calibrated curves). An illustration of the calibrated relationships 
between L-VOD and AGC based on the Saatchi, Baccini, Avitabile, 
and Bouvet-Mermoz maps is given in fig. S1. We converted the 
yearly L-VOD map into maps of yearly AGC density (Mg C ha−1) 
for 2010–2017 using Eq. 1. Regional AGC stocks were obtained 
by multiplying the AGC density by the area of the corresponding 
L-VOD pixels.

AGC benchmark maps contain uncertainties and bias, and no 
single map can be considered fully reliable, as outlined above. We 
used all the different maps to fit Eq. 1 for tropical America, tropical 
Africa, and the entire tropical region separately. Benchmark maps 
in tropical Asia were not used in this calibration process due to the 
limited number of SMOS observations in the region. Ten calibrations 
of Eq. 1 were thereby obtained (table S2). We used all 10 calibrations 
to create 10 maps of AGC stocks. We used the median of these 
10 maps to calculate yearly tropical AGC maps during 2010–2017. 
The minima and maxima were also reported, as they provide esti-
mates of the uncertainty of retrieved AGC estimates used in this study 
that relates to systematic errors in the reference biomass maps.

Anomalies of AGC stocks computed from the L-VOD index
The AGC anomalies (Fig. 1) at the continental scale were computed 
by summing the deseasonalized AGC anomalies estimated separately 
over each pixel and were smoothed using a sliding-window average 
(T = 120 days). To compute the deseasonalized AGC anomalies at the 
pixel scale, we estimated the time series of AGC to which we removed 
the average seasonal cycle of AGC computed over 2010–2017 for each 
pixel. AGC stocks were computed from the L-VOD index as follows: 
daily ascending/descending L-VOD data with an RMSE-TB larger 
than 6 K and the 10th/90th outliers were filtered out (L-VOD values 
for days with overlapped ascending/descending L-VOD data were 
averaged). A sliding-window average (T = 90 days) was used to smooth 
the times series at the pixel scale.

Recovery date
The AGC recovery date (Fig. 3) was computed for each pixel as the 
date of the minimum value of AGC stocks during 2017, correspond-
ing to the inflexion point in the AGC anomaly curve. To ensure that 
this date corresponded well to an inflexion point in the AGC anomaly 
curve, we excluded recovery dates at the very beginning or at the very 
end of 2017. Over short (daily or weekly) time scales, changes in 
the L-VOD parameter are mainly sensitive to changes in the water 
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content of the whole vegetation layer (15), so that the link with changes 
in C stocks are indirect. However, it is very likely that the recovery 
in the vegetation water status, after a long drought period, can be 
associated with a recovery in vegetation productivity and C stocks.

To obtain an estimate of the uncertainty value associated with the 
recovery date, we evaluated for each pixel the range of days corre-
sponding to AGC anomaly values lower than Min + TH, where Min 
is the value of the minimum AGC value for the pixel and TH is a fixed 
threshold value. We selected a value of TH = 0.1 Mg C ha−1 corre-
sponding to ~4% of the average value of the minimum AGC anomaly 
(−2.65 Mg C ha−1) for the pixels.

In summary, we computed for each pixel the range of days sur-
rounding the recovery date and corresponding to an AGC anomaly < 
Min + 0.1 Tg C. A narrow range of days will correspond to a low 
uncertainty associated with the date of recovery (AGC anomaly curve 
with a minimum defined by a “sharp drop”). A large range of days 
will correspond to a high uncertainty associated with the date of 
recovery (AGC anomaly curve with a minimum defined by a “smooth 
valley”). The map of the per-pixel uncertainty value associated with 
the recovery (as defined by the range of days surrounding the recovery 
date and computed as described above) is given in fig. S8. The average 
value of this range of days is ±25 days (SD = ±21 days) and provides 
a reasonable estimate of the average uncertainty associated with the 
recovery date.

Atmospheric data and inversions
Five observation-based datasets of net land-atmosphere surface fluxes 
were used to compute the land sink (Pg C) and land sink recovery 
(Pg C) from model inversion over the tropics: the CAMS atmospheric 
inversion version 16r1 (48), the Jena CarboScope inversion versions 
s76_v4.1 and s85 (49), JAMSTEC (50), and CarbonTracker Europe 
(CTE) (51). More details about the differences in model inversions 
of CAMS, Jena CarboScope, and JAMSTEC are given in (5).

The CAMS data (Copernicus service) are available from ECMWF. 
The CTE data are available at www.carbontracker.eu/fluxtimeseries.
php. The JAMSTEC data were obtained upon request from P. Patra 
(JAMSTEC). For the five atmospheric inversions, the land sink 
recovery was computed as the average of the land sink over 2017 
minus that over 2015–2016 (table S1).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/6/eaay4603/DC1
Fig. S1. Scatterplots between yearly mean L-VOD in 2011 and benchmark AGC density maps.
Fig. S2. Anomaly of the P − ET deficit (mm) superimposed on the anomalies of AGC stocks 
estimated from the L-VOD index in the tropics.
Fig. S3. Biome classes for 2001 to 2010 based on the MODIS IGBP products over the tropics.
Fig. S4. Anomalies of AGC stocks estimated from the L-VOD index in tropical regions.
Fig. S5. Map of deforested and nondeforested areas over the tropics.
Fig. S6. The 2017 anomalies in remote sensing indices and climate variables.
Fig. S7. Anomalies in the P − ET deficit (mm) and in AGC stocks considering different maps of 
drylands and humid areas.
Fig. S8. Map of the uncertainty value associated with the recovery date.
Table S1. Land sink (Pg C) and land sink recovery (Pg C) computed from model inversion over 
the tropics.
Table S2. Fitted parameters (a, b, c, and d) in Eq. 1 in the Supplementary Materials for the 
relationship between L-VOD in 2011 and AGC.

REFERENCES AND NOTES
 1. J. Liu, K. W. Bowman, D. S. Schimel, N. C. Parazoo, Z. Jiang, M. Lee, A. A. Bloom, D. Wunch, 

C. Frankenberg, Y. Sun, C. W. O’Dell, K. R. Gurney, D. Menemenlis, M. Gierach, D. Crisp, 
A. Eldering, Contrasting carbon cycle responses of the tropical continents to the  
2015–2016 El Niño. Science 358, eaam5690 (2017).

 2. J. C. Jiménez-Muñoz, C. Mattar, J. Barichivich, A. Santamaría-Artigas, K. Takahashi, 
Y. Malhi, J. A. Sobrino, G. Van Der Schrier, Record-breaking warming and extreme drought 
in the Amazon rainforest during the course of El Niño 2015–2016. Sci. Rep. 6, 33130 
(2016).

 3. A. Bastos, P. Friedlingstein, S. Sitch, C. Chen, A. Mialon, J.-P. Wigneron, V. K. Arora, 
P. R. Briggs, J. G. Canadell, P. Ciais, F. Chevallier, L. Cheng, C. Delire, V. Haverd, A. K. Jain, 
F. Joos, E. Kato, S. Lienert, D. Lombardozzi, J. R. Melton, R. Myneni, J. E. M. S. Nabel, 
J. Pongratz, B. Poulter, C. Rödenbeck, R. Séférian, H. Tian, C. van Eck, N. Viovy, N. Vuichard, 
A. P. Walker, A. Wiltshire, J. Yang, S. Zaehle, N. Zeng, D. Zhu, Impact of the 2015/2016 
El Niño on the terrestrial carbon cycle constrained by bottom-up and top-down 
approaches. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 373, 20170304 (2018).

 4. C. Yue, P. Ciais, A. Bastos, F. Chevallier, Y. Yin, C. Rödenbeck, T. Park, Vegetation greenness 
and land carbon-flux anomalies associated with climate variations: A focus on the year 
2015. Atmos. Chem. Phys. 17, 13903–13919 (2017).

 5. C. Le Quéré, R. M. Andrew, P. Friedlingstein, S. Sitch, J. Pongratz, A. C. Manning, 
J. I. Korsbakken, G. P. Peters, J. G. Canadell, R. B. Jackson, T. A. Boden, P. P. Tans, 
O. D. Andrews, V. K. Arora, D. C. E. Bakker, L. Barbero, M. Becker, R. A. Betts, L. Bopp, 
F. Chevallier, L. P. Chini, P. Ciais, C. E. Cosca, J. Cross, K. Currie, T. Gasser, I. Harris, 
J. Hauck, V. Haverd, R. A. Houghton, C. W. Hunt, G. Hurtt, T. Ilyina, A. K. Jain, E. Kato, 
M. Kautz, R. F. Keeling, K. Klein Goldewijk, A. Körtzinger, P. Landschützer, N. Lefèvre, 
A. Lenton, S. Lienert, I. Lima, D. Lombardozzi, N. Metzl, F. Millero, P. M. S. Monteiro, 
D. R. Munro, J. E. M. S. Nabel, S. I. Nakaoka, Y. Nojiri, X. A. Padin, A. Peregon, B. Pfeil, 
D. Pierrot, B. Poulter, G. Rehder, J. Reimer, C. Rödenbeck, J. Schwinger, R. Séférian, 
I. Skjelvan, B. D. Stocker, H. Tian, B. Tilbrook, F. N. Tubiello, I. T. van der Laan-Luijkx, 
G. R. van der Werf, S. van Heuven, N. Viovy, N. Vuichard, A. P. Walker, A. J. Watson, 
A. J. Wiltshire, S. Zaehle, D. Zhu, Global Carbon Budget 2017. Earth Syst. Sci. Data 10, 
405–448 (2018).

 6. O. L. Phillips, L. E. O. C. Aragão, S. L. Lewis, J. B. Fisher, J. Lloyd, G. López-González, 
Y. Malhi, A. Monteagudo, J. Peacock, C. A. Quesada, G. van der Heijden, S. Almeida, 
I. Amaral, L. Arroyo, G. Aymard, T. R. Baker, O. Bánki, L. Blanc, D. Bonal, P. Brando, J. Chave, 
Á. C. A. de Oliveira, N. D. Cardozo, C. I. Czimczik, T. R. Feldpausch, M. A. Freitas, E. Gloor, 
N. Higuchi, E. Jiménez, G. Lloyd, P. Meir, C. Mendoza, A. Morel, D. A. Neill, D. Nepstad, 
S. Patiño, M. C. Peñuela, A. Prieto, F. Ramírez, M. Schwarz, J. Silva, M. Silveira, A. S. Thomas, 
H. T. Steege, J. Stropp, R. Vásquez, P. Zelazowski, E. A. Dávila, S. Andelman, A. Andrade, 
K.-J. Chao, T. Erwin, A. Di Fiore, E. C. Honorio, H. Keeling, T. J. Killeen, W. F. Laurance, 
A. P. Cruz, N. C. A. Pitman, P. N. Vargas, H. Ramírez-Angulo, A. Rudas, R. Salamão, N. Silva, 
J. Terborgh, A. Torres-Lezama, Drought Sensitivity of the Amazon Rainforest. Science 323, 
1344–1347 (2009).

 7. R. J. W. Brienen, O. L. Phillips, T. R. Feldpausch, E. Gloor, T. R. Baker, J. Lloyd, G. Lopez-Gonzalez, 
A. Monteagudo-Mendoza, Y. Malhi, S. L. Lewis, R. Vásquez Martinez, M. Alexiades, 
E. Álvarez Dávila, P. Alvarez-Loayza, A. Andrade, L. E. O. C. Aragão, A. Araujo-Murakami, 
E. J. M. M. Arets, L. Arroyo, C. G. A. Aymard, O. S. Bánki, C. Baraloto, J. Barroso, D. Bonal, 
R. G. A. Boot, J. L. C. Camargo, C. V. Castilho, V. Chama, K. J. Chao, J. Chave, J. A. Comiskey, 
F. C. Valverde, L. da Costa, E. A. de Oliveira, A. Di Fiore, T. L. Erwin, S. Fauset, M. Forsthofer, 
D. R. Galbraith, E. S. Grahame, N. Groot, B. Hérault, N. Higuchi, E. N. Honorio Coronado, 
H. Keeling, T. J. Killeen, W. F. Laurance, S. Laurance, J. Licona, W. E. Magnussen, 
B. S. Marimon, B. H. Marimon-Junior, C. Mendoza, D. A. Neill, E. M. Nogueira, P. Núñez, 
N. C. Pallqui Camacho, A. Parada, G. Pardo-Molina, J. Peacock, M. Peña-Claros, 
G. C. Pickavance, N. C. A. Pitman, L. Poorter, A. Prieto, C. A. Quesada, F. Ramírez, 
H. Ramírez-Angulo, Z. Restrepo, A. Roopsind, A. Rudas, R. P. Salomão, M. Schwarz, 
N. Silva, J. E. Silva-Espejo, M. Silveira, J. Stropp, J. Talbot, H. ter Steege, J. Teran-Aguilar, 
J. Terborgh, R. Thomas-Caesar, M. Toledo, M. Torello-Raventos, R. K. Umetsu, 
G. M. F. van der Heijden, P. van der Hout, I. C. Guimarães Vieira, S. A. Vieira, E. Vilanova, 
V. A. Vos, R. J. Zagt, Long-term decline of the Amazon carbon sink. Nature 519, 
344 (2015).

 8. J. Verbesselt, N. Umlauf, M. Hirota, M. Holmgren, E. H. Van Nes, M. Herold, A. Zeileis, 
M. Scheffer, Remotely sensed resilience of tropical forests. Nat. Clim. Chang. 6, 1028–1031 
(2016).

 9. S. Saatchi, S. Asefi-Najafabady, Y. Malhi, L. E. O. C. Aragão, L. O. Anderson, R. B. Myneni, 
R. Nemani, Persistent effects of a severe drought on Amazonian forest canopy.  
Proc. Natl. Acad. Sci. U.S.A. 110, 565–570 (2013).

 10. D. C. Zemp, C.-F. Schleussner, H. M. J. Barbosa, M. Hirota, V. Montade, G. Sampaio, A. Staal, 
L. Wang-Erlandsson, A. Rammig, Self-amplified Amazon forest loss due to vegetation-
atmosphere feedbacks. Nat. Commun. 8, 14681 (2017).

 11. A. Ahlström, M. R. Raupach, G. Schurgers, B. Smith, A. Arneth, M. Jung, M. Reichstein, 
J. G. Canadell, P. Friedlingstein, A. K. Jain, E. Kato, B. Poulter, S. Sitch, B. D. Stocker, 
N. Viovy, Y. P. Wang, A. Wiltshire, S. Zaehle, N. Zeng, The dominant role of semi-arid 
ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 
(2015).

 12. G. P. Peters, C. Le Quéré, R. M. Andrew, J. G. Canadell, P. Friedlingstein, T. Ilyina, 
R. B. Jackson, F. Joos, J. I. Korsbakken, G. A. McKinley, S. Sitch, P. Tans, Towards real-time 
verification of CO2 emissions. Nat. Clim. Chang. 7, 848–850 (2017).

 on O
ctober 27, 2020

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

http://www.carbontracker.eu/fluxtimeseries.php
http://www.carbontracker.eu/fluxtimeseries.php
http://advances.sciencemag.org/cgi/content/full/6/6/eaay4603/DC1
http://advances.sciencemag.org/cgi/content/full/6/6/eaay4603/DC1
http://advances.sciencemag.org/


Wigneron et al., Sci. Adv. 2020; 6 : eaay4603     5 February 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

9 of 10

 13. W. A. Kurz, C. C. Dymond, G. Stinson, G. J. Rampley, E. T. Neilson, A. L. Carroll, T. Ebata, 
L. Safranyik, Mountain pine beetle and forest carbon feedback to climate change. Nature 
452, 987–990 (2008).

 14. C. D. Allen, D. D. Breshears, N. G. McDowell, On underestimation of global vulnerability 
to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 
1–55 (2015).

 15. J.-P. Wigneron, T. J. Jackson, P. O’Neill, G. De Lannoy, P. de Rosnay, J. P. Walker, 
P. Ferrazzoli, V. Mironov, S. Bircher, J. P. Grant, M. Kurum, M. Schwank, J. Munoz-Sabater, 
N. Das, A. Royer, A. Al-Yaari, A. Al Bitar, R. Fernandez-Moran, H. Lawrence, A. Mialon, 
M. Parrens, P. Richaume, S. Delwart, Y. Kerr, Modelling the passive microwave signature 
from land surfaces: A review of recent results and application to the L-band SMOS & 
SMAP soil moisture retrieval algorithms. Remote Sens. Environ. 192, 238–262 (2017).

 16. M. Brandt, J.-P. Wigneron, J. Chave, T. Tagesson, J. Penuelas, P. Ciais, K. Rasmussen, 
F. Tian, C. Mbow, A. Al-Yaari, N. Rodriguez-Fernandez, G. Schurgers, W. Zhang, J. Chang, 
Y. Kerr, A. Verger, C. Tucker, A. Mialon, L. V. Rasmussen, L. V. Fan, R. Fensholt, Satellite 
passive microwaves reveal recent climate-induced carbon losses in African drylands.  
Nat. Ecol. Evol. 2, 827–835 (2018).

 17. L. Fan, J.-P. Wigneron, P. Ciais, J. Chave, M. Brandt, R. Fensholt, S. S. Saatchi, A. Bastos, 
A. Al-Yaari, K. Hufkens, Y. Qin, X. Xiao, C. Chen, R. B. Myneni, R. Fernandez-Moran, 
A. Mialon, N. J. Rodriguez-Fernandez, Y. Kerr, F. Tian, J. Penuelas, Satellite observed 
pantropical carbon dynamics. Nat. Plants 5, 944–951 (2019).

 18. K. Wolter, M. S. Timlin, El Niño/Southern Oscillation behaviour since 1871 as diagnosed 
in an extended multivariate ENSO index (MEI.ext). Int. J. Climatol. 31, 1074–1087 (2011).

 19. J.-F. Bastin, N. Berrahmouni, A. Grainger, D. Maniatis, D. Mollicone, R. Moore, C. Patriarca, 
N. Picard, B. Sparrow, E. M. Abraham, K. Aloui, A. Atesoglu, F. Attore, Ç. Bassüllü, A. Bey, 
M. Garzuglia, L. G. García-Montero, N. Groot, G. Guerin, L. Laestadius, A. J. Lowe, 
B. Mamane, G. Marchi, P. Patterson, M. Rezende, S. Ricci, I. Salcedo, A. S.-P. Diaz, F. Stolle, 
V. Surappaeva, R. Castro, The extent of forest in dryland biomes. Science 356, 635–638 
(2017).

 20. M. C. Hansen, P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, 
D. Thau, S. V. Stehman, S. J. Goetz, T. R. Loveland, A. Kommareddy, A. Egorov, L. Chini, 
C. O. Justice, J. R. G. Townshend, High-Resolution Global Maps of 21st-Century Forest 
Cover Change. Science 342, 850–853 (2013).

 21. N. Ramankutty, H. K. Gibbs, F. Achard, R. Defries, J. A. Foley, R. A. Houghton, Challenges 
to estimating carbon emissions from tropical deforestation. Glob. Chang. Biol. 13, 51–66 
(2007).

 22. Y. Pan, R. A. Birdsey, J. Fang, R. Houghton, P. E. Kauppi, W. A. Kurz, O. L. Phillips, 
A. Shvidenko, S. L. Lewis, J. G. Canadell, P. Ciais, R. B. Jackson, S. W. Pacala, A. D. McGuire, 
S. Piao, A. Rautiainen, S. Sitch, D. Hayes, A Large and Persistent Carbon Sink in the World’s 
Forests. Science 333, 988–993 (2011).

 23. P. I. Palmer, L. Feng, D. Baker, F. Chevallier, H. Bösch, P. Somkuti, Net carbon emissions 
from African biosphere dominate pan-tropical atmospheric CO2 signal. Nat. Commun. 
10, 3344 (2019).

 24. S. L. Lewis, P. M. Brando, O. L. Phillips, G. M. van der Heijden, D. Nepstad, The 2010 
amazon drought. Science 331, 554 (2011).

 25. B. Poulter, D. Frank, P. Ciais, R. B. Myneni, N. Andela, J. Bi, G. Broquet, J. G. Canadell, 
F. Chevallier, Y. Y. Liu, S. W. Running, S. Sitch, G. R. van der Werf, Contribution of semi-arid 
ecosystems to interannual variability of the global carbon cycle. Nature 509, 600 (2014).

 26. Y. Yang, S. S. Saatchi, L. Xu, Y. Yu, S. Choi, N. Phillips, R. Kennedy, M. Keller, Y. Knyazikhin, 
R. B. Myneni, Post-drought decline of the Amazon carbon sink. Nat. Commun. 9, 3172 
(2018).

 27. R. Condit, S. P. Hubbell, R. B. Foster, Mortality rates of 205 neotropical tree and shrub 
species and the impact of a severe drought. Ecol. Monogr. 65, 419–439 (1995).

 28. M. L. Goulden, R. C. Bales, California forest die-off linked to multi-year deep soil drying 
in 2012–2015 drought. Nat. Geosci. 12, 632–637 (2019).

 29. S. Zhou, Y. Zhang, A. Park Williams, P. Gentine, Projected increases in intensity, frequency, 
and terrestrial carbon costs of compound drought and aridity events. Sci. Adv. 5, 
eaau5740 (2019).

 30. A. Baccini, W. Walker, L. Carvalho, M. Farina, D. Sulla-Menashe, R. A. Houghton, Tropical 
forests are a net carbon source based on aboveground measurements of gain and loss. 
Science 358, 230–234 (2017).

 31. R. L. Chazdon, E. N. Broadbent, D. M. A. Rozendaal, F. Bongers, A. M. A. Zambrano, 
T. M. Aide, P. Balvanera, J. M. Becknell, V. Boukili, P. H. S. Brancalion, D. Craven, 
J. S. Almeida-Cortez, G. A. L. Cabral, B. de Jong, J. S. Denslow, D. H. Dent, S. J. DeWalt, 
J. M. Dupuy, S. M. Durán, M. M. Espírito-Santo, M. C. Fandino, R. G. César, J. S. Hall, 
J. L. Hernández-Stefanoni, C. C. Jakovac, A. B. Junqueira, D. Kennard, S. G. Letcher, 
M. Lohbeck, M. Martínez-Ramos, P. Massoca, J. A. Meave, R. Mesquita, F. Mora, R. Muñoz, 
R. Muscarella, Y. R. F. Nunes, S. Ochoa-Gaona, E. Orihuela-Belmonte, M. Peña-Claros, 
E. A. Pérez-García, D. Piotto, J. S. Powers, J. Rodríguez-Velazquez, I. E. Romero-Pérez, 
J. Ruíz, J. G. Saldarriaga, A. Sanchez-Azofeifa, N. B. Schwartz, M. K. Steininger, 
N. G. Swenson, M. Uriarte, M. van Breugel, H. van der Wal, M. D. M. Veloso, H. Vester, 
I. C. G. Vieira, T. V. Bentos, G. B. Williamson, L. Poorter, Carbon sequestration potential 

of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2, 
e1501639 (2016).

 32. E. T. A. Mitchard, The tropical forest carbon cycle and climate change. Nature 559, 
527–534 (2018).

 33. V. H. Dale, L. A. Joyce, S. McNulty, R. P. Neilson, M. P. Ayres, M. D. Flannigan, P. J. Hanson, 
L. C. Irland, A. E. Lugo, C. J. Peterson, D. Simberloff, F. J. Swanson, B. J. Stocks, 
B. M. Wotton, Climate change and forest disturbances: Climate change can affect forests 
by altering the frequency, intensity, duration, and timing of fire, drought, introduced 
species, insect and pathogen outbreaks, hurricanes, windstorms, ice storms, or 
landslides. Bioscience 51, 723–734 (2001).

 34. P. D. Broxton, X. Zeng, D. Sulla-Menashe, P. A. Troch, A Global Land Cover Climatology 
Using MODIS Data. J. Appl. Meteorol. Climatol. 53, 1593–1605 (2014).

 35. A. Trabucco, R. Zomer, Global Aridity Index and Potential Evapotranspiration (ET0) 
Climate Database v2. figshare. Fileset (2019); https://doi.org/10.6084/m9.
figshare.7504448.v3.

 36. G. J. Huffman, D. T. Bolvin, E. J. Nelkin, D. B. Wolff, R. F. Adler, G. Gu, Y. Hong, 
K. P. Bowman, E. F. Stocker, The TRMM Multisatellite Precipitation Analysis (TMPA): 
Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. 
J. Hydrometeorol. 8, 38–55 (2007).

 37. L. E. O. C. Aragão, Y. Malhi, R. M. Roman-Cuesta, S. Saatchi, L. O. Anderson, 
Y. E. Shimabukuro, Spatial patterns and fire response of recent Amazonian droughts. 
Geophys. Res. Lett. 34, L07701 (2007).

 38. R. Fernandez-Moran, A. Al-Yaari, A. Mialon, A. Mahmoodi, A. Al Bitar, G. De Lannoy, 
N. Rodriguez-Fernandez, E. Lopez-Baeza, Y. Kerr, J.-P. Wigneron, SMOS-IC: 
An alternative SMOS soil moisture and vegetation optical depth product. Remote Sens. 
9, 457 (2017).

 39. A. Al-Yaari, J.-P. Wigneron, W. Dorigo, A. Colliander, T. Pellarin, S. Hahn, A. Mialon, 
P. Richaume, R. Fernandez-Moran, L. Fan, Y. H. Kerr, G. De Lannoy, Assessment 
and inter-comparison of recently developed/reprocessed microwave satellite soil 
moisture products using ISMN ground-based measurements. Remote Sens. Environ. 224, 
289–303 (2019).

 40. H. Ma, J. Zeng, N. Chen, X. Zhang, M. H. Cosh, W. Wang, Satellite surface soil moisture 
from SMAP, SMOS, AMSR2 and ESA CCI: A comprehensive assessment using global 
ground-based observations. Remote Sens. Environ. 231, 111215 (2019).

 41. Y. Y. Liu, A. I. J. M. van Dijk, D. G. Miralles, M. F. McCabe, J. P. Evans, R. A. M. de Jeu, 
P. Gentine, A. Huete, R. M. Parinussa, L. Wang, K. Guan, J. Berry, N. Restrepo-Coupe, 
Enhanced canopy growth precedes senescence in 2005 and 2010 Amazonian droughts. 
Remote Sens. Environ. 211, 26–37 (2018).

 42. B. Martens, D. G. Miralles, H. Lievens, R. van der Schalie, R. A. M. de Jeu, D. Fernández-Prieto, 
H. E. Beck, W. A. Dorigo, N. E. C. Verhoest, GLEAM v3: satellite-based land evaporation 
and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925 (2017).

 43. A. Baccini, S. J. Goetz, W. S. Walker, N. T. Laporte, M. Sun, D. Sulla-Menashe, J. Hackler, 
P. S. A. Beck, R. Dubayah, M. A. Friedl, S. Samanta, R. A. Houghton, Estimated carbon 
dioxide emissions from tropical deforestation improved by carbon-density maps.  
Nat. Clim. Chang. 2, 182–185 (2012).

 44. S. S. Saatchi, N. L. Harris, S. Brown, M. Lefsky, E. T. A. Mitchard, W. Salas, B. R. Zutta, 
W. Buermann, S. L. Lewis, S. Hagen, S. Petrova, L. White, M. Silman, A. Morel,  
Benchmark map of forest carbon stocks in tropical regions across three continents.  
Proc. Natl. Acad. Sci. U.S.A. 108, 9899–9904 (2011).

 45. V. Avitabile, M. Herold, G. B. M. Heuvelink, S. L. Lewis, O. L. Phillips, G. P. Asner, J. Armston, 
P. S. Ashton, L. Banin, N. Bayol, N. J. Berry, P. Boeckx, B. H. J. de Jong, B. De Vries, 
C. A. J. Girardin, E. Kearsley, J. A. Lindsell, G. Lopez-Gonzalez, R. Lucas, Y. Malhi, A. Morel, 
E. T. A. Mitchard, L. Nagy, L. Qie, M. J. Quinones, C. M. Ryan, S. J. W. Ferry, T. Sunderland, 
G. V. Laurin, R. C. Gatti, R. Valentini, H. Verbeeck, A. Wijaya, S. Willcock, An integrated 
pan-tropical biomass map using multiple reference datasets. Glob. Chang. Biol. 22, 
1406–1420 (2016).

 46. J. M. B. Carreiras, S. Quegan, T. Le Toan, D. Ho Tong Minh, S. S. Saatchi, N. Carvalhais, 
M. Reichstein, K. Scipal, Coverage of high biomass forests by the ESA BIOMASS mission 
under defense restrictions. Remote Sens. Environ. 196, 154–162 (2017).

 47. Y. Y. Liu, A. I. J. M. van Dijk, R. A. M. de Jeu, J. G. Canadell, M. F. McCabe, J. P. Evans, 
G. Wang, Recent reversal in loss of global terrestrial biomass. Nat. Clim. Chang. 5, 470 
(2015).

 48. F. Chevallier, P. Ciais, T. J. Conway, T. Aalto, B. E. Anderson, P. Bousquet, E. G. Brunke, 
L. Ciattaglia, Y. Esaki, M. Fröhlich, A. Gomez, A. J. Gomez-Pelaez, L. Haszpra, P. B. Krummel, 
R. L. Langenfelds, M. Leuenberger, T. Machida, F. Maignan, H. Matsueda, J. A. Morguí, 
H. Mukai, T. Nakazawa, P. Peylin, M. Ramonet, L. Rivier, Y. Sawa, M. Schmidt, L. P. Steele, 
S. A. Vay, A. T. Vermeulen, S. Wofsy, D. Worthy, CO2 surface fluxes at grid point scale 
estimated from a global 21 year reanalysis of atmospheric measurements. J. Geophys. Res. 
Atmos. 115, D21307 (2010).

 49. C. Rödenbeck, S. Zaehle, R. Keeling, M. Heimann, How does the terrestrial carbon 
exchange respond to inter-annual climatic variations? A quantification based 
on atmospheric CO2 data. Biogeosciences 15, 2481–2498 (2018).

 on O
ctober 27, 2020

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

https://doi.org/10.6084/m9.figshare.7504448.v3
https://doi.org/10.6084/m9.figshare.7504448.v3
http://advances.sciencemag.org/


Wigneron et al., Sci. Adv. 2020; 6 : eaay4603     5 February 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

10 of 10

 50. P. K. Patra, M. Takigawa, S. Watanabe, N. Chandra, K. Ishijima, Y. Yamashita, Improved 
Chemical Tracer Simulation by MIROC4.0-based Atmospheric Chemistry-Transport 
Model (MIROC4-ACTM). SOLA 14, 91–96 (2018).

 51. I. T. Van der Laan-Luijkx, I. R. Van der Velde, E. Van der Veen, A. Tsuruta, K. Stanislawska, 
A. Babenhauserheide, H. F. Zhang, Y. Liu, W. He, H. Chen, K. A. Masarie, M. C. Krol, 
W. Peters, The CarbonTracker Data Assimilation Shell (CTDAS) v1.0: implementation 
and global carbon balance 2001-2015. Geosci. Model Dev. 10, 2800–2800 (2017).

Acknowledgments: We acknowledge the support from all the SMOS-IC team in Bordeaux 
and, in particular, A. Al-Yaari, X. Li, J. Swenson, F. Frappart, and C. Moisy in the data analysis. 
Funding: This work was jointly supported by the TOSCA (Terre Océan Surfaces 
Continentales et Atmosphère) CNES (Centre National d'Etudes Spatiales) program, the 
European Space Agency (ESA), and the European Research Council Synergy grant 
ERC-2013-SyG-610028 IMBALANCE-P. P.C. acknowledges additional support from the ANR 
ICONV CLAND grant. M.B. was funded by an AXA postdoctoral fellowship. L.F. 
acknowledges additional support from the National Natural Science Foundation of China 
(grant no. 41801247) and the Natural Science Foundation of Jiangsu Province (grant no. 
BK20180806). J.C. has benefited from “Investissement d’Avenir” grants managed by 
Agence Nationale de la Recherche (CEBA: ANR-10-LABX-25-01; TULIP, ref. ANR-10-
LABX-0041; ANAEE-France: ANR-11-INBS-0001). A. Baccini acknowledges NASA Studies with 
ICESat and CryoSat-2 (NNX13AP64G) and Carbon Monitoring System (NNX16AP24G) grants. 
R.F. acknowledges funding from the Danish Council for Independent Research (DFF) (grant 

ID: DFF–6111-00258). Author contributions: J.-P.W., L.F., and P.C. conceived and designed 
the study. L.F. carried out all calculations with support from J.-P.W., P.C., and A.Bas. J.-P.W. 
and L.F. prepared the SMOS-IC data. S.S. prepared the Saatchi biomass map. A.Bac. prepared 
the Baccini biomass map. M.B., R.F., and J.C. contributed to the analysis and interpretation of the 
results. The manuscript was initially drafted by J.-P.W., P.C., and L.F. with support from all 
coauthors. Competing interests: The authors declare that they have no competing 
interests. Data and materials availability: SMOS-IC L-VOD data are available from the 
corresponding author upon request. The Saatchi, Baccini, Bouvet, and Mermoz biomass 
maps are available from S. Saatchi, A. Baccini, A. Bouvet, and S. Mermoz, respectively, upon 
request. The JAMSTEC data were obtained upon request from P. Patra (JAMSTEC, Japan). The 
Jena CarboScope data were obtained upon request from C. Rödenbeck (Max Planck Institute 
for Biogeochemistry, Jena, Germany). Additional data used in the paper are freely available 
from the respective websites hosting the datasets.

Submitted 21 June 2019
Accepted 22 November 2019
Published 5 February 2020
10.1126/sciadv.aay4603

Citation: J.-P. Wigneron, L. Fan, P. Ciais, A. Bastos, M. Brandt, J. Chave, S. Saatchi, A. Baccini, 
R. Fensholt, Tropical forests did not recover from the strong 2015–2016 El Niño event. Sci. Adv. 
6, eaay4603 (2020).

 on O
ctober 27, 2020

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

http://advances.sciencemag.org/


2016 El Niño event−Tropical forests did not recover from the strong 2015

and Rasmus Fensholt
Jean-Pierre Wigneron, Lei Fan, Philippe Ciais, Ana Bastos, Martin Brandt, Jérome Chave, Sassan Saatchi, Alessandro Baccini

DOI: 10.1126/sciadv.aay4603
 (6), eaay4603.6Sci Adv 

ARTICLE TOOLS http://advances.sciencemag.org/content/6/6/eaay4603

MATERIALS
SUPPLEMENTARY http://advances.sciencemag.org/content/suppl/2020/02/03/6.6.eaay4603.DC1

REFERENCES

http://advances.sciencemag.org/content/6/6/eaay4603#BIBL
This article cites 50 articles, 12 of which you can access for free

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the 

 is a registered trademark of AAAS.Science AdvancesYork Avenue NW, Washington, DC 20005. The title 
(ISSN 2375-2548) is published by the American Association for the Advancement of Science, 1200 NewScience Advances 

License 4.0 (CC BY-NC).
Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial 
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of

 on O
ctober 27, 2020

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

http://advances.sciencemag.org/content/6/6/eaay4603
http://advances.sciencemag.org/content/suppl/2020/02/03/6.6.eaay4603.DC1
http://advances.sciencemag.org/content/6/6/eaay4603#BIBL
http://www.sciencemag.org/help/reprints-and-permissions
http://www.sciencemag.org/about/terms-service
http://advances.sciencemag.org/

