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Abstract 
Recombination is a complex biological process that results from a cascade of multiple events during               

meiosis. Understanding the genetic determinism of recombination can help to understand if and             

how these events are interacting. To tackle this question, we studied the patterns of recombination               

in sheep, using multiple approaches and datasets. We constructed male recombination maps in a              

dairy breed from the south of France (the Lacaune breed) at a fine scale by combining meiotic                 

recombination rates from a large pedigree genotyped with a 50K SNP array and historical              

recombination rates from a sample of unrelated individuals genotyped with a 600K SNP array. This               

analysis revealed recombination patterns in sheep similar to other mammals but also genome             

regions that have likely been affected by directional and diversifying selection. We estimated the              

average recombination rate of Lacaune sheep at 1.5 cM/Mb, identified about 50,000 crossover             

hotspots on the genome and found a high correlation between historical and meiotic recombination              

rate estimates. A genome-wide association study revealed two major loci affecting inter-individual            

variation in recombination rate in Lacaune, including the ​RNF212 and HEI10 genes and possibly 2               

other loci of smaller effects including the ​KCNJ15 and ​FSHR genes. Finally, we compared our               

results to those obtained previously in a distantly related population of domestic sheep, the Soay.               

This comparison revealed that Soay and Lacaune males have a very similar distribution of              

recombination along the genome and that the two datasets can be combined to create more precise                

male meiotic recombination maps in sheep. Despite their similar recombination maps, we show that              

Soay and Lacaune males exhibit different heritabilities and QTL effects for inter-individual            

variation in genome-wide recombination rates.  

 

Introduction 
 
Meiotic recombination is a fundamental biological process that brings a major contribution to the              

genetic diversity and the evolution of eukaryotic genomes (Baudat and al., 2013). During meiosis,              

recombination enables chromosomal alignment resulting in proper disjunction and segregation of           
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chromosomes, avoiding deleterious outcomes such as aneuploidy ​(Hassold, Hall, and Hunt 2007)​.            

Over generations, recombination contributes to shaping genetic diversity in a population by creating             

new allelic combinations and preventing the accumulation of deleterious mutations. Over large            

evolutionary timescales, divergence in recombination landscapes can lead to speciation: the action            

of a key actor in the recombination process in many mammals, the gene ​PRDM9​, has been shown to                  

have a major contribution to the infertility between two mouse species, making it the only known                

speciation gene in mammals today ​(Mihola et al. 2009)​. 

Genetics studies on recombination were first used to infer the organisation of genes along the               

genome ​(Sturtevant 1913)​. With the advance in molecular techniques, more detailed physical maps             

and eventually whole genome assemblies are now available in many species. The establishment of              

highly resolutive recombination maps remains of fundamental importance for the validation of the             

physical ordering of markers, obtained from sequencing experiments ​(Groenen et al. 2012; Jiang et              

al. 2014)​. From an evolutionary perspective the relevant distance between loci is the genetic              

distance and recombination maps are essential tools for the genetic studies of a species, for               

estimation of past demography ​(H. Li and Durbin 2011; Boitard et al. 2016)​, detection of selection                

signatures ​(Sabeti et al. 2002; Voight et al. 2006)​, QTL mapping ​(Cox et al. 2009) and imputation                 

of genotypes ​(Howie, Donnelly, and Marchini 2009) for genome-wide association studies (GWAS)            

or genomic selection. Precise recombination maps can be estimated using different approaches.            

Meiotic recombination rates can be estimated from the observation of markers’ segregation in             

families. Although this is a widespread approach, its resolution is limited by the number of meioses                

that can be collected within a population and the number of markers that can be genotyped.                

Consequently highly resolutive meiotic maps have been produced in situations where large            

segregating families can be studied and genotyped densely ​(Shifman et al. 2006; Mancera et al.               

2008; Groenen et al. 2009; Rockman and Kruglyak 2009; Augustine Kong et al. 2010) or by                

focusing on specific genomic regions ​(Cirulli, Kliman, and Noor 2007; Stevison and Noor 2010;              

Kaur and Rockman 2014)​. In livestock species, the recent availability of dense genotyping assays              

has fostered the production of highly resolutive recombination maps ​(Tortereau et al. 2012; Susan              

E. Johnston et al. 2016; S. E. Johnston et al. 2017) ​in particular by exploiting reference population                 

data from genomic selection programs ​(Sandor et al. 2012a; Ma et al. 2015; Kadri et al. 2016a)​ . 

Another approach to study the distribution of recombination on a genome is to exploit patterns of                

correlation between allele frequencies in a population (​i.e. Linkage Disequilibrium, LD) to infer             

past (historical) recombination rates ​(McVean, Awadalla, and Fearnhead 2002; N. Li and Stephens             
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2003; Chan, Jenkins, and Song 2012)​. Because the LD-based approach exploits in essence meioses              

accumulated over many generations, it can provide more precise estimates of local variation in              

recombination rate. For example, until recently ​(Pratto et al. 2014; Lange et al. 2016) this was the                 

only indirect known approach allowing to detect fine scale patterns of recombination genome-wide             

in species with large genomes. Several highly recombining intervals (recombination hotspots) were            

detected from historical recombination rate maps and confirmed or completed those discovered by             

sperm-typing experiments ​(Simon Myers et al. 2005; Crawford et al. 2004)​. One important caveat              

of LD-based approaches is that their recombination rate estimates are affected by other evolutionary              

processes, especially selection that affects LD patterns unevenly across the genome. Hence            

differences in historical recombination between distant genomic regions have to be interpreted with             

caution. Despite this, historical and meiotic recombination rates usually exhibit substantial positive            

correlation ​(Rockman and Kruglyak 2009; Chan, Jenkins, and Song 2012; Brunschwig et al. 2012;              

J. Wang et al. 2012)​. 

 

The LD-based approach does not allow to study individual phenotypes and therefore to identify              

directly loci influencing inter-individual variation in recombination rates. In contrast, family-based           

studies in human ​(A. Kong et al. 2008a; Chowdhury et al. 2009)​, Drosophila ​(Stevison and Noor                

2010; Chan, Jenkins, and Song 2012) mice ​(Shifman et al. 2006; Brunschwig et al. 2012) cattle                

(Sandor et al. 2012a; Ma et al. 2015; Kadri et al. 2016a) and sheep ​(Susan E. Johnston et al. 2016)                    

have demonstrated that recombination exhibits inter-individual variation and that this variation is            

partly determined by genetic factors. Two recombination phenotypes have been described: the            

number of crossovers per meiosis (Genome-wide Recombination Rate , GRR herein) and the fine              

scale localization of crossovers (Individual Hotspot Usage, IHU herein). GRR has been shown to be               

influenced by several genes. For example, a recent genome-wide association study found evidence             

for association with 6 genome regions in cattle ​(Kadri et al. 2016a)​. Among them, one of the                 

genomic regions consistently found associated to GRR in mammals is an interval containing the              

RNF212 gene. In contrast to GRR, the IHU phenotype seems mostly governed by a single gene in                 

most mammals, ​PRDM9​. This zinc-finger protein has a key role in recruiting ​SPO11​, thereby              

directing DNA double-strand breaks (DSBs) that initiate meiotic recombination. Because ​PRDM9           

recognizes a specific DNA motif, the crossover events happen in hotspots carrying this motif. This               

PRDM9 associated process is however not universal, as it is only active in some mammals; canids                

for example do not carry a functional copy of ​PRDM9 and exhibit different patterns for the                
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localization of recombination hotspots ​(Auton et al. 2013)​.  

 

As mentioned above, recombination was studied recently in sheep ​(Susan E. Johnston et al. 2016)​,               

which lead to the production of precise genome-wide recombination maps, revealed a similar             

genetic architecture of recombination rates in sheep as in other mammals and identified two major               

loci affecting individual variation. Quite interestingly, one the QTL identified in this study,             

localized near the ​RNF212 gene, was clearly demonstrated to have a sex specific effect. This study                

was performed in a feral population of sheep which is quite distantly related to continental               

populations ​(Kijas et al. 2012) and has not managed by humans for a long time. To understand how                  

recombination patterns and genetic determinism can vary across populations, we conducted in this             

work a study in another sheep population, the Lacaune, from south of France. The Lacaune breed is                 

the main dairy sheep population in France, its milk being mainly used for the production of                

Roquefort cheese. Starting in 2011, a large genotyping effort started in the breed to implement a                

genomic selection program ​(Baloche et al. 2014)​, and young selection candidates are now routinely              

genotyped for a medium density genotyping array (about 50K SNP). This constitutes a large dataset               

of genotyped families that can be used to study recombination, although limited to one sex as only                 

males were used for genomic selection in this population. This dataset offers an opportunity to               

study variation in recombination and its genetic determinism between very diverged populations of             

the same species. Hence, a first objective of this study was to elucidate whether these two sheep                 

populations had similar distribution of recombination on the genome and whether they shared the              

same genetic architecture of the trait, and in particular the same QTLs effects. 

The second objective of this study was to compare different approaches to study recombination              

from independent data in the same population. To this end, in addition to the pedigree data, we                 

exploit a sample of 51 unrelated individuals genotyped with a high-density genotyping array (about              

500K SNP). While, the family data was used to establish meiotic recombination maps, the sample               

of densely genotyped individuals was used to create historical recombination maps of higher             

resolution. This offered the opportunity to evaluate to which extent sheep ancestral recombination             

patterns match contemporary ones. 
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Materials and Methods 

Study Population and Genotype Data 

 

In this work, we exploited two different datasets of sheep from the Lacaune breed: a pedigree                

dataset of 8,085 related animals genotyped with the medium density Illumina Ovine Beadchip®             

including 54,241 SNPs, and a diversity dataset of 70 unrelated Lacaune individuals selected as to               

represent population genetic diversity, genotyped with the high density Illumina Ovine Infinium®            

HD SNP Beadchip including ​(Rochus et al. 2017; Moreno-Romieux et al. 2017)  

 

Standard data cleaning procedures were carried out on the pedigree dataset using plink 1.9 ​(Chang               

et al. 2015)​, excluding animals with call rates below 95% and SNPs with call freq below 98%. After                  

quality controls we exploited genotypes at 46,813 SNPs and 5,940 meioses. For these animals, we               

only selected the sires which had their own sire known and at least 2 offspring and the sires which                   

did not have their own sire known, but at least 4 offspring. Eventually, 345 male parents, called                 

focal individuals (FIDs) hereafter, met these criteria: 210 FIDs had their father genotype known              

while the remaining 135 did not (Figure 1). 

 

Recombination Maps 

Meiotic recombination maps from pedigree data 

Detection of crossovers  

   

Crossover locations were detected using LINKPHASE ​(Druet and Georges 2015)​. From the            

LINKPHASE outputs (​recombination_hmm files), we extracted crossovers boundaries. We then          

identified crossovers occurring in the same meiosis less than 3 Mb apart from each other (that we                 

call double crossovers) and considered them as dubious. This number was chosen as it              
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corresponded to clear outliers in the distribution of inter-crossover distances. They are also quite              

unlikely under crossover interference. We applied the following procedure: given a pair of double              

crossovers, we set the genotype of the corresponding offspring as missing in the region spanned by                

the most extreme boundaries and re-run the LINKPHASE analysis. After this quality control step,              

we used the final set of crossovers identified by LINKPHASE to estimate recombination rates. This               

dataset consisted of 213,615 crossovers in 5,940 meioses. 

 

Estimation of recombination rates 

 

Based on the inferred crossover locations, meiotic recombination rates were estimated in windows             

of one megabase and between marker intervals of the medium SNP array using the following               

statistical model, inspired by ​(Cheung et al. 2007)​. For small genetic intervals such as considered               

here, the recombination rate (termed c in the following), is usually expressed in centiMorgans per               

megabase and the probability that a crossover occurs in one meiosis in an interval ​j ​(measured in                 

Morgans) is 0.01c​j​l​j where l​j is the length of the interval expressed in megabases. When considering                

M meioses, the expected number of crossovers in the interval is 0.01c​j​l​j​M. When combining              

observations in multiple individuals, we want to account for the fact that they have different average                

numbers of crossovers per meiosis (termed R​s for individual ​s​). To do so we multiply the expected                 

number of crossovers in the interval by an individual specific factor equal to (R​s​/R) where R is the                  

average number of crossovers per meiosis among all individuals. Finally, for individual ​s in interval               

j the expected number of crossovers is 0.01c​j​l​j​M​s​R​s​/R. Given this expected number, a natural              

distribution to model the number of crossovers observed in an interval is the Poisson distribution so                

that the number y​sj​ of crossovers observed in the interval ​j​ for an individual ​s​ is modelled as: 

 

y​sj​ | c​j ​~ Poisson( 0.01 l​j​ c​j​ M​s ​R​s​/R) (1) 

 

To combine crossovers across individuals, the likelihood for ​c​j ​is the product of poisson likelihoods               

from equation (1). 

 

We then specify a prior distribution for ​c​j​: 
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c​j ​~ Γ(𝜶 , β) (2) 

 

To set α and ß, first raw ​c​j ​estimates are computed using the method of ​(Sandor et al. 2012a) across                    

the genome and then a gamma distribution is fitted to the resulting genome-wide distribution              

(Figure S1). Combining the prior (2) with the likelihoods in equation (1), the posterior distribution               

for ​c​j​ ​ is: 

 

   (3)| y ( α  , β .01 l M R /R)cj •j ~ Γ + ∑
 

s
ysj  +  ∑

 

s
0 j s s  

 

As the localization of crossovers was usually not good enough to assign them with certainty to a                 

single genomic interval, final estimates of ​c​j​ ​are obtained as follows: 

 

(i) for each crossover overlapping interval ​j and localized within a window of size ​L​, let ​x​c ​be an                   

indicator variable that takes value 1 if the crossover occurred in interval ​j and 0 otherwise.                

Assuming that, locally, recombination rate is proportional to physical distance, set           

.P (x ) in(l /L, ) c = 1 = m j 1  

(ii) Using the probability in step (i), sample ​x​c ​for each crossover overlapping interval j and set                 

ysj = ∑
 

c
xc  

(iii) Given ​y​sj ​, sample  ​c​j ​from equation (3) 

 

For each interval considered, perform step (ii) and (iii) above 1000 times to draw samples from the                 

posterior distribution of ​c​j​ thereby accounting for uncertainty in the localization of crossovers. 

 

Historical recombination maps from the diversity data 

The diversity data contains 70 Lacaune individuals genotyped for a High Density SNP array              

comprising 527,823 autosomal markers ​(Rochus et al. 2017)​. Nineteen of these individuals are FIDs              

in the pedigree data. To perform the LD-based analysis on individuals unrelated to the pedigree               

study, these individuals were therefore removed from the dataset and the subsequent analyses             

performed on the 51 remaining individuals. Population-scaled recombination rates were estimated           
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using PHASE ​(N. Li and Stephens 2003)​. For computational reasons and to allow for varying               

effective population size along the genome, estimations were carried out in 2 Mb windows, with an                

additional 100 Kb on each side overlapping with neighbouring windows, to avoid border-effect in              

the PHASE inference. PHASE was run on each window with default options, except that the               

number of main iterations was increased to obtain larger posterior samples for recombination rate              

estimation (option -X10) as recommended in the documentation. 

From the PHASE output, 1000 samples were obtained from the posterior distribution of: 

● The background recombination rate: ρ​w = 4N​w​c​w ​, where N​w is the effective population size               

in the window, c​w  ​is the recombination rate comparable to the family-based estimate. 

● An interval specific recombination intensity λ​j​, for each marker interval ​j ​of length ​l​j ​in the                

window, such that the population scaled genetic length of an interval is: λ lδj = ρw j j  

The medians were used as point estimates of parameters and , computed over the posterior         λ j   δj      

distributions .λ , λ ρ l  ;  k 1, 000]}{ j  
(k)  j  

(k) 
w

(k) 
j  ∈ [ 1  

 

 

Identification of intervals harbouring crossover hotspots 

 

Intervals that showed an outlying λ​j value compared to the genome-wide distribution of λ​j were               

considered as harbouring a crossover hotspot. Specifically, a mixture of Gaussian distribution was             

fitted to the genome-wide distribution of using the mclust R package ​(Fraley and Raftery      og (λ )l 10 j          

2002)​, considering that the major component of the mixture modelled the background distribution             

of λ​j ​in non-hotspots intervals. From this background distribution, a p-value was computed for each               

interval that corresponded to the null hypothesis that it does not harbour a hotspot. Finally, hotspot                

harbouring intervals were defined as those for which FDR(λ​j ​) < 5%, estimating FDR with the                

(Storey and Tibshirani 2003) method, implemented in the R qvalue package. This procedure is              

illustrated in​ ​Figure S2. 
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Combination of meiotic and historical recombination rates and construction of a           

high resolution recombination map 

 

To construct a meiotic recombination map of the HD SNP array requires that the historical               

recombination rate estimates be scaled by 4 times the effective population size. Due to evolutionary               

pressures, the effective population size varies along the genome, so it must be estimated locally.               

This can be done by exploiting the meiotic recombination rate inference obtained from the pedigree               

data analysis as explained below.  

 

Consider a window of one megabase on the genome, using the approach described above, we can                

sample values c​jk ​(window ​j​, sample ​k​) from the posterior distribution of the meiotic recombination               

rate ​c​j​. Similarly, using output from PHASE we can extract samples from the posterior           ρjk     

distribution of the historical recombination rates ( ). Now, considering that       ρ  λρj =  w j      Ne cρj = 4 j j

where ​Ne​j is the local effective population size of window ​j​, we get             

. This justifies using a model on both c​jk ​and ρ​jk​values:log(ρ ) og(4Ne ) log(c ) j = l j +  j   

 

 (4) α  yijk = μ + xijk  + βj + ν ij + eijk  

 

where is when i=1 (meiotic-recombination rate sample) and is when i=2 yijk   og(c )l jk         yijk  og(ρ )l jk   

(historical recombination rate sample). In this model, μ estimates the log of the genome-wide              

recombination rate, x​ijk​=1 if i=2 and 0 otherwise so that estimates log(4Ne), where Ne is the          α       

average effective population size of the Lacaune population, estimates log(c​j​) combining        μ + βj     

population and meiotic recombination rates, and α+(ν​2j​-ν​1j​) estimates log(4Ne​j​). μ and were           αi   

considered as fixed effects while and were considered as independent random effects. Using     βj   ν ij         

this approach allows to combine in a single model LD- and pedigree-based inferences, while              

accounting for their respective uncertainties as we exploit posterior distribution samples.  

 

Model (4) was fitted on 20 samples of the posterior distributions of ​c​j ​and for all windows of one              ρj      

megabase covering the genome, with an additional fixed effect for each chromosome, using the              

lme4 R package ​(Bates et al. 2015)​. Windows lying less than 4 Mb from each chromosome end                 
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were not used because inference on ​c​j was possibly biased in these regions (see Results). After                

estimating this model, historical recombination rate estimates of HD intervals were scaled within             

each window by dividing them by their estimated local effective population size (​i.e.             

for window ​j​). For windows lying within 4 Mb of the chromosome ends,( α  ν ν ) exp ˆ j +  ˆ2j −  ˆ1j               

historical recombination rate estimates were scaled using the genome-wide average effective           

population size exp( ). This led eventually to estimates of the meiotic recombination rates,  αî            

expressed in centiMorgans per megabase, for all intervals of the HD SNP array, which we termed a                 

high resolution recombination map. 

 

Effect of recombination hotspots on the recombination rate 

 
For each interval of the medium density SNP array, we computed the number of significant               

hotspots detected as explained above and the hotspot density (number of hotspots per unit of               

physical distance). After having corrected for the chromosome effect, the GC content effect and for               

windows farther than 4 Mb of the chromosome end, we fitted a linear regression model to estimate                 

the effect of hotspots density on  the meiotic recombination rate.  

 

Comparison with Soay sheep recombination maps and integration of the two           

datasets to produce new male recombination maps in Sheep 

 
In order to compare the recombination maps in Lacaune with the previously established maps in               

Soay sheep ​(Susan E. Johnston et al. 2016)​, we downloaded the raw data from the dryad data                 

repository (doi: 10.5061/dryad.pf4b7) and the additional information available on         

https://github.com/susjoh/GENETICS_2015_185553​. As the approach used in ​(Susan E. Johnston         

et al. 2016) to establish recombination maps differs from the one used here, we chose to apply the                  

method of this study to the Soay data to perform a comparison that would not be affected by                  

difference in methods. As the Lacaune data consist only of male meioses, we also only considered                

male meioses in the Soay data. The final Soay dataset used consisted of 3,445 individuals among                

which were 299 male FIDs, defined as in the Lacaune analysis. After detecting crossovers with               

LINKPHASE, one FID exhibited a very high average number of crossover per meiosis (> 100) and                

was not considered in the analyses (Soay individual ID : RE4844), leaving 298 FIDs. The final                
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dataset consisted of 88,683 crossovers in 2,609 male meiosis and was used to estimated meiotic               

recombination maps using the exact same approach as described above, both on intervals of one               

megabase and on the same intervals as the ones considered in the Lacaune meiotic maps on the                 

medium density SNP array. Note that the Soay sheep are not necessarily polymorphic for the same                

markers as the Lacaune, but that our method is flexible and can nonetheless estimate recombination               

rates in intervals bordered by monomorphic markers: in such a case adjacent intervals will have the                

same estimated recombination rate. As the two populations were found to have very similar meiotic               

recombination maps (see Results), the two sets of crossovers were finally merged to create a               

combined dataset of 302,298 crossovers in 8,549 male meioses and to estimate new male sheep               

recombination maps, again on one megabase intervals and on intervals of the medium density SNP               

array. 

Genome-Wide Association Study on Recombination     

Phenotypes 

Genome-wide Recombination Rate (GRR) 

 

The set of crossovers detected was used to estimate the genome-wide recombination rate (GRR) of               

each FID in the family dataset from their observed number of crossovers per meiosis, adjusting for                

covariates: year of birth of the parent, considered as a cofactor with 14 levels for years spanning                 

from 1997 to 2010 and insemination month of the offspring’s ewe, treated as a cofactor with 7                 

levels for months spanning from February to August. We used a mixed-model for estimating the               

population average GRR μ, covariates fixed effects β and individual breeding values u​s​, while              

controlling for non genetic individual specific effects a​s​: 

 

    y x β e   so = μ +  so + as + us +  so   

 

with , a​s ~ N(0,Iσ​a​2​) and , where is the number of crossovers in (0, σ )  us ~ N A s
2       (0, σ )eso ~ N I e

2   yso       

the meiosis between FID ​s and offspring o​, A is the pedigree-based relationship matrix between               

FIDs and the line of the corresponding design matrix for observation . We fitted this model  xso          yso      

using ​BLUPf90 ​(Misztal et al., 2002) and extracted: (i) estimates of variance components , σ​a​2             σe
2    
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and , which allows to estimate the heritability of the trait (calculated as /( + σ​a​2 + )) σs
2             σs

2 σs
2   σe

2  

and (ii) prediction  of GRR deviation for each FID. us̃  

 

Genotype Imputation 

   

Nineteen of the 345 FIDs are present in the diversity dataset of HD genotypes. For the 336                 

remaining FIDs, their HD genotypes at 507,784 SNPs were imputed with BimBam ​(Guan and              

Stephens 2008; Servin and Stephens 2007) using the 70 unrelated Lacaune individuals as a panel.               

To impute, BimBam uses the fastPHASE model ​(Scheet and Stephens 2006)​, which relies on              

methods using cluster of haplotypes to estimate missing genotypes and reconstruct haplotypes from             

unphased SNPs of unrelated animal. BimBam was run with 10 expectation-maximization (EM)            

starts, each EM was run 20 steps on panel data alone, and an additional 1 step on cohort data, with a                     

number of clusters of 15. After imputation BimBam estimates for each SNP in each individual an                

average number of alleles, termed ​mean genotype​, computed from the posterior distribution of the              

three possible genotypes. This mean genotype has been shown to be efficient for performing              

association tests ​(Guan and Stephens 2008)​. In subsequent analyses, we used the mean genotypes              

provided by BimBam of the 345 FIDs at all markers of the HD SNP array. To assess the quality of                    

genotype imputation at the most associated regions, 10 markers of the HD SNP array, 1 in                

chromosome 6 associated region and 9 in the chromosome 7 associated region (see Results) were               

genotyped for 266 FIDs for which DNA samples were still available. We evaluated the quality of                

imputation for the most significant SNPs by comparing for each possible genotype its posterior              

probability estimated by Bimbam to the error rate implied by calling it. We observed a very good                 

agreement between the two measures (Figure S3), which denoted good calibration of the imputed              

genotypes at top GWAS hits. 

 

Single- and multi-QTLs GWAS on GRR 

   

We first tested association of individual breeding values ũ​s with mean genotypes at 503,784 single               

SNPs imputed with BimBam. We tested these associations using the univariate mixed-model            

approach implemented in the Genome-wide Efficient Mixed Model Association (Gemma) software           
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(Zhou and Stephens, 2012). To accounts for polygenic effects on the trait, the centered genomic               

relationship matrix calculated from the mean genotypes was used. The p-values reported in the              

results correspond to the Wald test.  

To go beyond single SNP association tests, we also estimated a Bayesian sparse linear mixed-model               

(Zhou, Carbonetto, and Stephens 2013) as implemented in Gemma. This method allows to consider              

multiple QTLs in the model, together with polygenic effects at all SNPs. The principle of the                

method is to have for each SNP ​l ​an indicator variable ɣ​l that takes value 1 if the SNP is a QTL and                       

0 otherwise. The strength of evidence that a SNP is a QTL is measured by the posterior probability                  

P(ɣ​l​=1), called posterior inclusion probability (PIP). Note that all SNPs are included in the model               

when doing so. Inference of the model parameters is performed using an iterative MCMC              

algorithm: the number of iterations was set to 10 millions and inference was made on samples                

extracted every 100 iterations. When a genome region harbors a QTL, multiple SNP in the region                

can have elevated PIPs. To summarize the strength of evidence for a ​region to carry a QTL, we                  

calculated a rolling sum of PIPs over 50 consecutive SNPs using the rollsum function of the R zoo                  

package ​(Zeileis and Grothendieck 2005)​. Given that the average physical distance between SNPs             

on the high-density SNP array is about 5 kilobases, this procedure interrogates the probability of the                

presence of a QTL in overlapping windows of approximately 250 kilobases.  

 

For the univariate analysis, the False Discovery Rate was estimated using the ash package              

(Stephens 2017) and SNPs corresponding to an FDR < 10% were deemed significant and annotated.               

For the multivariate analysis, regions where the rolling sum of PIPs exceeded 0.15 were further               

annotated. The annotation of the QTL regions consisted in extracting all genes from the Ensembl               

annotation v87 along with their Gene Ontology (GO) annotations and interrogated for their possible              

involvement in recombination.  
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Variant Discovery and Additional Genotyping in ​RNF212 

Identification and assignation of the ​RNF212​ sheep genome sequence 

 

The ​RNF212 gene was not annotated on the ​Ovis aries v3.1 reference genome. Nevertheless, a full                

sequence of ​RNF212 was found in the scaffold01089 of ​Ovis orientalis (assembly Oori1, NCBI              

accession NW_011943327). By BLAST alignment of this scaffold, ovine ​RNF212 could be located             

with confidence on chromosome 6 in the interval OAR6:116426000-116448000 of Oari3.1           

reference genome (Figure S4). This location was confirmed by BLAST alignment with the bovine              

RNF212 gene sequence. We also discovered that the Oari3.1 unplaced scaffold005259 (NCBI            

accession JH922970) contained the central part of ​RNF212 (exons 4-9) and it could be placed               

within a large assembly gap. Moreover, we also observed that automatically annotated non-coding             

RNA in the ​RNF212​ interval matched exonic sequence of ​RNF212​ (Figure S4). 

 

Variant discovery in ​RNF212​ in the Lacaune population 

 

Based on the genomic sequence and structure of the ​RNF212 gene annotated in ​Ovis orientalis               

(NCBI accession NW_011943327), a large set of primers were designed using PRIMER3 software             

(Table S1) for amplification of each annotated exon and some intron part corresponding to exonic               

region annotated in ​Capra hircus (Chir_v1.0). PCR amplification (GoTaq, Promega) with each            

primer pair was realized on 50ng of genomic DNA from 4 selected homozygous Lacaune animals               

exhibiting the GG and AA (non imputed) genotypes at the most significant SNP of the medium                

density SNP array of the chromosome 6 QTL (rs418933055, p-value 2.56e-17). Each PCR product              

was sequenced via the BigDye Terminator v3.1 Cycle Sequencing kit and analyzed on an ABI3730               

sequencing machine (Applied Biosystems). Sequenced reads were aligned against the ​Ovis           

orientalis ​RNF212 gene using CLC Main Workbench Version 7.6.4 (Qiagen Aarhus) in order to              

identify polymorphisms. 
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Genotyping of mutations in ​RNF212 

 
The genotyping of 266 genomic DNA from Lacaune animals for the four identified polymorphisms              

within the ovine ​RNF212 gene was done by Restriction Fragment Length Polymorphism (RFLP)             

after PCR amplification using dedicated primers (Table S1) (GoTaq, Promega), restriction enzyme            

digestion (BsrBI for SNP_14431_AG; RsaI for SNP_18411_GA; and Bsu36I for both           

SNP_22570_CG and SNP_22594_AG; New England Biolabs) and resolution on 2% agarose gel.  

 

Results 

High-Resolution Recombination Maps 

Meiotic recombination maps: genome-wide recombination patterns 

 
We studied meiotic recombination using a pedigree of 6,230 individuals, genotyped for a medium              

density SNP array (50K) comprising around 54,000 markers. After quality controls we exploited             

genotypes at 46,813 SNPs and identified 213,615 crossovers in 5,940 meioses divided among 345              

male parents (FIDs) (see Methods). The pedigree information available varied among focal            

individuals (Figure 1): 210 FIDs had their father genotype known while the remaining 135 did not.                

Having a missing parent genotype did not affect the detection of crossovers as the average number                

of crossovers per meiosis in the two groups was similar (36.1 with known father genotype and 35.8                 

otherwise) and the statistical effect of the number of offspring on the average number of crossovers                

per meiosis was not significant (p>0.23). This can be explained by the fact that individuals that                

lacked father genotype information typically had a large number of offspring (17.4 on average,              

ranging from 4 to 111), allowing to infer correctly their haplotype phase from their offspring               

genotypes only. Overall, given that the physical genome size covered by the medium density SNP               

array is 2.45 gigabases, we estimate that the mean recombination rate in our population is about 1.5                 

cM/megabase.   
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Based on the crossovers identified, we developed a statistical model to estimate meiotic             

recombination rates (see methods) and constructed meiotic recombination maps at two different            

scales: for windows of one megabase and for each interval of the medium density SNP array. As                 

this statistical approach allowed to evaluate the uncertainty in recombination rate estimates, we             

provide respectively in File S1 and S2, along with the recombination rate estimates in each interval,                

their posterior variance and 90% credible intervals. Graphical representation of the meiotic            

recombination maps of all autosomes are given in File S3. 

 

The recombination rate on a particular chromosome region was found to depend highly on its               

position relative to the telomere and to the centromere for metacentric chromosomes, ​i.e.             

chromosomes 1, 2 and 3 in sheep (Figure S5). Specifically, for acrocentric and metacentric              

chromosomes, recombination rate estimates were elevated near telomeres and centromeres, but very            

low within centromeres. In our analysis, recombination rate estimates were found low in intervals              

lying within 4 megabases of chromosome ends. While this could represent genuine reduction in              

recombination rates near chromosome ends it is also likely due to crossovers being undetected in               

our analysis as only few markers are informative to detect crossovers at chromosome ends. In the                

following analyses, we therefore did not consider regions lying within 4 Mb of the chromosomes               

ends. 

 

From local recombination rate estimates in 1 Mb windows or medium SNP array intervals, we               

estimated chromosome specific recombination rates (Figure S6). Difference in recombination rates           

between chromosomes was relatively well explained by their physical size, larger chromosomes            

exhibiting smaller recombination rates. Even after accounting for their sizes, some chromosomes            

showed particularly low (chromosomes 9, 10 and 20) or particularly high (chromosomes 11 and 14)               

recombination rates. In low recombining chromosomes, large regions had very low recombination,            

between 9 and 14 Mb on chromosome 9, 36 and 46 Mb on chromosome 10 and between 27 and 31                    

Mb on chromosome 20. In highly recombining chromosomes, recombination rates were globally            

higher on chromosome 14, while chromosome 11 exhibited two very high recombination windows             

between 7 Mb and 8 Mb and between 53 and 54 Mb. In addition, we found, consistent with the                   

literature, that GC content was quite significantly positively correlated with recombination rate both             

in medium SNP array intervals (p-value < 10​-16​, r=0.20) and in 1 Mb intervals (p-value < 10​-16 ,                  

r=0.28). 
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Estimation of historical recombination rates and identification of crossover         

hotspots 

 
We used a different dataset, with 51 unrelated individuals from the same Lacaune population              

genotyped for the Illumina HD SNP array (600K) comprising 527,823 autosomal SNPs after quality              

controls. Using a multipoint model for LD patterns ​(N. Li and Stephens 2003)​, we estimated, for                

each marker interval of the HD SNP array, historical recombination rates ⍴ (see Methods).              

Compared to meiotic maps, these estimates offer a greater precision as they in essence exploit               

meioses cumulated over many generations. However, the historical recombination rates obtained           

are scaled by the effective population size ( where Ne is the effective population size         N  cρ = 4 e         

and c the meiotic recombination rate) which is unknown, and may vary along the genome due to                 

evolutionary pressures, especially selection. Thanks to the higher precision in estimation of            

recombination rate, LD-based recombination maps offer the opportunity to detect genome intervals            

likely to harbour crossover hotspots. A statistical analysis of historical recombination rates (see             

Methods) identified about 50,000 intervals exhibiting elevated recombination intensities (Figure S2)           

as recombination hotspots, corresponding to an FDR of 5%. From our historical recombination             

map, we could conclude that 80% crossover events occurred in 40% of the genome and that 60% of                  

crossover events occurred in only 20% of the genome (Figure S7). 

 

High-resolution recombination maps combining family and population data 

 
Having constructed recombination maps with two independent approaches and having datasets in            

the same population of Lacaune sheep allowed first to evaluate to which extent historical crossover               

hotspots explain meiotic recombination, and second to estimate the impact of evolutionary            

pressures on the historical recombination landscape of the Lacaune population. We present our             

results on these questions in turn. 

 

We studied whether variation in meiotic recombination can be attributed to the historical crossover              

hotspots detected from LD patterns only. For each interval between two adjacent SNPs of the               
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medium density array, we (i) extracted the number of significant historical hotspots and (ii)              

calculated the historical hotspot density (in number of hotspots per unit of physical distance). We               

found both covariates to be highly associated with meiotic recombination rate estimated on family              

data ( r=0.15 with hotspot density (p < 10​-16​) and r=0.19 with the number of hotspots (p<10​-16​)).                 

These correlations hold after correcting for chromosome and GC content effects (respectively            

r=0.14 (p<10​-16​) and r=0.18 (p<10​-16​)). Figure 2 illustrates this finding in two one-megabase             

intervals from chromosome 24, one that exhibits a very high recombination rate (7.08 cM/Mb) and               

the second a low one (0.46 cM/Mb). In this comparison, the highly recombining window carries 36                

recombination hotspots while the low recombinant one exhibits none. As the historical background             

recombination rates in the two windows are similar (0.7/Kb for the one with a high recombination                

rate, and 0.2/Kb for the other), the difference in recombination rate between these two regions is                

largely due to their contrasted number of historical crossover hotspots.  

 

In order to study more precisely the relationship between historical and meiotic recombination rates,              

we fitted a linear mixed model (see Methods) that allowed to estimate the average effective               

population size of the population, the correlation between meiotic and historical recombination rates             

and to identify genome regions where historical and meiotic recombination rates were significantly             

different. We found the effective population size of the Lacaune population to be about 7,000               

individuals and a correlation of 0.73 between meiotic and historical recombination rates (Figure 3).              

We discovered 7 regions where historical recombination rates were much lower than meiotic ones              

and 3 regions where they were much higher (Table 1, Figure S8). Seven of these 10 regions have                  

extreme recombination rates compared to other genomic regions. To quantify to which extent a              

window is extreme, we indicate in Table 1, for each window, the proportion of the genome with a                  

lower recombination rate (q​w​). For 6 of these 7 regions, the historical recombination rate is more                

extreme than the meiotic rate: four regions have very low meiotic recombination rate and even               

lower historical recombination rates (the two regions on chromosome 3 and two regions on              

chromosome 10, between 36-37 megabases and between 42-44 megabases); two regions have very             

high meiotic recombinations rates and even higher historical recombination rates (on chromosome            

12 and on chromosome 23). For these six regions, the discrepancy between meiotic recombination              

and historical recombination estimates can be explained by the fact that we used a genome-wide               

prior in our model to estimate meiotic recombination rates that has the effect of shrinking our                

estimates toward the mean. Because historical estimates were not shrunk in the same way, for these                
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six outlying regions the two estimates did not concur and it is possible that our meiotic                

recombination rate estimates were slightly over (resp. under) estimated.  

Out of the four remaining outlying windows, three had a low historical recombination rate but did                

not have particularly extreme meiotic recombination rates, so that the effect of shrinkage is not               

likely to explain the discrepancy between meiotic and historical recombination rates. Indeed, these             

three regions corresponded to previously identified selection signatures in sheep: a region on             

chromosome 6 spanning 2 intervals between 36 and 38 megabases contains the ​ABCG2 gene,              

associated to milk production ​(Cohen-Zinder et al. 2005)​, and the ​LCORL gene associated to stature               

(recently reviewed in ​(Takasuga 2015)​). This region has been shown to have been selected in the                

Lacaune breed ​(Fariello et al. 2014; Rochus et al. 2017)​; a region spanning one interval on                

chromosome 10, between 29 and 30 megabases contains the ​RXFP2 gene, associated to polledness              

and horn phenotypes ​(Susan E. Johnston et al. 2013) and found to be under selection in many sheep                  

breeds ​(Fariello et al. 2014)​; and a region on chromosome 13 between 63 and 64 megabases that                 

contains the ​ASIP gene responsible for coat color phenotypes in many breeds of sheep ​(Norris and                

Whan 2008)​, again previously demonstrated to have been under selection. For these three regions,              

we explain the low historical recombination estimates by a local reduction of the effective              

population size due to selection.  

Finally, one of the three regions with a high historical recombination rate, on chromosome 20               

between 28 and 29 megabases had a low meiotic recombination rate, so that the effect of shrinkage                 

cannot explain the discrepancy. This region harbours a cluster of olfactory receptors genes and its               

high historical recombination rate could be explained by selective pressure for increased genetic             

diversity in these genes (​i.e. ​diversifying selection), a phenomenon which has been shown in other               

species (​e.g. pig ​(Groenen et al. 2012)​, human ​(Ignatieva et al. 2014)​, rodents ​(Stathopoulos,              

Bishop, and O’Ryan 2014)​). Finally, we used the meiotic recombination rates to scale the historical               

recombination rate estimates and produce high-resolution recombination maps on the HD SNP            

array (Supporting File S4). 

 

Improved male recombination maps by combining Lacaune and Soay sheep          

data 

 

Recently, recombination maps have been estimated in another sheep population, the Soay ​(Susan E.              

20 

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 3, 2017. ; https://doi.org/10.1101/104976doi: bioRxiv preprint 

https://doi.org/10.1101/104976
http://creativecommons.org/licenses/by-nd/4.0/


Johnston et al. 2016)​. Soay sheep is a feral population of ancestral domestic sheep living on an                 

island located northwest of Scotland. The Lacaune and Soay populations are genetically very             

distant, their genome-wide Fst, calculated using the sheephapmap data ​(Kijas et al. 2012)​, being              

about 0.4. Combining our results with results from the Soay offered a rare opportunity to study the                 

evolution of recombination over a relatively short time scale as the two populations can be               

considered separated at most dating back to domestication, about 10,000 years ago. The methods              

used in the Soay study are different from those used here, but the two datasets are similar, although                  

the Soay data has fewer male meioses (2,604 vs. 5,940 in the present study). In order to perform a                   

comparison that would not be affected by differences in estimation methods, we ran the method               

developed for the Lacaune data to estimate recombination maps on the Soay data. As the Soay                

study showed a clear effect of sex on recombination rates, we estimated recombination maps on               

male meioses only. Figure 4 presents the comparison of recombination rates between the two              

populations in marker intervals of the medium density SNP array. The left panel shows that the two                 

populations exhibit very similar recombination rates (r = 0.82, p<10​-16​), although Soay            

recombination rates appear higher for low recombining intervals ( c < 1.5 cM/Mb in gray on the                 

figure). We explain this by the shrinkage effect of the prior, that is more pronounced in the Soay as                   

the dataset is smaller: the right panel on Figure 4 shows that the posterior variance of the                 

recombination rates are clearly higher in Soays for low recombining intervals while they are similar               

for more recombining intervals. Overall, our results on the comparison of the recombination maps              

in the two populations are consistent with the two populations having the same amplitude and               

distribution of recombination on the genome. We therefore analyzed the two populations together to              

create new male recombination maps based on 302,298 crossovers detected in 8,549 meioses             

(Supporting file S5). Combining the two dataset together lead to a clear reduction in the posterior                

variance of the recombination rates, i.e. an increase in their precision (Figure S9). 

 

Genetic Determinism of Genome-wide Recombination Rate in       

Lacaune sheep 

 
Our dataset provides information on the number of crossovers for a set of 5,940 meioses among 345                 

male individuals. Therefore, it allows to study the number of crossovers per meiosis (GRR) as a                
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recombination phenotype. 

 

Genetic and environmental effects on GRR 

 
We used a linear mixed-model to study the genetic determinism of GRR. The contribution of               

additive genetic effects was estimated by including a random FID effect with covariance structure              

proportional to the matrix of kinship coefficients calculated from pedigree records (see Methods).             

We also included environmental fixed effects in the model: year of birth of the FID and                

insemination month of the ewe for each meiosis. We did not find significant differences between               

the FID year of birth, however the insemination month of the ewe was significant (p = 1.3 10​-3​).                  

There was a trend in increased recombination rates from February to May followed by a decrease                

until July and a regain in August although the number of inseminations in August is quite low,                 

leading to a high standard error for this month (Figure S10). Based on the estimated variance                

components (Table 2), we estimated the heritability of GRR in the Lacaune male population at 0.23.  

 

 

Genome-wide association study identifies three major loci affecting GRR in          

Lacaune sheep 

 
The additive genetic values of FIDs, predicted from the above model were used as phenotypes in a                 

genome-wide association study. Among the 345 FIDs with at least two offsprings, the distribution              

of the phenotype was found to be approximately normally distributed (Figure S11). To test for               

association of this phenotype with SNPs markers, we used a mixed-model approach correcting for              

relatedness effects with a genomic relationship matrix (see Methods). Using our panel of 70              

unrelated Lacaune, we imputed the 345 FIDs for markers of the HD SNP array. With these imputed                 

genotypes, we performed two analyses. The first was an association test with univariate linear              

mixed models, which tested the effect of each SNP in turn on the phenotype (results in Supporting                 

File S6) the second fitted a Bayesian sparse linear mixed model, allowing multiple QTLs to be                

included in the model (results in Supporting File S7).  

 

22 

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 3, 2017. ; https://doi.org/10.1101/104976doi: bioRxiv preprint 

https://doi.org/10.1101/104976
http://creativecommons.org/licenses/by-nd/4.0/


Figure 4 illustrates the GWAS results: the top plot shows the p-values of the single SNP analysis                 

and the bottom plot, the posterior probability that a region harbours a QTL, calculated on               

overlapping windows of 20 SNPs. The single SNP analysis revealed six significant regions (FDR <               

10 %): two on chromosome 1, one on chromosome 6, one on chromosome 7, one on chromosome                 

11 and one chromosome 19. Regions of chromosome 6 and 7 exhibited very low p-values whereas                

the other three showed less intense association signals. The multi-QTLs Bayesian analysis was             

conclusive for two regions (regions on chromosome 6 and chromosome 7) while the rightmost              

region on chromosome 1 was suggestive (Table 3). Two additional suggestive regions were             

discovered on chromosome 3. Using the multi-QTL approach of ​(Zhou, Carbonetto, and Stephens             

2013) allowed to estimate that together, QTLs explain about 40% of the additive genetic variance               

for GRR, with a 95% credible interval ranging from 28 to 53 %. 

 

The most significant region was located on the distal end of chromosome 6 and corresponded to a                 

locus frequently associated to variation in recombination rate. In our study the significant region              

contained 10 genes: ​CTBP1​, ​IDUA​, ​DGKQ​, ​GAK​, ​CPLX1​, ​UVSSA​, ​MFSD7​, ​PDE6B​, ​PIGG and             

RNF212​. For each of these genes, except ​RNF212 which was not annotated on the genome (see                

below), we extracted their gene ontology of the Ensembl v87 database, but none was clearly               

annotated as potentially involved in recombination. However, two genes were already reported as             

having a statistical association with recombination rate: ​CPLX1 and ​GAK ​(Augustine Kong et al.              

2014)​. ​CPLX1 has no known function that can be linked to recombination ​(Augustine Kong et al.                

2014) but ​GAK has been shown to form a complex with the cyclin-G, which could impact                

recombination ​(Nagel et al. 2012)​. However, ​RNF212 can be deem a more likely candidate due to                

its function and given that this gene was associated with recombination rate variation in human               

(Chowdhury et al. 2009)​,​(A. Kong et al. 2008b)​, in bovine ​(Sandor et al. 2012b; Kadri et al. 2016b;                  

Ma et al. 2015) and in mouse ​(Reynolds et al. 2013)​. ​RNF212 is not annotated in the sheep genome                   

assembly oviAri3, however this chromosome 6 region corresponds to the bovine region that             

contains ​RNF212 ​(Figure S4). We found an unassigned scaffold (scaffold01089, NCBI accession            

NW_011943327) of ​Ovis orientalis musimon (assembly Oori1) that contained the full ​RNF212            

sequence and that could be placed confidently in the QTL region. To confirm ​RNF212 as a valid                 

positional candidate, we studied further the association of its polymorphisms with GRR in results              

presented below. 
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The second most significant region was located between 22.5 and 23.1 megabases on chromosome              

7. All significant SNPs in the region were imputed, ​i.e. the association would not have been found                 

based on association of the medium density array alone. It matched an association signal on GRR in                 

Soay sheep ​(Susan E. Johnston et al. 2016)​. Consistent with our finding, in the Soay sheep study,                 

this association was only found using regional heritability mapping and not using single SNP              

associations with the medium density SNP array. This locus could match previous findings in cattle               

(association on chromosome 10 at about 20 Mb on assembly btau3.1), however the candidate genes               

mentioned in this species (​REC8 and ​RNF212B​) were located respectively 2 and 1.5 megabases              

away from our strongest association signal. In addition, none of the SNPs located around these two                

candidate genes in cattle were significant in our analysis. Eleven genes were present in the region:                

OR10G2​, ​OR10G3​, ​TRAV5​, ​TRAV4​, ​SALL2​, ​METTL3​, ​TOX4​, ​RAB2B​, ​CHD8​, ​SUPT16H and           

RPGRIP1​. The study of their gene ontology, extracted from the Ensembl v87 database, revealed              

that none of them were associated with recombination, although ​SUPT16H could be involved in              

mitotic DSB repair ​(Kari et al. 2011)​. However another functional candidate, ​CCNB1IP1​, also             

named ​HEI10​, was located between positions 23,946,971 and 23,951,850 bp, about 500 Kb from              

our association peak. This gene is a good functional candidate as it has been shown to interact with                  

RNF212​: ​HEI10 allows to eliminate the ​RNF212 protein from early recombination sites and to              

recruit other recombination intermediates involved in crossover maturation ​(Qiao et al. 2014; Rao et              

al. 2016)​. Again SNPs located at the immediate proximity of ​HEI10 did not exhibit significant               

associations with GRR. Hence, our association signal did not allow to pinpoint any clear positional               

candidate among these functional candidates (see Figure S12). However, it was difficult to rule              

them out completely for three reasons. First, with only 345 individuals, our study may not be                

powerful enough to localize QTLs with the required precision. Second, the presence of causal              

regulatory variants, even at distances of several hundred kilobases is possible. Finally, the             

associated region of ​HEI10 exhibited apparent rearrangements with the human genome, possibly            

due to assembly problems in oviAri3. These assembly problems could be linked to the presence of                

genomic sequences coding for the T-cell receptor alpha chain. This genome region is in fact rich in                 

repeated sequences making its assembly challenging. Overall, identifying a single positional and            

functional candidate gene in this gene-rich misassembled genomic region was not possible based on              

our data alone.  

Our third associated locus was located on chromosome 1 between 268,600 and 268,700 kilobases.              

In cattle, the homologous region, located at the distal end of cattle chromosome 1, has also been                 
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shown to be associated with GRR ​(Kadri et al. 2016a; Ma et al. 2015)​. In these studies the ​PRDM9                   

gene has been proposed as a potential candidate gene, especially because it is a strong functional                

candidate given its proven effect on recombination phenotypes. In sheep, ​PRDM9 is located at the               

extreme end of chromosome 1, around 275 megabases, 7 megabases away from our association              

signal ​(Ahlawat et al. 2016)​. Hence, ​PRDM9 was not a good positional candidate for association               

with GRR in our sheep population. However, the associated region on chromosome 1 contains a               

single gene, ​KCNJ15​, which has been associated with DNA double-strand breaks repair in human              

cells ​(Słabicki et al. 2010)​. 

Finally, the two regions on the chromosome 3 were analyzed. The first was located between 75,162                

and 75,319 kilobases and contains only one annotated gene coding for the receptor for              

follicle-stimulating hormone (​FSHR​). Though it does not affect recombination directly it is            

necessary for the initiation and maintenance of normal spermatogenesis in males ​(Tapanainen et al.              

1997)​. The second region on the chromosome 3 was located between 201,198 and 201,341              

kilobases but does contain any annotated gene. 

 

Mutations in the ​RNF212 gene are strongly associated to Genome-wide          

Recombination Rate variation in Lacaune sheep 

 
The QTL with the largest effect in our association study corresponded to a locus associated to GRR                 

variation in other species and harbouring the ​RNF212 gene. As it was a clear positional and                

functional candidate gene, we carried out further experiments to interrogate specifically           

polymorphisms within this gene. As stated above, we used the sequence information available for              

the ​RNF212 gene from ​Ovis orientalis which revealed that ​RNF212 spanned 23,7 Kb on the               

genome and may be composed of 12 exons by homology with bovine ​RNF212​. However, mRNA               

annotation indicated multiple alternative exons. Surprisingly, the genomic structure of ovine           

RNF212 was not well conserved with goat, human and mouse syntenic ​RNF212 genes (Figure S4).               

As a first approach, we designed primers for PCR amplification (see Methods) and sequencing of               

all annotated exons and some intronic regions corresponding to exonic sequences of ​Capra hircus              

RNF212​. By sequencing ​RNF212 from 4 carefully chosen Lacaune animals homozygous GG or AA              

at the most significant SNP of the medium density SNP array on chromosome 6 QTL               

(rs418933055, p-value 2.56 10​-17​), we evidenced 4 polymorphisms within the ovine ​RNF212 gene             
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(2 SNPs in intron 9, and 2 SNPs in exon 10). The 4 mutations were genotyped in 266 individuals of                    

our association study. We then tested their association with GRR using the same approach as               

explained above (results in Supporting File S8) and computed their linkage disequilibrium            

(genotypic r​2​) with the most associated SNPs of the high-density genotyping array (see Figure S13)               

(Table 4). Two of these mutations were found highly associated with GRR, their p-values being of                

the same order of magnitude (p<10​-16​) as the most associated SNP (rs412583165), one of them was                

even more significant than the most significant imputed SNP (p = 6.25 10​-17 vs p = 9.8 10​-17​). We                   

found a clear agreement between the amount of LD between a mutation and the most associated                

SNPs and their association p-value (see Figure S13). Overall, these results showed that             

polymorphisms within the ​RNF212 gene were strongly associated with GRR, and likely tagged the              

same causal mutation as the most associated SNP. This confirmed that ​RNF212​, a very strong               

functional candidate, was also a very strong positional candidate gene underlying our association             

signal. 

 

The genetic determinism of recombination differ between       

Soay and Lacaune males 

 

GWAS in the Soay identified two major QTLs for GRR, with apparent sex-specific effects. These               

two QTLs were located in the same genomic regions as our QTLs on chromosome 6 and                

chromosome 7. The chromosome 6 QTL was only found significant in Soay females, while we               

detect a very strong signal in Lacaune males. Although the QTL was located in the same genomic                 

region, the most significant SNPs were different in the two GWAS (Figure 6). Two possible               

explanations could be offered for these results: either the two populations have the same QTL               

segregating and the different GWAS hits correspond to different LD patterns between SNPs and              

QTLs in the two populations, or the two populations have different causal mutations in the same                

region. Denser genotyping data, for example by genotyping the RNF212 mutations identified in             

this work in the Soay population, would be needed to have a clear answer. For the chromosome 7                  

QTL, the signal was only found using regional heritability mapping ​(Nagamine et al. 2012) in the                

Soay, and after genotype imputation in our study, which makes it even more difficult to               

discriminate between a shared causal mutation or different causal mutations at the same location in               
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the two populations. 

 

Discussion 
 
In this study, we studied the distribution of recombination along the sheep genome and its               

relationship to historical recombination rates. We showed that contemporary patterns of           

recombination are highly correlated to the presence of historical hotspots. We showed that the              

recombination patterns along the genome are conserved between distantly related sheep populations            

but that their genetic determinism of genome-wide recombination rates differ. In particular, we             

showed that polymorphisms within the ​RNF212 ​gene are strongly associated to male recombination             

in Lacaune whereas this genomic region shows no association in Soay males. Hence, combining              

three datasets, two pedigree datasets in distantly related domestic sheep populations and a densely              

genotyped sample of unrelated animals, revealed that recombination rate and its genetic            

determinism can evolve at short time scales, as we discuss below. 

Fine-scale Recombination Maps 

 
In this work, we were able to construct fine-scale genetic maps of the sheep autosomes by                

combining two independent inferences on recombination rate. Our study on meiotic recombination            

from a large pedigree dataset revealed that sheep recombination exhibits general patterns similar to              

other mammals ​(Shifman et al. 2006; Chowdhury et al. 2009; Tortereau et al. 2012)​. First, sheep                

recombination rates were elevated at the chromosome ends, both on acrocentric and metacentric             

chromosomes. In the latter, our analysis revealed a clear reduction in recombination near             

centromeres. Second, recombination rate depended on the chromosome physical size, consistent           

with an obligate crossover per meiosis irrespective of the chromosome size. These patterns were              

consistent with those established in a very different sheep population, the Soay ​(Susan E. Johnston               

et al. 2016)​, and indeed when re-analysing the Soay data with the same approach as used in this                  

study, the results showed a striking similarity between recombination rates in the two populations.              

Hence, our results show that recombination patterns were conserved over many generations and             

despite the very different evolutionary histories of the two populations and clear differences in the               
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genetic determinism of GRR in males of the two populations. This similarity allowed to combine               

the two datasets to create more precise male sheep recombination maps than any of the two studies                 

taken independently.  

 

Our historical recombination maps revealed patterns of recombination at the kilobase scale, with             

small highly recombining intervals interspaced by more wide, low recombining regions. This result             

was consistent with the presence of recombination hotspots in the highly recombinant intervals. A              

consequence was that, as observed in other species, the majority of recombination took place in a                

small portion of the genome: we estimated that 80% of recombination takes place in 40% of the                 

genome. ​(Kaur and Rockman 2014) suggested to use a Gini coefficient as a measure of the                

heterogeneity in the distribution of recombination along the genome to facilitate inter-species            

comparisons. When calculated on the historical recombination data, the Lacaune sheep has a             

coefficient of 0.52, which is similar to what is observed in Drosophila but lower than that measured                 

in humans or mice. However, the coefficient calculated here is likely an underestimate due to our                

limited resolution (a few kilobases on the HD SNP array) compared to the typical hotspot width (a                 

few hundred base-pairs). Overall, we identified 50,000 hotspot intervals which was twice the             

estimated number of hotspots in humans ​(International HapMap Consortium et al. 2007)​. This             

difference can be explained by different non mutually exclusive reasons. First, it is possible that               

what we detect as crossover hotspots are due to genome assembly errors and we indeed found a                 

significant albeit moderate effect (OR ≃ 1.4) of the presence of assembly gaps in an interval on its                  

probability of being called a hotspot. Second, our method to call hotspots could be too liberal.                

Indeed, a more stringent threshold (FDR=0.1%) would lead to about 25,000 hotspots, which would              

be similar to what is found in humans. Third, selection has been shown to impact hotspots                

discoveries although not with the methods we used here ​(Chan, Jenkins, and Song 2012)​. Finally,               

there exists the possibility that historically sheep exhibits more recombination hotspots than            

humans. In any case, the strong association between meiotic recombination rate and density in              

historical hotspots showed that our historical recombination maps were generally accurate. We            

tried to find enrichment in sequence motifs in the detected hotspots or specify their position relative                

to TSS (data not shown), but with no success mainly due to (i) the relative large hotspots intervals                  

(about 5Kb) compared to typical hotspot motifs and (ii) the quality of the sheep genome assembly                

which still contains many small gaps that make such analyses difficult. Ultimately these questions              

would need an improved genome assembly and better resolution of crossover hotspots which             

28 

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 3, 2017. ; https://doi.org/10.1101/104976doi: bioRxiv preprint 

https://doi.org/10.1101/104976
http://creativecommons.org/licenses/by-nd/4.0/


should be addressed in the future from LD-based studies on resequencing data. 

We combined, using a formal statistical approach, meiotic- and LD-based recombination rate            

estimates. Using an approach conceptually similar to that of ​(O’Reilly, Birney, and Balding 2008)              

led us to assess the impact of selection events on the sheep genome, in particular suggesting the                 

possibility of an effect of diversifying selection at olfactory receptors genes. Based on this              

comparison, the correlation between historical and meiotic recombination rates was found to be             

high ( r ≃ 0.7 ), but less than could be expected from previous results in humans, where the                   

correlation was 97% on 5 Mb ​(S. Myers et al. 2006)​. However, it was closer to that of worms, mice                    

or Drosophila, 69%, 47% and 50% respectively (Rockman and Kruglyak 2009, Brunschwig ​et al.              

2012, Chan ​et al. 2012). Again, more precise estimates of both meiotic and historical recombination               

rates could change this number but other causes can be put forward.  

A first explanation could come from the fact that the model we used to estimate historical                

recombination rates is based on the assumption of a constant effective population size, both in the                

past and along the genome. To allow for varying population size along the genome, we estimated                

the model in 2Mb intervals but there is still the possibility that varying population size in the past                  

affect our historical recombination rate estimates, as the method has been shown to be somewhat               

influenced by demography although the identification of crossover hotspots much less so ​(N. Li and               

Stephens 2003)​. Also, as already mentioned above, selection has been shown to have substantial              

impact on estimation of recombination rates with other approaches ​(Chan, Jenkins, and Song 2012)              

although it has not been evaluated for the Li and Stephens model to our knowledge.  

Second, our meiotic recombination maps are based on male meioses only while historical             

recombination rates are averaged over both male and female meioses. The fact that male and female                

recombination differ substantially, in particular in sheep ​(Susan E. Johnston et al. 2016)​, could also               

explain this relatively lower correlation.  

Third, it is also possible that selective pressure due to domestication and later artificial breeding had                

the impact of modifying extensively LD patterns on the sheep genome, degrading the correlation              

between the two approaches. Indeed, the historical recombination estimates summarize ancestral           

recombinations that took place in the past and it is possible that recombination hotspots that were                

present in an ancestral sheep population are not longer active in today’s Lacaune individuals. This               

could arise, for example, if domestication led to a reduction in the diversity of hotspots defining                

genes, such as ​PRDM9​, and hence a reduction in the number of motifs underlying hotspots which                

would in turn change the distribution of recombination on the genome. This has been shown for                
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example in Humans were patterns of recombination differ between populations due to their             

different diversity at ​PRDM9 ​(Berg et al. 2010, 2011; Baudat et al. 2010)​. Eventually, such a                

phenomenon would degrade the correlation between present day recombination (measured by the            

meiotic recombination rates) and past recombination (measured by historical recombination rates).           

Further studies on the determinism of hotspots in the sheep, its related genetic factors and their                

diversity would be needed to elucidate this question. 

Despite these different effects, the substantial correlation between meiotic and historical           

recombination rates motivates the creation of scaled recombination maps that can be useful for              

interpreting statistical analysis of genomic data. As an illustration of the importance of fine-scale              

recombination maps for genetic studies, we found an interesting example in a recent study on               

adaptation of sheep and goat ​(Kim et al. 2016)​. In this study, a common signal of selection was                  

found using the iHS statistic ​(Voight et al. 2006) in these two species (Figure 5 in ​(Kim et al.                   

2016)​). This signature matches precisely the low recombining regions we identified on chromosome             

10. However, the iHS statistic has been shown to be strongly influenced by variation in               

recombination rates, and in particular to tend to detect low recombining regions as selection              

signatures ​(Ferrer-Admetlla et al. 2014; O’Reilly, Birney, and Balding 2008)​. Precise genetic maps             

such as the one we provide in this work could thus help in annotating and interpreting such                 

selection signals.  

 

Determinism of Recombination Rate in sheep populations 

 

As mentioned in the introduction two phenotypes have been studies with respect to the              

recombination process, but only one was studied here, Genome-wide recombination rate (GRR).            

We found that our data was not sufficient to study the Individual Hotspot Usage, which requires                

either a larger number of meioses per individual ​(Ma et al. 2015; Kadri et al. 2016a; Sandor et al.                   

2012a)​ or denser genotyping in families ​(Coop et al. 2008)​.  

Our approach to study the genetic determinism of GRR in the Lacaune population was first to                

estimate its heritability, using a classical analysis in a large pedigree. This analysis also allowed to                

extract additive genetic values (EBVs) for the trait in 345 male parents, which we used for a GWAS                  

in a second step. The EBVs are by definition, only determined by genetic factors, as environmental                
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effects on GRR are averaged out. Indeed, we found that the proportion of variance in EBVs                

explained by genetic factors in the GWAS was essentially one. A consequence was that, although               

this sample size could be deemed low in current standards, the power of our GWAS was greatly                 

increased by the high precision on the phenotype. We estimated the heritability of GRR at 0.23,                

which was similar to estimates from studies on the same phenotype in ruminants (​e.g. ​0.22 in cattle                 

(Sandor et al. 2012a) or 0.12 in male Soay sheep ​(Susan E. Johnston et al. 2016)​, but see below for                    

a discussion on the comparison with Soay sheep). We had little information on the environmental               

factors that could influence recombination rate, but did find a suggestive effect of the month of                

insemination on GRR, especially we found increased GRR at the month of May. Confirmation and               

biological interpretation of this result would need dedicated studies, but it was consistent with the               

fact that fresh (​i.e. not frozen) semen is used for insemination in sheep and that the reproduction of                  

this species is seasonal ​(Rosa and Bryant 2003)​. 

 

The genetic determinism of GRR discovered in our study closely resembles what has been found in                

previous studies, especially in mammals. Two major loci and two suggestive ones affected             

recombination rate in Lacaune. The two main QTLs are common to cattle and Soay sheep. The                

underlying genes and mutations for these two QTLs are not yet resolved but the fact that the two                  

regions harbour interacting genes (​RNF212 and ​HEI10 ​(Qiao et al. 2014; Rao et al. 2016)​) involved                

in the maturation of crossovers, make these two genes likely functional candidates. Indeed, these              

two genes were identified as potential candidates underlying QTLs for GRR in mice ​(R. J. Wang                

and Payseur 2017)​. The third gene identified here, ​KCNJ15​, is a novel candidate, and its role and                 

mechanism of action in the repair of DSBs needs to be confirmed and elucidated. Interestingly,               

these three genes are linked to the reparation of DSBs and crossover maturation processes. Finally,               

the fourth candidate ​FSHR has well documented effects on gametogenesis but has not been linked               

to recombination previously.  

In our study, sixty percent of the additive genetic variance in GRR remained unexplained by large                

effect QTLs and were due to polygenic effects. This could be interpreted in the light of recent                 

evidence that has shown that other mechanisms, involved in chromosome conformation during            

meiosis, explain a substantial part of the variation in recombination rate between mouse strains              

(Baier et al. 2014) and bovids ​(Ruiz-Herrera et al. 2017)​. Furthermore the variations at the major                

mammal recombination loci (​RNF212​, ​CPLX1​, ​REC8 or the Human inversion ​17q21.31​) explain            

only 3 to 11% ​(Ritz, Noor, and Singh 2017) of the phenotypic variance among individuals.               
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Elucidating the genetic determinism of these different processes would thus require much larger             

sample sizes or different experimental approaches ​(Baier et al. 2014; Ruiz-Herrera et al. 2017)​. 

 

The combination of datasets from the Lacaune population and one from the recent study of               

recombination in Soay sheep ​(Susan E. Johnston et al. 2016) allowed to study the evolution of                

recombination at relatively short time scales. One of the most striking difference between our two               

studies is that the two QTLs that were detected in common had no effect in Soay males, whereas                  

they had strong effects in Lacaune males. However, the two populations had very similar polygenic               

heritability: accounting for the fact that the Lacaune QTLs explain about 40% of the additive               

genetic variance, we could estimate the polygenic additive genetic variance in Lacaune males at              

0.16, very similar to the 0.12 found in Soay males. Combined with our results that the two                 

populations exhibit very similar male recombination maps, both in terms of intensity and genome              

distribution, the combination of the two studies shows that recombination patterns are conserved             

between populations under distinct genetic determinism, highlighting the robustness of mechanisms           

that drive them. Further work is needed to get a more detailed picture of the genetic control of                  

recombination in sheep and will likely require combining multiple inferences from genetics,            

cytogenetics, molecular biology and bioinformatics analyses. 
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Figures 
 
 

Figure 1. Families used to infer crossovers events ​. Crossover events were identified in             
meioses of 345 focal individuals (FIDs). 210 FID had their father known (left) while 135 FID                
did not (right).  
 
Figure 2. Comparison between population-based recombination rate and meiotic         
recombination rate for two 1 Mb windows on Sheep chromosome 24. ​Top: meiotic             
recombination rate along chromosome 24. Two windows with high (left,red) and low            
(right,blue) meiotic recombination rates estimates are zoomed in. Each panel represents, from            
top to bottom: meiotic recombination rate estimates (c) in SNP intervals of the 50K SNP               
array, population-based recombination rate estimates (ρ) in SNP intervals of the 50K SNP             
array and population-based recombination rate estimates (ρ) in SNP intervals of the HD             
(~600K) SNP array.  
 
Figure 3. Population-based and meiotic recombination rates in windows of one           
megabase. ​The dashed line is the regression for population recombination rate on the family              
recombination rate. Values are shown on a logarithmic scale.  
 
Figure 4. Comparison of recombination rates in Soay and Lacaune populations. ​Left:            
scatterplot of posterior means of recombination rates (on a log scale). The green line is the                
line y=x and the red line is a lowess smoothed line (f=0.05). Right: Scatterplot of the ratio of                  
posterior variance (Soay/Lacaune) as a function of the average of the posterior mean             
recombination rates in the two populations (on a log scale). The green line corresponds to               
equal variances and the red line is a lowess smoothed line (f=0.05). Points in gray on both                 
panels correspond to intervals with average recombination rate < 1.5 cM/Mb. 
 
Figure 5: Genome-wide association study identifies three main QTLs for GRR. Top:            
-log10 (p-value) for single SNP tests for association. The genome-wide significance level            
(FDR=5%) is represented by the horizontal dotted line. Bottom: posterior probability that a             
region of 20 SNPs harbors a QTL, using a Bayesian multi-QTL model. 
 
Figure 6 : Comparison of GWAS results for the OAR 6 QTL in Lacaune Males (Top),                
Soay Males (Middle) and Soay Females (Bottom) ​The shaded area highlights the predicted             
position of the RNF212 gene. Circle dots are markers tested in both populations. Red dots are                
the new mutations within the RNF212 gene discovered in this study and genotyped in the               
Lacaune population. GWAS results in the Soay are from Johnston et al. (2016). 
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Tables 
 
 
 

Chromosome Window   span 
(Mb) 

q w p-value /cρs  

3 103-104 0.06 1.6   10 -5 0.28 

3 109-110 0.04 1.8   10 -5 0.28 

6 36-38 0.14 1.2   10 -7 0.22 

10 29-30 0.77 8.8   10 -5 0.31 

10 36-37 0.01 2.1   10 -5 0.29 

10 42-44 <0.01 1.2   10 -14 0.11 

13 63-64 0.33 7.4   10 -6 0.31 

12 4-5 0.92 7.4   10 -6 3.7 

20 28-29 0.01 1.7   10 -5 3.6 

23 10-11 0.97 5.1   10 -6 3.8 

 
Table 1. Genome regions where meiotic and population-based recombination         
rates differ significantly. : population-based recombination rate, c: meiotic   ρs       
recombination rate. : ratio of population to meiotic recombination rate. q w :  /cρs          
proportion of genome regions with lower meiotic recombination rate. Details on the            
estimation of these parameters are given in the text. Regions with p-values 10 -4            ≤   
were considered outliers (FDR = 0.02). Regions in bold correspond to potential            
selection   signatures.  
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Table 2. Decomposition of the inter-individual variation in Genome-wide         
Recombination   Rate.  

Phenotype Number   of 
sires 

Genetic 
Variance 

Phenotypic 
Variance 

Heritability 

GRR 345 6.86 
(0.75) 

29.73 
(0.84) 

0.23 
(0.02) 

Genetic variance, phenotypic variance and heritability of GRR among 345 male           
individuals.   Figures   in   brackets   are   standard   errors. 
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Table   3   :   SNPs   associated   with   GRR. 

Rs   number Chr Position   (bp) Minor 
allele p β  P-value pQTL 

rs430436336 1 180044043 A 0.11 2.19 8.08   10 -6 0.006 

rs400472211 1 268670581 A 0.33 0.86 9.41   10 -6 0.03 

rs418551122 3 75216491 A 0.30 0.76 2.42   10 -5 0.04 

rs407545143 3 201298545 G 0.24 1.13 9.36   10 -4 0.07 

rs411987057 6 116517201 C 0.22 -2.30 1.31   10 -16 0.19 

rs401206888 6 116440663 G 0.14 -1.95 2.04   10 -16 0.16 

rs412583165 6 116525709 G 0.27 -2.38 9.8   10 -17 0.15 

rs429477322 6 116509403 A 0.18 -2.17 3.94   10 -16 0.11 

rs161854895 6 116491013 G 0.22 -2.17 2.53   10 -16 0.11 

rs398811467 6 116472870 A 0.13 -1.94 2.51   10 -16 0.14 

rs407110999 7 22859168 G 0.25 1.37 8.71   10 -7 0.10 

rs413147562 7 22798236 A 0.23 1.61 1.20   10 -7 0.71 

P-values correspond to the single SNP Wald test. β corresponds to the effect of SNP (in                
number of crossover per meiosis) on GRR and pQTL is the probability for the SNP to be                 
a   QTL   estimated   using   a   Bayesian   Sparse   Linear   Mixed   Model   (see   Methods). 
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Table   4   :   Association   of   GRR   with   mutations   in   the    RNF212    gene. 

Mutation 
name 

Bases 
change 

Positions 
on    OA 

Musimon 
genome 

(Scaffold 
01089) 

Predicted 
positions 
on   v3.1 
Sheep 

genome 
(OAR6) 

p β P-value pQTL 

RNF212_1
4431_AG A>G 132229    116438514 0.18 -3.98 6.25   10 -17 0.23 

RNF212_1
8411_GA G>A 136209    116442624 0.17 -5.58 4.93   10 -15 0.02 

RNF212_2
2570_CG C>G 140368 116446753 0.18 -3.94 4.61   10 -16 0.09 

RNF212_2
2594_AG A>G 140392 116446777 0.17 0.57 0.54 0.004 

Association of mutations in the RNF212 gene with GRR in 345 individuals. Positions on              
different reference sequences as well as predicted positions on OAR v3.1 are indicated. p:              
allele frequency β: allele substitution effect. pQTL: probability that the SNP is a QTL after               
fitting   a   Bayesian   sparse   linear   mixed   model   on   the   region   (see   details   in   the   text). 
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Supplementary Figures 
 

Figure S1. Genomewide distribution of recombination rate using the approach of           
Sandor et al. (2012). These estimates were calculated from observed crossover frequencies.            
Fitting a gamma distribution on the observed estimates (red line) provided a prior distribution              
for the subsequent Bayesian inference on recombination rates (parameters given in the box).             
See methods for details. 
 
Figure S2. Distribution of recombination intensities among intervals of the HD SNP            
array. The green curve represents the distribution under the null hypothesis that there is no               
hotspots (log10(λ​i​) = 0). It is estimated by fitting a mixture of Gaussian distribution to the                
observed distribution and extracting the relevant component. Intervals where recombination          
intensity was particularly high (FDR = 5%) were considered as harbouring recombination            
hotspots and are shown in red. 
 
Figure S3. Validation of imputed genotypes for the GWAS. ​The figure shows the             
proportion of correct genotype calls as a function of their posterior probability calculated             
with BIMBAM. 
 
Figure S4. ​RNF212 gene structure in various species. ​RNF212 gene is not annotated on              
the ovine reference genome Oar_v3.1, but can be located at the telomeric end of OAR6               
(116,4Mb) by homologies (dashed lines) with the ​RNF212 gene from Ovis aries musinon             
(Oor1_1.0). Some anotated predicted non-coding RNA sequence (nc_RNA in brown) were           
part of the ​RNF212 sequence. The ovine ​RNF212 gene is also partly present in the unplaced                
scaffold005259, that can be virtually located in the largest assembly gap (in blue). In Ovis               
orientalis musimon, the ​RNF212 gene exibited 14 putative exons with alternative splicing            
(mRNA models in green). Homology analysis (dashed lines) with annotated ​RNF212 gene in             
other ruminant species (bovine on BTA6 and caprine on CHI6) indicated a good gene              
structure conservation between ovine and bovine ​RNF212​, but only a partial conservation            
with goat ​RNF212 ​, where the six last predicted exons match with intronic region in ovine.               
When compared to human ​RNF212 on HSA4 and mouse ​RNF212 on MMU5 chromosomes,             
only four to five exons are conserved with ruminants indicated a non-conserved gene             
structure. Red lines located SNP associated with global recombination rate (GRR) in the             
present study, and those previously shown in bovine (Sandor et al. 2012; Kadri et al. 2016) ,                 
in human (Kong et al. 2008; Chowdhury et al. 2009; Fledel-Alon et al. 2011; Kong et al.                 
2014) and in mouse (Fujiwara et al. 2014). Gene scales are in base pair and gene structures                 
were constructed with CLC Main Workbench software v7.7.3 using the NCBI query module             
(Qiagen Aarhus).  
 
Figure S5. Patterns of recombination along Sheep autosomes. ​Left: recombination rate of            
one megabase windows along metacentric chromosomes (1,2,3). Center: recombination rate          
of one megabase windows along acrocentric chromosomes (4-26). Right: recombination rate           
of one megabase windows against distance to nearest chromosome end. 
 
Figure S6. Recombination rates of Sheep autosomes. ​Left: from recombination rate           
estimates in windows of one megabase. Right: from recombination rate estimates in SNP             
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array intervals. Top: for each chromosome. Bottom: as a function of chromosome physical             
size. Dotted line: c = f(log(size)), dashed line: c = f(1/size)​. 
 
Figure S7. Distribution of recombination on the genome. ​The figure represents the            
proportion of the physical genome size affected by recombination, for increasing coverage of             
the genetic map. The Gini corresponding to the brown area on the figure is 0.52. 
 
Figure S8. Relative intensity of population to meiotic recombination rates in windows of             
1 Mb along the sheep genome. 
 
Figure S9. Posterior standard deviation of recombination rates on the medium density            
SNP array with different datasets. ​Soay: dataset from Johnston et al. (2016), only male              
meioses were used. Lacaune: dataset from this study. Both: combination of the two datasets. 
  
Figure S10. Effect of insemination month on the average number of crossovers per             
meiosis. ​Top: estimated mean GRR (dots) and 95% confidence intervals (vertical lines).            
Bottom: number of inseminations per month. 
 
Figure S11. Individual variation in recombination rates among Lacaune Males. ​Additive           
genetic values on Genome-wide Recombination Rate genetic for all Lacaune sires of our             
dataset (in black) and for the 345 FID (in grey). The vertical black line is placed at the mean. 
 
Figure S12. Local alignments of the Sheep and Human genome around the OAR7 QTL              
region. ​Dotplot of the alignements of sheep OAR7 on human HSA14. Vertical cyan bars are               
located at significant SNP positions. Three functional candidate genes surrounding the           
association signal (shaded) are indicated. 
 
Figure S13. Linkage disequilibrium between ​RNF212 polymorphisms and chromosome         
6 QTL SNPs. ​The top figure represents the mRNA and the protein of ​RNF212​. The four                
genotyped mutations are indicated : the two first are intronic and the two others are exonic.                
We replace the gene on a zoom on the chromosome 6 QTL (middle figure). The four left                 
solid lines highlight the mutations, whereas the dashed lines represent the 3 most significant              
SNPs. Middle points show the intermediate SNPs between the mutations and the significant             
SNPs. Finally, the figure at the bottom indicates the pairwise LD between the mutations and               
all the SNPs presented on the middle figure. It highlights two haplotype blocks : one between                
the 3 most significant mutations and another between the 3 most significant SNPs. 
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Figure S3​. 
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Figure S8. 
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Figure S9. 
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