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The role of parasites in shaping melanin-based colour polymorphism, and the

consequences of colour polymorphism for disease resistance, remain debated.

Here we review recent evidence of the links between melanin-based coloration

and the behavioural and immunological defences of vertebrates against their

parasites. First we propose that (1) differences between colour morphs can

result in variable exposure to parasites, either directly (certain colours might

be more or less attractive to parasites) or indirectly (variations in behaviour

and encounter probability). Once infected, we propose that (2) immune vari-

ation between differently coloured individuals might result in different

abilities to cope with parasite infection. We then discuss (3) how these different

abilities could translate into variable sexual and natural selection in environ-

ments varying in parasite pressure. Finally, we address (4) the potential role

of parasites in the maintenance of melanin-based colour polymorphism,

especially in the context of global change and multiple stressors in human-

altered environments. Because global change will probably affect both

coloration and the spread of parasitic diseases in the decades to come,

future studies should take into account melanin-based coloration to better

predict the evolutionary responses of animals to changing disease risk in

human-altered environments.
1. Melanin-based coloration and changing disease risk
Global change is modifying host–parasite interactions and the occurrence of

diseases at an unprecedented rate, and the outcomes will depend on the

level of host intraspecific variability in parasite resistance and tolerance

[1–3]. Global change is also rapidly modifying the levels of intraspecific varia-

bility [4], which could potentially amplify or dampen emerging effects of

changing host–parasite encounters and interactions. As a phenotypic marker

of intraspecific genetic variation in many vertebrates (figure 1), melanin-

based colour polymorphism is also altered by environmental changes

(e.g. [7]). Moreover, melanin-based coloration is associated with many critical

biological functions, including metabolism, reproduction, stress response and

immunity [8], which can have consequences for the ability of differently

coloured morphs to respond to natural and human-driven environmental

changes [9–11]. However, the relationship between melanin-based coloration

and host–parasite interactions has been understudied for a long time,

thereby hindering our ability to predict the response of wild populations to

changing environments and disease risk. Here, we review evidence that

variation in melanin-based coloration has implications for parasite exposure

and resistance, and argue that melanin-based coloration should be taken

into account to better predict the consequences of global change on disease

emergence in wild populations.
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Figure 1. Light (left) and dark (right) melanin-based colour variations in (a) feral pigeon Columba livia (credit: L. Jacquin), (b) grey squirrel Sciurus carolinensis
(credit: L. Jacquin), (c) viviparous lizards Zootoca vivipara (credit: Martin M), (d ) brown trout Salmo trutta ( from Jacquin et al. [5]) and (e) pocket mice Chaetodipus
intermedius ( from Nachman et al. [6]). (Online version in colour.)
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2. The biological significance of melanin-based
coloration

Melanin-based coloration is mainly due to two pigments:

eumelanin (responsible for black and grey coloration) and

pheomelanin (responsible for brown and reddish coloration)

[12,13]. These melanin pigments have a direct role on some

biological functions, such as UV protection, thermoregulation

and camouflage [13]. Consequently, predation and climate

play an important role in the evolution of melanin-based

colour polymorphism (e.g. [14]). By contrast, the link
between parasites and melanin-based coloration has been

neglected so far.

Instead of melanin, most studies on colour–parasite inter-

actions have focused on carotenoid-based colour [13].

Carotenoid pigments are obtained through the diet and

have a direct role in the immune system [15]: individuals

with more carotenoid pigments are often more resistant to

parasites than are their duller counterparts (e.g. [16]). In con-

trast, the links between melanin-based coloration and

parasitism are still unclear. Melanin pigments are synthesized

by the animal, mostly genetically determined, and the link
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between melanin-based coloration and individual condition

is complex [17–20]. Interestingly, recent pharmacological

and molecular studies have argued for evidence of genetic

and physiological links between melanin-based colours

and various aspects of individual quality, behaviour and

physiology, opening new avenues of research [8,20,21].

In particular, knowledge of the underpinning molecular

and genetic mechanisms of melanin-based coloration has

rapidly expanded, and now enables us to make more accurate

predictions (e.g. [8,22,23]). For instance, pharmacological

studies have shown that the production and expression of

melanin pigments are mostly regulated by melanocortins

(such as the melanocyte-stimulating hormone a-MSH, and

the melanin-concentrating hormone) that can bind to various

melanocortin receptors MCR across tissues, and are highly

conserved among vertebrates [12,24]. Melanocortins have

pleiotropic effects on several behavioural and physiological

traits, including activity, aggressiveness, reproduction, stress

response and immunity in various vertebrates [8]. This

raises expectations that melanin-based coloration might be

related to some aspects of parasite resistance.

Several recent studies of various vertebrate species

directly inform this possibility (studies electronic supplemen-

tary material, table S1). For instance, darker grey morphs of

the tawny owl (Strix aluco) had fewer blood parasites than

did rufous morphs [25], and similar patterns were seen for

darker feral pigeons (Columba livia) [26]. In contrast, no link

between melanin-based coloration and infection by intestinal

coccidians (Isospora sp.) was found in American goldfinches

(Carduelis tristis) [27]. Considered across studies, melanin-

based colour is associated with higher (three studies) or

lower (seven studies) parasite loads, with no difference seen

in a few other cases (four studies) (electronic supplementary

material, table S1). One study suggests that results could

depend on the type of parasites considered (endoparasite or

ectoparasite), which might be differently linked to coloration.

For instance, darker buzzards (Buteo buteo) had more ectopar-

asites but fewer blood parasites, maybe because darker

morphs are more attractive to ectoparasites and more

resistant to endoparasites [28], but few studies measured

different types of parasites in the same host species. In

addition, behavioural differences between morphs might

expose them to different types of parasites, which might

complicate the relationships between melanin-based color-

ation and parasite load. We argue that, because parasite

load is determined by both behavioural and physiological

defences, it is necessary to consider multiple traits and to

discriminate between different types of parasites to inform

direct, indirect and correlated effects of individual variation

in melanin-based coloration on parasite load [29].
3. Objectives
We here review recent evidence that melanin-based color-

ation can be tightly linked to individual behavioural and

physiological ability to defend against parasites. We discuss

the links between melanin-based coloration and parasitism,

separately considering parasite exposure (i.e. probability of

encountering parasites) and parasite resistance (i.e. ability

to limit parasite infection once exposed). We do not to discuss

the links between melanin and parasite tolerance (i.e. ability

to reduce effects on fitness for a given parasite load) because
too few studies are available on this last topic. We focus on

vertebrates because the physiological mechanisms accounting

for melanin-based coloration are better known and better

conserved in vertebrates than in invertebrates.

We propose that (1) differences between colour morphs

can result in variable exposure to parasites, either through

direct effects of colour (i.e. more or less visible or attractive

to parasites) or indirectly through variation in behaviour,

depending on the transmission mode of the parasites. Once

infected, we propose that (2) immune variation between dif-

ferently coloured individuals might result in different

abilities to cope with parasite infections. We then discuss

(3) how these different abilities could translate into variable

sexual and natural selection in environments varying in para-

site pressure. Finally, we address (4) the potential role of

parasites in the maintenance of melanin-based coloration

polymorphism, especially in the context of global change

and multiple stressors in human-altered environments.
4. Melanin, behaviour and exposure risk
The probability of encountering parasites can be influenced

in two primary ways: (i) hosts can be more or less visible

or attractive to parasites or vectors, or (ii) hosts can display

particular behaviours influencing their exposure risk. For

instance, the alternation of black and white stripes of zebras

(Equus quagga) is believed to decrease their attractiveness to

Tabanidae fly vectors [30]. The role of more homogeneous

coloration with respect to parasite attractiveness is still

unclear. Darker individuals are sometimes asserted to be

more attractive to ectoparasites than their paler counterparts,

for instance, in common buzzards Buteo buteo and horses

Equus caballus [28,31], but further studies will be needed to

test the generality of this hypothesis on other species.

Behavioural differences between differently coloured

individuals can also strongly influence their probability of

encountering parasites [32]. Parasites can be transmitted

through two main routes: through social contacts and

through the environment. Socially contagious parasites rely

on direct host-to-host contact, such as viruses causing respir-

atory infections and transmitted through coughing, or

Gyrodactylus sp. parasites that can jump from one fish to

another (e.g. [33]). In such cases, social interactions and the

propensity to form groups could influence the probability

of encountering parasites (e.g. [34,35]). In addition, more

socially dominant or bolder individuals (proactive behav-

ioural type) could be exposed to more socially and sexually

contagious parasites (reviewed in [36–38]). Darker individ-

uals are generally more dominant and sexually more active,

and could have a higher propensity to live in groups (elec-

tronic supplementary material, table S1), probably because

of pleiotropic effects of the melanocortin system [7]. These

behavioural differences between morphs might have conse-

quences for parasite exposure, although few studies have

directly tested this supposition (electronic supplementary

material, table S1; figure 2).

In contrast, environmentally transmitted parasites, such as

plathelminthia larvae or Guardia sp., spread through environ-

mental substrates (soil and water), while other pathogens, such

as Plasmodium sp., are principally transmitted through vectors

[32]. In such cases, behavioural differences in habitat and space

use are keys to exposure probability [32]. For instance, more
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exploratory and active chipmunks Tamias sibericus could be

more exposed to environmentally transmitted ticks [39].

Also, inter-individual differences in dispersal propensity

could generate important differences in parasite exposure.

Darker individuals could have a higher exploration and/or

dispersal propensity compared with their paler counterparts,

but few studies are available (electronic supplementary

material, table S1). In addition, darker individuals are known

to have higher activity levels and metabolic rates, and might

forage more actively to sustain their higher metabolic needs,

again due to the pleiotropic effects of melanocortin hormones

[8]. Darker versus paler morphs are also often found in differ-

ent microhabitats and might exploit alternative trophic niches

(e.g. [25,40–42]), which might expose them to different levels

or types of environmentally transmitted parasites. However,

few experimental studies are available and this hypothesis

remains to be formally tested.

In summary, darker individuals often display particular

combinations of morphological (e.g. differential parasite attrac-

tion) and behavioural traits (e.g. sociability, dominance, space

use). Such behavioural differences could potentially influence

their exposure to socially and environmentally transmitted

parasites (electronic supplementary material, table S1;

figure 2), but for now, only indirect evidence exists. Future

work should now formally test these hypotheses, for instance,

by experimentally exposing differently coloured individuals to

parasites in different environments or social group structures.
5. Melanin and physiological defences against
parasites

Once exposed to parasites, individuals often vary in their

physiological ability to resist the infection either by killing

or removing parasites. Melanin-based coloration could have
several influences here. First, skin melanization could directly

prevent the proliferation of parasites on (or in) the body

through the toxicity of melanin molecules [43]. Dark feathers

are also more resistant to bacterial degradation in birds [44].

Second, melanocortins such as ACTH appear to stimulate

grooming activity (e.g. reviewed in [8,24]), which could

favour parasite removal in darker vertebrates compared to

their paler counterparts. Third, melanin is tightly linked to

the immune system, for instance, through pleiotropic effects

of melanocortins that can bind to various receptors in the

skin and in the immune cells [8,45]. This could enable differ-

ently coloured individuals to mount different immune

responses and limit parasite proliferation [26,45,46].

Evidence of a link between melanin and immunity mostly

comes from experimental studies comparing immunocompe-

tence between differently coloured morphs based on immune

challenges with artificial or natural antigens (reviewed in elec-

tronic supplementary material, table S1). Such approaches are

useful to investigate immunology in wild populations because

they enable testing the ability of animals to mount an immune

response while controlling for their past exposure to parasites

and avoiding any pathogenic effects of parasites. Interestingly,

results are mixed across studies: that is, associations between

melanin-based coloration and immunocompetence are some-

times positive, negative or absent (summarized in electronic

supplementary material, table S1). For instance, immune

response after the injection of phytohaemagglutinin (PHA) is

associated with melanism in various species, although in a

positive or negative direction depending on the study (elec-

tronic supplementary material, table S1). Indeed, darker

pigeons Columba livia also have a higher cellular immune

response against PHA than their paler counterparts; but the

opposite relationship was found in falcons Falco eleonorae
[26,45]. A number of empirical studies also support a link

between melanin-based coloration and antibody production
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(electronic supplementary material, table S1). Darker reddish

owls (Strix aluco) produced more antibodies for a longer

period of time in response to antigen injection than did paler

owls [47], but other studies found negative relationships or

no relationship (electronic supplementary material, table S1).

Variable results across studies might depend on the type of

pigment (eumelanin or pheomelanin) or might arise because

melanin is differently linked to different components of the

immune system that have different costs and pay-offs (e.g.

[48]). However, the immune system is complex and it remains

difficult to disentangle the different components of immunity

(for instance, the PHA test reflects both inflammation and lym-

phocyte proliferation [49]). Future studies using genomic and

transcriptomic tools will be a powerful way to refine our

view of the immune pathways associated with coloration. In

addition, differently coloured individuals might have different

strategies to cope with the costs of immunity [47], including oxi-

dative costs [50–52]. By comparing how differently coloured

individuals trade off their immune investment against other

crucial life-history traits, future studies will help us under-

standing the evolution of immune strategies to cope with

parasites in phenotypically diverse populations.
6. Underlying mechanisms
The genetic underpinnings of variations in melanin-based

coloration are now better known [22,53]. Genetic variations

in MC1R melanocortin receptor can affect the type and/or

quantity of melanin (eumelanin or phaeomelanin) deposited

in the skin, feather and hair (e.g. [6,53,54]). Genetic variations

in numerous other genes (e.g. POMC, ASIP, TYRP1 and

others) have been highlighted depending on the species

(e.g. [55,56]), with different implications for correlated traits

depending on the level of pleiotropy expected [23,53].

Genetic variations in melanocortin ligands (POMC and its

products MSH, ACTH) can have particularly important pleio-

tropic effects because they can bind to five different

melanocortin receptors (MCR1–5) that are expressed in var-

ious tissues (for instance, MC1R in the skin and immune

cells; MC3R in central nervous system, immune cells and

adrenal glands; MC5R in skin and immune cells) [8]. Overall,

a growing number of studies outline the potential role of mel-

anocortin ligands and receptors in the covariations between

pigmentation, behaviour and immunity. For instance, vari-

ations in MSH and ACTH blood levels are correlated with

skin darkening and behavioural response to social stress in

artic charr Salvelinus alpinus [57]. Variations in the coding

sequence of Melanocortin 1 receptor are also associated

with different pigmentation and immunity in Eleanora’s

falcon Falco eleanorae [45]. Experimental manipulations of

melanocortin ligands (a-MSH and ACTH) can affect the

expression of the major histocompatibility complex class I,

inflammation and leucocyte activity when bound to MC1R

in lymphocytes [8,58,59]. By binding to MC3R and MC5R,

melanocortins also have anti-inflammatory and antipyretic

activities, thereby reducing acute and allergic inflammation

[8], which could partially explain the covariations between

pigmentation and parasite resistance in wild animals.

Besides melanocortins, steroid hormones such corticoster-

oids and/or testosterone could also affect the covariation

between colour, behaviour and immunity, because both

hormones can jointly affect the synthesis of melanin,
influence behavioural responses and have immunosuppres-

sive effects [60–64]. Further studies are now needed to

determine whether the levels of expression of melanocortin

receptors, ligands and hormones are correlated across tissues

and how covariations with behaviour and immunity are

regulated and shaped by natural and sexual selection.
7. Implications for sexual selection in variable
environments

Taken together, the above studies illustrate the links between

melanin-based coloration and parasite exposure and resist-

ance. As a result, melanin-based coloration should be under

strong sexual and natural selection in environments subject

to high risk of parasitism. The signalling role of melanin orna-

ments as a reliable and honest cue of individual quality, and

its role in sexual selection, have been discussed in previous

work [13,20], and so they are only quickly summarized here.

Melanin-based coloration is used as a mate choice criterion

in several species and the benefits derived might be directly

or indirectly related to aspects observed in association with

melanin-based coloration such as offspring quality, parasite

resistance and parental investment [5,65–68]. In short, indi-

viduals might benefit from choosing darker mates, because

they would have a lower risk of being infected by parasites

during mating, and/or obtain juveniles of better quality.

However, choosing darker mates might not always be

advantageous, depending on the context (e.g. [5]). Because

immunity is costly and trades off against other life-history

traits, it could be advantageous to choose darker mates only in

heavily parasitized environments and/or rich environments.

Coloration thus might be under fluctuating sexual selection

depending on parasitism risk, parasite type and other environ-

mental conditions, which could result in spatiotemporal and/

or frequency-dependent variability in mate choice [18,20]. How-

ever, only indirect correlative evidence exists so far. For instance,

different conspecific populations differ substantially in their

preferences for melanin-based coloration, especially in spatio-

temporally variable environments (e.g. [69]), yet the role of

variable parasitism risk in heterogeneous environments on the

evolution of melanin-based coloration remains poorly known.

We thus encourage future studies to test how sexual selection

differs among environments varying in parasitism risk.
8. Melanin in a changing world: implications for
responses to global change

By exposing animals to multiple stressors, global change is

expected to strongly influence the outcome of selection on

colour morphs interacting with their parasites and other fac-

tors. Indeed, recent empirical studies have shown that

different colour morphs within species respond differently

to alternative environmental conditions such as temperature

[70], food availability [71,72] and pollutants [73,74]. More

generally, differently coloured individuals have different

physiological abilities to respond to stressors [75,76]. Such

alternative genotype–environment interactions can have

strong implications for the ability to respond to global

change [9]. For instance, darker individuals could have a

selective advantage over paler ones in warmer and human-

altered environments due to better radiation protection and
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thermoregulation, better ability to detoxify pollutants and/or

higher competitive abilities (reviewed in [9]). As a result,

colour polymorphic species might be able to respond to a

wider range of environmental conditions, and colour poly-

morphism within a species might act as a buffer against

extinction [10]. In this context, the effects of parasites on dif-

ferently coloured individuals should be considered in depth.

Disease risk and exposure to pathogens are expected to be

dramatically altered in the future [1,77]. For instance, invasive

species bring new pathogens, and pollution has immunosup-

pressive effects that have strong impacts on host

susceptibility to diseases [77,78]. As a result, environmental

stressors can drastically modify host–parasite interactions

through direct effects on parasites and through indirect

effects on host immunity [1,77,78]. For such cases, we pro-

pose that pathogens could select for particular colours of

morphs during epidemics, owing to different investment in

immunity and/or ability to cope with the costs of immunity

between differently coloured individuals. Fitting this idea, an

emerging disease has been shown to favour darker birds in

greenfinches Carduelis chloris [79].

However, the relationship between coloration and parasite

load probably depends on other environmental stressors that

vary along disturbance gradients, which might explain the

different outcomes from different studies (electronic supplemen-

tary material, table S1). Indeed, immunity and behaviour are

highly sensitive to biotic and abiotic stressors [80], and differ-

ently coloured individuals often differ in their ability to deal

with such stressors. For instance, darker pigeons are less infected

by blood parasites than paler ones (as noted earlier), but only in

heavily urbanized conditions [40]. Although the underpinning

environmental factors remain difficult to identify, the reason

could be higher resistance of darker birds to pollutants [74] or

to stressful conditions [75,76]. For instance, darker individuals

are more resistant to pollution by heavy metals, because melanin

pigments have detoxifying properties and the relationship

between plumage colour and immunity thus depends on trace

metal contamination [73]. In addition, melanin-based coloration
and resistance to oxidative stress are tightly linked [51,52,81].

More generally, recent studies outline the increasing role of pol-

lutants and oxidative stress in the signalling role of animal

coloration [82]. Alternatively, darker morphs could be at a disad-

vantage compared with paler ones when food is scarce, because

the former have a higher metabolic rate and higher energetic

requirements [8]. As a consequence, darker individuals might

be able to achieve higher immunity and resistance to parasites

only in environments where food resources are abundant and

predictable, thereby enabling them to sustain the associated

energetic costs. Additional studies are now needed to under-

stand how new stressors can interact with parasites in shaping

immunity, which will help to elucidate the role of melanin as a

context-dependent indicator of multistress resistance.
9. Promising avenues for future research
Differently coloured individuals could differ in their

exposure and resistance to parasites through particular com-

binations of morphological (e.g. differential parasite

attraction), behavioural (e.g. different sociability, exploration

and activity) and physiological (e.g. innate and acquired

immunity) traits (electronic supplementary material, table

S1; figure 2). We thus encourage future studies to take into

account parasites as a potent evolutionary pressure shaping

melanin-based coloration diversity in vertebrates, especially

at the intraspecific level. We believe that such studies will

both enhance our understanding of parasitism as a selective

force shaping diversity, and improve our knowledge of the

high variability in disease susceptibility and extinction risk

observed in wild populations (figure 3). We identify several

productive avenues for research (table 1). First, future studies

should encompass both behavioural and physiological traits

involved in anti-parasite defences in phenotypically diverse

species. Studies of this nature will inform why different phe-

notypes differ in their response to parasitism, and the

respective role of different types of defences in the dynamics



Table 1. Promising avenues for future research.

Question 1. How do differently coloured individuals differ in their behavioural and physiological defences against parasites? Which kind of parasite favours

which kind of morph?

Current limitations and future prospects. Experimental approaches linking realistic parasite exposure and behavioural and immune assessments of host

responses are still rare (electronic supplementary material, table S1). Different kind of transmission modes might affect the outcome of host – parasite

interactions, so future studies should discriminate between differently transmitted parasites.

Question 2. What are the underlying mechanisms explaining the covariations between coloration and host traits?

Current limitations and future prospects. Few existing studies have explicitly considered the genetic and physiological mechanisms underlying the

covariations between traits. Variations in the melanocortin system and steroid hormones are good candidates but different mutations and levels of

coordination across tissues could have different implications for pleiotropic effects and selective processes.

Question 3. What are the effects of alternative behavioural and physiological strategies for parasite load?

Current limitations and future prospects. More formal field or experimental tests are now needed to compare alternative traits and parasite load at the

same time between coloured morphs and their effects on host fitness traits. This will expand our knowledge on the evolutionary consequences of

intraspecific variability and parasites on differently coloured hosts.

Question 4. What are the immune strategies of differently coloured individuals and how do they cope with immune energetical and oxidative costs?

Current limitations and future prospects. Future studies consider explicitly the different components of the immune system and decipher the costs and

benefits of alternative immune responses. Recent advances in genomics and transcriptomics will help understanding why alternative morphs differ in

their susceptibility to disease once infected.

Question 5. What are the consequences for sexual selection?

Current limitations and future prospects. Future studies should test mate choice between environments varying in parasitism risk. This will expand our

knowledge on the signalling value of melanin in variable environment.

Question 6. What are the consequences of melanin-based polymorphism for responses to global change in a multistress context? Can colour polymorphism

act as a buffer against extinction?

Current limitations and future prospects. Global change will probably affect multiple environmental factors at the same time. Experimental approaches

manipulating multiple stressors will help understanding how global change affect the ability of different morphs to resist parasite attacks and multiple

stressors. Conjointly, comparative meta-analyses approaches testing the response of polymorphic versus non polymorphic species to global change and

pathogens will help predicting the responses of biodiversity to current and future stressors.
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of host–parasite interactions in polymorphic species. In this

process, we advocate separately considering parasites

depending on their transmission mode and pathogenic

effect on hosts because doing so will influence the key traits

involved in parasite resistance. Second, we think that future

research would benefit from an explicit consideration of the

underlying genetic and physiological mechanisms explaining

the covariations between coloration and host traits, especially

with regard to the melanocortin system and its pleiotropic

effects. Third, because immunity is associated with different

costs and benefits, we encourage future studies to target

different immune traits linked to melanism and their associ-

ated costs in determining disease risk. This approach will

considerably increase our ability to predict the susceptibility

of colour polymorphic species to pathogens. Fourth, because

immunity and behaviour are highly sensitive to environ-

mental perturbations, we encourage future studies to

consider parasites in the context of multiple stressors. Only

then can we predict how differently coloured individuals

will cope with increasing parasitism risk in the context of
global change, and how global change will affect the epide-

miology of diseases in the future.
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39. Boyer N, Réale D, Marmet J, Pisanu B, Chapuis J-L.
2010 Personality, space use and tick load in an
introduced population of Siberian chipmunks.
J. Anim. Ecol. 79, 538 – 547. (doi:10.1111/j.1365-
2656.2010.01659.x)
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