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Cryptorchidism, a frequent genital malformation in male newborn, remains in most cases

idiopathic. On the basis of experimental, epidemiological, and clinical data, it has been

included in the testicular dysgenesis syndrome and believed to be influenced, together

with genetic and anatomic factors, by maternal exposure to endocrine disrupting

chemicals (EDCs). Here, we analyze how EDCs may interfere with the control of testicular

descent, which is regulated by two Leydig cell hormones, testosterone, and insulin like

peptide 3 (INSL3).
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IDIOPATHIC CRYPTORCHIDISM

Undescended testis (UDT), also called cryptorchidism, is the most frequent congenital
malformation in males, occurring in 2–8% of full-term male births (1–3). In young adults, it
is associated with a higher risk for male infertility and testicular cancer (4, 5). Cryptorchidism
cases can be characterized as unilateral or bilateral, transient (when spontaneous descent of the
testis occurs within the first year of life) or persistent, and palpable or non-palpable according
to the position of the undescended testis, following Scorer classification (6). With the exception
of complex syndromes with multiple congenital abnormalities (7), most cases of UDT are
unilateral, often transient and are considered as idiopathic (7). Idiopathic UDT is believed to be a
multifactorial disease with anatomical, genetic and environmental risk factors (7–10). Anatomical
factors could explain the frequent unilateral cases (10). Genetic causes such as mutations of
INSL3, testosterone or their receptor genes (7, 11, 12) are rare in case of “idiopathic” UDT.
Environmental factors, including in utero exposure to EDCs, have been proposed as co-factors
for the occurrence of idiopathic UDT and other male reproductive developmental abnormalities
(9). This environmental hypothesis is supported by: 1/ epidemiological studies showing, for
example, temporal (13) or geographical differences (14), 2/ observations made in wildlife after
environmental accidents, and 3/ experimental results in rodents, showing that exposure to several
EDCs with estrogenic or anti-androgenic effects during fetal life, disturbs testicular descent (15).

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2018.00786
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2018.00786&domain=pdf&date_stamp=2019-01-10
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:Fenichel.p@chu-nice.fr
https://doi.org/10.3389/fendo.2018.00786
https://www.frontiersin.org/articles/10.3389/fendo.2018.00786/full
http://loop.frontiersin.org/people/58481/overview
http://loop.frontiersin.org/people/591613/overview
http://loop.frontiersin.org/people/634173/overview


Fénichel et al. Cryptorchidism, Endocrine Disruptors and Testicular Hormones

However, epidemiologic evidence in humans, remain scarce and
the mechanisms which could link the EDCs exposure with
UDT remain incompletely understood. In this review, we will
analyze the data which support that EDCs with estrogenic
or anti-androgenic effects may influence the occurrence of
cryptorchidism, and how they may interfere with the hormonal
control of testicular descent.

HORMONAL CONTROL OF TESTICULAR
DESCENT

Physiological descent of the testes during fetal development is
quite well-understood, and has been described in several reviews
(10, 16). Briefly, it includes two successive phases involving the
participation of two ligaments: the cranial suspensory ligament
(CSL) and the gubernaculum. The first phase, called the trans-
abdominal phase, occurs in humans, between weeks 10 and
23. Due to the regression of the CSL and the growth of the
gubernaculum (10), the testis migrates from the uro-genital
ridge to the inguinal region. The second phase, inguino-scrotal,
occurs after 28 weeks gestation. During this second phase,
the regression of the gubernaculum will allow the testis to
reach its definitive scrotal position. This will occur before birth
in most cases, or during the neo-natal period for some of
them (transient cryptorchidism). As supported by observations
made in genetically modified rodents (17–19) or human genetic
syndromes (7, 11, 12), the two-phases testicular descent is
regulated by two testicular hormones: INSL3 and testosterone
(18), which are produced by the differentiated Leydig cells (20).
Classically, INSL3 is the regulator of the abdominal phase,
and testosterone is necessary for the inguino-scrotal phase; but
experimental data also support a role for INSL3 during the
second phase, in association with androgens. INSL3 is a peptide
hormone belonging to the relaxin family, specifically produced in
the testis. Its receptor, RXFP2 (relaxin family peptide receptor 2),
is developmentally expressed in the gubernaculum (21). Bilateral
UDT and abnormal gubernaculum are present in INSL3 and
RXFP2 knockout mice models (18, 19). Mutations of one of
these two genes have been found in 4.7% of cryptorchid boys
(7). The gubernaculum expresses the androgen receptor. Its
regression is induced by androgens during the inguino-scrotal
phase, as demonstrated by both animal models and human
genetic syndromes (19–21). Impaired hypothalamic-pituitary
axis leading to lack of testicular testosterone production or
impaired androgen sensibility by lack of receptor expression, are
associated with persistent, bilateral UDT, but they remain, like
mutated INSL3/RFXP2 gene, very rare (17, 22, 23). Nevertheless,
in the absence of mutations, impaired secretion of INSL3 and/or
testosterone may influence testicular descent.

LEYDIG CELL HORMONES AND
IDIOPATHIC CRYPTORCHIDISM

Two longitudinal case-control studies have tried to assess during
the neonatal period, the Leydig cell hormones involved during
testicular descent, in cryptorchidic boys. Bay et al. (24) were the

first to report that INSL3 was decreased in idiopathic UDT (24).
In their prospective study including 3 groups (control, Danish
and Finnish cryptorchidic boys), they could first clearly establish
the physiological ontology of testicular INSL3 secretion in boys.
Levels were higher at birth and at 3 months, than in older
pre-pubertal boys and significantly correlated to LH (24). They
suggested that INSL3 is regulated at this period by the transient
post-natal wave of gonadotropins. Secondly, they showed that
INSL3 cord blood levels were reduced in persistent cryptorchidic
boys and in the Finnish transient cryptorchidic subgroup when
compared to controls. Thirdly, they observed that individual
INSL3 levels in cryptorchidic boys increased significantly when
assessed at birth and at 3 months for both transient and persistent
cryptorchidism. However, at 3 months, they still observed a
reduced level of INSL3 and an increased LH to INSL3 ratio
in persistent cryptorchidic boys when compared to controls,
while no more significant difference was noticed at that time in
the transient group (24). Regarding the results of the persistent
group, the authors suggested that in persistent cryptorchidism,
Leydig cell dysfunction was already present in the perinatal
period. As for the transient group, they suggested that the
postnatal surge, which seems to physiologically stimulate INSL3
secretion, was able to normalize INSL3 secretion, contributing to
the spontaneous testicular descent between birth and 3 months
of a still normal testis (24).

From a prospective case-control study performed in Nice area
(25), 180 boys born after 34 weeks of gestation, were assessed
at birth and followed clinically during 1 year: 52 cryptorchid
boys (48 unilateral, 4 bilateral; 26 transient, 26 persistent),
and 128 controls matched for term, weight and time of birth.
Cord blood INSL3 levels were significantly decreased in the
total cryptorchidic group when compared to controls; this was
mainly due to the transient cryptorchid subgroup, since the
persistent group had values not significantly different from
control (Figure 1). INSL3 was more significantly decreased in
the group of 20 boys with non-palpable testes compared to the
group of 21 with palpable testes, according to Scorer classification
(25). In the whole population, INSL3 was positively correlated
with LH and negatively with AMH, but with no other measured
hormones.

Those two prospective studies on INSL3 in cryptorchidic boys
confirm that neonatal INSL3 levels are decreased, but they seem
to differ somewhat concerning the transient and the persistent
cryptorchidic subgroups. However, when analyzed in details,
they are rather concordant and complementary (25). Both teams
found a relative large dispersion of the INSL3 values in all groups
and the sizes of their subgroups were relatively small (24, 25).
First, concerning the transient cases, the French team found
a very significant decrease at birth and the Nordic team only
in the Finnish subgroup (24); but the authors indicated that
this subgroup had more severe (suprascrotal or worse) than
mild (high scrotal) UDT, as opposed to the Danish subgroup,
suggesting that this difference could explain the lower INSL3
levels. This hypothesis was confirmed later by the French study
as reported above (25). One may now consider that transient
cryptorchidism has a reduced secretion of INSL3 at birth, and
that thanks to the postnatal LH wave (that correlates with it in
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FIGURE 1 | Testosterone (A) and INSL3 (B) cord blood levels in UDT and control groups. Boxand-whisker diagram of testosterone and INSL3 cord blood levels in

controls, transient and persistent cases of cryptorchidism. The “total group” corresponds to the sum of transient and persistent cases. *P = 0.029, **P = 0.031 when

compared to control group by logistic regression test. In Fénichel et al. (25).

both studies), it will be normalized at 3 months, contributing
with normal Leydig cells, to the spontaneous testicular descent,
as illustrated and proposed by Bay et al. (24). Second, regarding
the persistent group, it was clearly associated in the Nordic study,
with decreased INSL3 levels at birth still present at 3 months, in
spite of the LH peak, while in the French study no significant
INSL3 decrease was observed in cord blood (25). Tight analysis
of the individual values showed (Figure 1) a wider dispersion
suggesting a greater heterogeneity of the causal factors and/or of
the degree of Leydig cell impairment.

Both studies found normal ranges of testosterone
concentrations and LH/testosterone ratio in cryptorchidic
newborn (25). The Nordic have reported an increased
LH/testosterone ratio at 3 months of age (26, 27) or a decreased
testosterone at 6 months, suggesting secondary Leydig cell
dysfunction. Normal testosterone levels at birth contrast with
lower INSL3 which appears at this time as a specific and
sensitive marker of fetal Leydig cell impairment as proposed by
Bay and Anand-Ivell (28). Fénichel et al. (25) reported in the
cryptorchid group at birth, a positive correlation between LH
and INSL3, but not between LH and testosterone. This suggest
that INSL3, before and at birth, could be regulated by LH in a
different way compared with testosterone as already proposed
(20).

The reported INSL3 levels during neonatal period in
cryptorchid boys triggers two related questions: 1/Is decreased
cord blood INSL3 a cause or a consequence of UDT? 2/Could
cord blood levels of INSL3 reflect what happened during
fetal development and testicular descent? Classically, INSL3 is
considered as regulating the first phase of testis migration during
the second trimester of pregnancy. However, its contribution
to the inguino-scrotal phase, has more recently been suggested.
First, in the LH receptor knock-out mouse, testosterone
administration causes an up-regulation of gubernaculum RXFP2
expression acting via the androgen receptor (29). Secondly,
an INSL3 antagonist can inhibit the testosterone-induced
inguinoscrotal descent (30). Last, as mentioned before, the

higher levels of cord blood INSL3 in normal male newborns
(24, 25) and the LH-dependent increase of INSL3 associated
to spontaneous testicular descent in transient cryptorchidism,
support a role for INSL3 during the inguino-scrotal phase
(24). Moreover, there are several clues that support the INSL3
decrease in cryptorchidism as a causal factor, rather than a
consequence. Briefly, as discussed in Fénichel et al. (25): “First,
experimental induction of cryptorchidism in mice does not
significantly alter the expression of INSL3 mRNAs in the testis
(29). Secondly, testosterone, another Leydig hormone, was not
affected in our cohort. Thirdly, if reduced cord blood INSL3
was a consequence of UDT, then the extent of the decrease
might have been similar or even more marked in the persistent
UDT boys, and this was not the case in our study (25).”
This was in fact the case in the Nordic study for persistent
cryptorchidism (24). One could integrate the different data in
the following concept: persistent cryptorchidism is associated
with low INSL3 levels already present at birth, persistent at 3
months, with a high LH/INSL3 ratio and altered testosterone
or LH/testosterone ratio, suggesting impaired Leydig cells
functioning as a consequence of UDT. In the transient forms
of UDT that can be corrected after birth, lower reversible
INSL3 levels suggest a functional causal effect with a down-
regulation of INSL3 expression rather than a true testicular
injury.

What could be the mechanism leading to fetal INSL3
decrease? Mutations or polymorphisms in the INSL3 and its
receptor genes, in human patients with idiopathic UDT have
been actively researched. Ferlin et al. (12) in a study involving 600
isolated cryptorchid infants, found only 1.1% of such mutations.
On the other hand, INSL3 gene expression is negatively regulated
by estrogens and positively by androgens, as shown in Leydig
cells in vitro (30, 31). Thus, fetal exposure to estrogenic or anti-
androgenic EDCs may be involved in the decrease of fetal INSL3
levels.

Moreover, the normal testosterone levels observed at birth
in cryptorchidic boys, do not exclude an antagonistic action
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at the androgen receptor level mediated by an anti-androgenic
EDC, which could indirectly impair the testosterone effect.
Such an effect of antiandrogens on testicular descent has been
demonstrated in animal models for several EDCs, like flutamide,
vinclozolin, or phthalates.
What about human epidemiological data ?

IDIOPATHIC CRYPTORCHIDISM AND
ENDOCRINE DISRUPTORS

Relationship Between Exposure to
Endocrine Disruptors and Cryptorchidism
Maternal exposure to diethylstilbestrol (DES), a potent synthetic
estrogen which was given to prevent miscarriages (32), has been
associated with an increased risk of urogenital abnormalities in
male newborn. Results from an American cohort estimated a
doubling of the risk for cryptorchidism after in utero exposure
to DES, with a higher risk when exposure occurred before week
11 of pregnancy (15). Several case-control studies have tried to
link fetal exposure to EDCs and cryptorchidism, but prospective,
longitudinal studies with a right methodology, are scarse. In a
meta-analysis, Bonde et al. (33) could select 10 case-referent
studies, addressing the risk of cryptorchidism following prenatal
and post-natal exposure to endocrine disrupting chemicals.
Summary Odds Ratio (OR) was not significantly increased.
Only two studies (1, 34) and three risk estimates for beta-
hexachlorocyclohexane (HCCB), p-p’- 1,1-Dichloro-2,2-bis(p-
chlorophenyl) ethylene (DDE) and Polychlorinated Bisphenyls
(PCBs) measured in maternal serum or milk, were significant.
One of these prospective studies performed in Nice area (France)
reported (1) an increased OR for PCBs (OR 2.74 [1.15, 6.53])
and for DDE concentrations (OR 2.16 [0.94, 4.98]) measured
in maternal colostrum. More recently, a case-control study
examined whether there was a link between maternal hair
polybrominated diphenyl ether (PBDE) concentrations and the
risk of UDT in male infants (35) and found that every 10-fold
increase of the concentration of maternal hair BDE-99 or BDE-
100, was associated with more than a doubling in the risk of
UDT (35). Fernandez et al. (6), in a small cohort, correlated
BPA and propyl-paraben concentrations in the placenta and
the occurrence of hypospadias or cryptorchidism. Levels of two
pesticides, heptachloroepoxide (HCE) and hexachlorobenzene
(HCB), were found significantly higher in the fat taken during
surgery for orchidopexy in a group of cryptorchid boys, when
compared with controls (36). All these case-control prospective
longitudinal studies report only indirect links; they are difficult
to perform, have a limited sample size (37), are expensive, and
usually assess only a small number of chemicals. As reviewed
by Virtanen et al. (38), it is also hazardous to link UDT with
a single chemical product. Fetus and newborn are exposed to
many chemicals, whichmay present additive, antagonistic and/or
synergistic effect. This was also shown in vivo in humans for
UDT by Damgaard et al. (39), who found a correlation with a
“cocktail” of several pesticides in breast milk, but not with any
single pesticide, and by Brucker-Davis et al. (1) who built a score
associating colostrum concentrations of DDE and several PCBs.

In a study associating Danish and Finnish patients, seven PBDEs,
all flame retardants, were detectable in milk and their sum was
significantly higher in the group of Danish cryptorchid boys
than in controls (40). Moreover, cord blood or maternal milk
levels do not directly reflect fetal exposure during the window
of testis descent. Amniotic fluid collected around 18 weeks of
gestation has been proposed to evaluate INSL3 secretion at a
time closer to this period (41). However, chemical concentrations
are difficult to analyze, because they depend on varying dilution
(41). Nevertheless, both epidemiological and experimental data,
including those studying cryptorchidism, hypospadias and/or
testicular cancer, support the hypothesis of a deleterious role for
fetal exposure to EDCs.
How could EDCs disrupt testicular descent?

Interference Between Exposure to
Endocrine Disruptors and Leydig Cell
Hormones
However, while it has been clearly shown that maternal
exposure to estrogenic or anti-androgenic EDCs could induce
cryptorchidism in rodents, it remains unproven that such
environmental factors are operating in human idiopathic UDT,
even if epidemiological studies with statistical correlations
do exist as shown above (1, 6, 33–35). What could be the
mechanism involved? Although cord blood levels of bisphenol
A were not significantly increased in cryptorchidic boys (1.26
+ 0.17 ng/ml vs. 1.14 + 0.13 ng/ml) when compared to control
boys (42), when we looked for correlations between hormones
and xenobiotics in the whole population (Figure 2) (43), we
found a significant negative correlation between bisphenol A
and INSL3 levels (p < 0.01). No significant correlation was
found for testosterone or between both hormones and the other
xenobiotics assessed (43). While the participation of BPA in
this decrease remained small (R2 = 0.05), the statistical link
was significant; this was consistent (negative effect at low dose)
with the reported decrease of fetal INSL3 production observed
by N’Tumba-Byn et al. (44) on human explanted fetal testes,
cultured with low doses of BPA, even though these results were
confirmed by Ben Maamar et al. (45) only in special culture
conditions, omitting Human Chorionic Gonadotropin. From a
mechanistic point of view, it is also in agreement with what
is known from experimental data on the regulation of INSL3
gene expression and also on the disrupting effect of BPA. INSL3
gene expression is negatively regulated by estrogens, as shown in
Leydig cells in vitro (31), and positively by androgens (46). In
mice, maternal exposure to xenoestrogens, including the potent
synthetic estrogen diethylstilbestrol (DES), results in down-
regulation of INSL3 (but not testosterone) mRNA expression
levels in Leydig cells (47, 48), and is associated with intra-
abdominally located testes. In humans, an increased risk of
cryptorchidism has been reported after fetal exposure to DES
given as maternal treatment to prevent miscarriages (32). BPA,
like DES, was initially designed as a synthetic estrogen, but it
rapidly came to be widely used in the manufacture of plastics
and epoxy resins. Because of its low affinity for the classical
nuclear estrogen receptors ERα and ERβ (49), the classification
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FIGURE 2 | Insulin-like peptide 3 (INSL3) in relation to bisphenol A (BPA) in the

whole study population of boys. Filled circles correspond to cryptorchid cases

(n = 52), while open circles correspond to controls (n = 128). The linear

regression is: Insl3 = −28 [BPA] + 295; p = 0.014, R2 = 0.05. In Chevalier

et al. (43).

of BPA as a xenoestrogen has also been debated (50). To explain
BPA mechanisms of action, other receptors have been proposed,
such as androgen receptor (51), estrogen related receptor gamma
ERRγ (52) or membrane non-classical estrogen receptors (53–
55). N’Tumba-Byn et al. (44), in reporting the negative effect
of BPA on INSL3 Leydig cell secretion during human fetal
testis culture, were able to exclude the ERα pathway by gene
invalidation, and they suggested the participation of non-classical
ERs (44). We have identified, in human testis, including Leydig
cells, one of these membrane receptors, GPR30/GPER (G protein
coupled estrogen receptor) for which BPA has a high affinity (53,
54). An anti-androgenic effect of BPA (51) has also been reported
which could interfere with the positive regulation of testosterone
on INSL3 gene expression (46). The lack of correlation between
BPA and testosterone concentrations is not completely surprising
since INSL3 and testosterone have been shown to be differentially
regulated at the Leydig cell level. INSL3 secretion is dependent on
the pituitary axis in a less acute way than testosterone (20) and
synthesis of both hormones is also distinctly regulated (24, 35).
Indeed, maternal BPA easily crosses the placenta (56, 57), and
will be less easily conjugated and cleared by the fetus because of
immature hepatic glucuronyl-transferase enzymes (58, 59) and
active placental or fetal glucuronidases or sulfatases (58).

As in our previous report (41), there was no significant
increase of BPA in boys with UDT when compared with
controls (42). However, mean levels of BPA were higher in the
cryptorchidic group, and strikingly more in the non-palpable
vs. palpable subgroups, suggesting a link with the degree of
migration defect. We have already reported a similar trend for
INSL3 decreased levels (25). On the other hand, a single blood or
spot urine BPA or conjugates test reflects short term exposure and
not chronic exposure (60). Therefore, although exposure through
diet is likely to be continuous, it cannot be concluded from this
study, performed at the time of delivery, whether chronic fetal

exposure to maternal BPA could disturb testicular descent at
the time when INSL3 is most likely to be acting directly on the
testis, in the first phase of testicular descent (gestational week 12–
16). However, our data support the hypothesis that INSL3 is a
target for endocrine disruption. Anand-Ivell and Ivell (41, 61)
have even proposed that INSL3 could be a “monitor of endocrine
disruption.” Indeed, INSL3 could be influenced by fetal exposure
to several estrogenic and/or anti-androgenic EDCs acting as a
“cocktail,” as suggested by epidemiological studies in idiopathic
UDT (1, 37, 38).

Beside BPA, phthalates are among the strongest candidates for
affecting the testis (62). There are robust data in rodents (23)
and more recently in humans (63) supporting the deleterious
effects of phthalates on testicular descent (23) and function (63).
They may act on INSL3 gene expression/ action, on steroid
hormone production or as an androgen antagonist (23). Effects
of phthalates on INSL3 are sometimes contradictory, with some
data showing an impact (62, 64), and others not (65). This
discordance is likely due to a differential effect according to time
of exposure or species (62, 64, 65).

In order to approach fetal exposure during specific windows
of development, the assessment of phthalates in amniotic fluid
has also been recently proposed with, however, the well-known
technical difficulties associated with such studies (60, 61).
Phthalates are able to interfere with the androgenic function
of Leydig cells like DDE or PBDE (66) which have been both
associated with cryptorchidism (1, 18/1, 34). This impairment
of the androgenic action by phthalates may be involved in the
experimental or epidemiological link reported with UDT (1,
35, 62), though the molecular mechanisms remain still largely
unclear. but it is more difficult to demonstrate directly an
antagonistic effect than a decreased peripheral blood level.

Acetaminophen (Paracetamol∗) given to pregnant women has
been suspected to increase the risk for male fetus to develop
cryptorchidism (67, 68). In a xenograft model, it has been shown
that prolonged exposure to acetaminophen reduces testosterone
production by the human fetal testis (69). In another model of ex
vitro culture of human fetal testis, exposure to acetaminophen
was able to decrease INSL3 (but not testosterone) production
during the critical window of the first abdomino-inguinal phase,
(70), this could represent the mechanism by which this analgesic
drug increases cryptorchidism risk.

CONCLUSION

To conclude, experimental and epidemiological studies support
the hypothesis of a deleterious role for fetal exposure to
a cocktail of endocrine disruptors during the testicular
descent; those compounds, acting as xenoestrogens and/or
antiandrogens, may disrupt the secretion and/or action of INSL3
and testosterone, the two Leydig cell hormones, regulating
testis descent, and lead to cryprorchidism in case of a
genetic susceptibility context as recently suggested by Barthold
and Ivell (71). However, direct evidence to support such
a pathophysiological link explaining idiopathic UDT, remain
scares. More prospective, longitudinal epidemiological studies
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and experimental models are necessary, exploring a more
complete cocktail of common EDCs with possible estrogenic
and/or anti-androgenic effects.
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