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Abstract 25 

The q-NMR metabolomics has already demonstrated its potential for classifying wines of 26 

different geographical origins, grape varieties, or vintages. This study focuses on the 27 

characterisation of Bordeaux red wines, seeking to discriminate them from others produced in 28 

the major French wine regions. A sampling of 224 commercial French wines was analysed by 29 

1H NMR and forty compounds were quantified. Non-supervised and supervised statistical 30 

analyses revealed a singular imprint of Bordeaux wines in comparison with other French 31 

wines, with classification rates ranging from 71% to 100%. Within the Bordeaux vineyards, 32 

red wines from the different Bordeaux subdivisions were analysed from different vintages. 33 

Our results indicate that q-NMR metabolomics enables the differentiation of Médoc and 34 

Libournais vineyard   highlighting the most discriminant constituents. In addition, the effects 35 

of wine evolution during bottle aging and vintage on Bordeaux red wines were pointed out 36 

and discussed. 37 

 38 

 39 
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1. Introduction 42 

According to the Conseil Interprofessionnel du Vin de Bordeaux (CIVB), Bordeaux wines are 43 

unchallenged leaders of overall exports of French Protected Designation of Origin (PDO) in 44 

2016, representing 39% of the total volume and 46% of the total value. In total, there are 45 

nearly sixty PDO in Bordeaux, distributed in five main subdivisions: Médoc, Graves, 46 

Libournais, Entre-deux-Mers, and Blaye-Bourg. Three-quarters of the vineyard are destined 47 

for the cultivation of red grapes. Merlot is the main red cultivar followed by Cabernet 48 

Sauvignon and Cabernet Franc, to which minor red grape varieties such as Malbec, Petit 49 

Verdot or Carmenere are added. The goal of this work is to identify specific chemical markers 50 

allowing to characterize Bordeaux red wines. Specific fingerprintings of Bordeaux red wines 51 

were investigated by comparison with wines from others French regions, and classification 52 

was refined in order to establish distinctions also among Bordeaux wines. 53 

With the rise of metabolomics, many studies have been focussed on wine classification 54 

combining quantitative analytical data with advanced mathematical and statistical techniques 55 

(Geana, Popescu, Costinel, Dinca, Ionete, Stefanescu, et al., 2016). To achieve this goal 56 

different instrumental approaches could be used including liquid and gas chromatographies 57 

coupled with different type of detectors such as infrared spectroscopy, mass spectroscopy, 58 

Raman spectroscopy, ultra-low radioactivity or NMR (Médina, Salagoïty, Guyon, Gaye, 59 

Hubert, & Guillaume, 2013). For over ten years now, quantitative 1H NMR spectrometry (q-60 

NMR) has been the object of numerous developments concerning foods and beverages 61 

analysis (Bharti & Roy, 2012; Pauli, Gödecke, Jaki, & Lankin, 2012), and enological 62 

practices in particular (Amargianitaki & Spyros, 2017; Hong, 2011). Depending on the 63 

objectives, the classifications focused on grape varieties, geographic origin, vintage 64 

(Anastasiadi, Zira, Magiatis, Haroutounian, Skaltsounis, & Mikros, 2009; Godelmann, Fang, 65 

Humpfer, Schütz, Bansbach, Schäfer, et al., 2013) or winemaking techniques (López-Rituerto, 66 
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Cabredo, López, Avenoza, Busto, & Peregrina, 2009; Mazzei, Spaccini, Francesca, Moschetti, 67 

& Piccolo, 2013). This versatile and high resolution technic provides quickly access to the 68 

simultaneous determination of several wine constituents without pretreatment. Together with 69 

multivariate statistical techniques, q-NMR has become a recognized technique for wine 70 

traceability whose effectiveness has been confirmed by several scientific publications 71 

(Godelmann, et al., 2013; Gougeon, Da Costa, Le Mao, Ma, Teissedre, Guyon, et al., 2018; 72 

Gougeon, Da Costa, Richard, & Guyon, 2019; López-Rituerto, Savorani, Avenoza, Busto, 73 

Peregrina, & Engelsen, 2012; Papotti, Bertelli, Graziosi, Silvestri, Bertacchini, Durante, et al., 74 

2013; Son, Hwang, Kim, Ahn, Park, Van Den Berg, et al., 2009). 75 

In the present study, red wines from main French DPO (Bordeaux, Beaujolais, Burgundy, 76 

Côtes du Rhône, Languedoc-Roussillon and Loire Valley) and different vintages (2004 to 77 

2017) were investigated by q-NMR spectroscopy coupled to multivariate statistical analysis. 78 

In the context of blended wines such Bordeaux wines, we evaluated the ability of q-NMR to 79 

discriminate: (i) Bordeaux wines from the other French PDO, (ii) Bordeaux appellations. In 80 

addition, the effects of wine evolution during bottle aging and vintage on Bordeaux red wines 81 

were investigated. 82 

 83 

2. Material and Methods 84 

2.1 Sample collection 85 

A total of 224 commercial French red wines from 2004 to 2017 vintages were collected. Their 86 

classification is shown on Table S1. Six french wine-producing regions are represented: 87 

Bordeaux (n=127), Beaujolais (n=15), Burgundy (n=20), Côtes du Rhône (n=20), Languedoc-88 

Roussillon (n=24) and Loire Valley (n=18). Inside Bordeaux sampling, six subdivisions are 89 

distinguished: Generic (n=15), Blaye-Bourg (n=5), Entre-deux-Mers (n=8), Graves (n=16), 90 
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Libournais (n=36) and Médoc (n=47). Wines were stored a 4°C and analysed under a week 91 

after bottle opening. 92 

 93 

2.2 Sample preparation 94 

Wine samples were prepared according to our previous work (Gougeon, et al., 2018). Briefly, 95 

after centrifugation, 420 μL of wine were directly mixed with 120 μL of phosphate solution 96 

(1M, pH 2.6), and 60 μL of a D2O solution containing trimethylsilylpropanoic acid sodium 97 

salt (TMSP) were used as the frequency reference and calcium formate was used as internal 98 

standard for quantitation. The pH was fine-adjusted to 3.1 using a semi-automatic small scale 99 

system (BTpH, Bruker BioSpin, Germany) using a 1M HCl solution. 100 

 101 

2.3 1H NMR spectra acquisition 102 

1H NMR spectra acquisitions were performed on a 600 MHz spectrometer (Bruker BioSpin). 103 

NMR analysis was carried out a constant temperature of 293°K. Three pulse sequences were 104 

used to collected the spectra, as described in a previous study (Gougeon, et al., 2018). The 105 

number of sampling points was 64 K using a 20.0229 ppm spectral width. The relaxation 106 

delay was set to 5 s and the sampling time was set to 2.726 s.  107 

 108 

2.4 1H NMR spectra post-acquisition treatments 109 

All 1H NMR spectra were aligned thanks to TMPS signal (δ = 0 ppm). An exponential 110 

weighting function corresponding to 0.3 Hz line broadening was applied before applying 111 

Fournier transformation using Topspin® software (version 3.2, Bruker Biospin, Germany). 112 

Phase correction was performed manually to have the greatest reproducibility (Bharti & Roy, 113 

2012). Baseline correction was performed automatically with MestReNova® NMR software 114 

(version 11.0.3, Mestrelab Research, Spain) 115 
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 116 

2.5 Compound quantification 117 

Forty compounds were identified on the 1H NMR spectra (Table S2). Quantitation was 118 

performed semi-automatically on the MestReNova using the plugin Simple Mixture Analysis 119 

(SMA). Validation method, LOD, LOQ, CV was described in our previous study (Gougeon, 120 

et al., 2018). 121 

 122 

2.6 Chemometrics 123 

For statistical analysis, the data were normalized and then introduced into RStudio 1.1.447 124 

and BioStatFlow 2.8.3 for pattern recognition. Principal components analysis (PCA) was 125 

performed to visualize the acquired data and observe the discrete trend between samples. To 126 

create a more reasonable model, partial least squares discriminant analysis combined to 127 

orthogonal signal correction filters (OSC-PLS-DA) was performed to sharpen the separation 128 

between observations groups (Wehrens, 2011). OSC-PLS-DA is also helpful to understand 129 

which component carries the class separating information, in addition with one-way ANOVA. 130 

The quality of the OSC-PLS-DA model was indicated by R2Y and Q2 metrics. The R2Y 131 

describes the percentage of variation explained by the model and Q2 indicates the predictive 132 

ability of the model (Worley & Powers, 2013). The performance of models was evaluated by 133 

internal leave one-out cross validation (LOOCV) (Riedl, Esslinger, & Fauhl-Hassek, 2015). 134 

 135 

 136 

3. Results and discussion 137 

French wines are the products of different terroirs, grape varieties and viti-vinicultural 138 

practices. In this study, 224 French commercial wine samples mainly from Bordeaux area 139 

(n=127) and from others French wine-producing regions (n=97) were analysed by 1H NMR 140 
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metabolomics. 1H NMR spectra were acquired similarly to our previous article with only a 141 

slight adjustment concerning pH control (Gougeon, et al., 2018). Compounds were quantified 142 

by targeted analysis using the Global Spectral Deconvolution method (GSD) (Cobas, Seoane, 143 

Domínguez, Sykora, & Davies, 2011), allowing the semi-automatized quantification of forty 144 

molecules listed in Table S2. Multivariate analyses were used to discriminate the wine key 145 

features concerning their geographical origins, grape varieties or vintages. For wine 146 

separation, PCA was performed and followed by OSC-PLS-DA to create a more reasonable 147 

regression model. Orthogonal signal correction is a PLS-based data filtering technique that 148 

removes the uncorrelated information, and consequently it is more exclusively focussed on 149 

the variables of interest (Gavaghan, Wilson, & Nicholson, 2002). In addition, the model 150 

predictivity was evaluated by internal leave one-out cross validation (LOOCV). In the 151 

LOOCV procedure, each training set is created by randomly taking all the samples except one 152 

and the test set is the sample left out. Thus, for N samples, N different training sets and N 153 

different test sets are created. Each sample is predicted once, which provides a conservative 154 

estimate of the prediction ability of the PCA model (Forina, Lanteri, Casolino, & Oliveri, 155 

2004). 156 

 157 

3.1. Classification of Bordeaux versus French wines  158 

The 127 Bordeaux wine samples from six different appellations (Bordeaux generic, Blaye and 159 

Bourg, Entre-deux-Mers, Graves, Libournais, and Médoc) and from thirteen different vintages 160 

(ranged from 2004 to 2016) were compared to the 97 wines from other French geographic 161 

areas (Beaujolais, 15; Burgundy, 20; Côtes du Rhône, 20; Languedoc-Roussillon, 24; Loire 162 

Valley, 18) from different vintages (ranged from 2004 to 2017) by OCS-PLS-DA (Figure 1). 163 

A tendency to discriminate Bordeaux wines from other French wines is clearly observed (R2Y 164 

and Q2 value of 0.75 and 0.82, respectively) despite the wide range of vintages analysed. Most 165 
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Bordeaux red wines are located in negative PC1 values, whereas others French wines are 166 

placed in positive PC1 values (Figure 1A). To quantify the predictive ability of the model, the 167 

leave one-out cross validation (LOOCV) was used. The overall correct classification of the 168 

wine origin for Bordeaux wines versus French wines is near 95% (Table S3). This highlights 169 

the specificity of Bordeaux red wines in comparison to all other French wines. As shown in 170 

Figure 1C, Bordeaux red wines contain more proline (mean, 1.4; range, 0.5–4.1 g/L), 171 

phenethyl alcohol (mean, 98; range, 58–143 mg/L), succinic acid (mean, 1.8; range, 1.3–2.7 172 

g/L), gallic acid (mean, 125; range, 69–182 mg/L), arabinose (mean, 0.3; range, 0.0–0.6 g/L), 173 

galacturonic acid (mean, 1.8; range, 0.4–3.1 g/L), methanol (mean, 181; range, 54–365 mg/L) 174 

and isopentanol (mean, 242; range, 132–366 mg/L). On the contrary, they contain less lactic 175 

acid (mean, 0.7; range, 0.4–1.0 g/L), caffeic acid (mean, 3; range, 0.0–22 mg/L), ethyl lactate 176 

(mean, 85; range, 16–183 mg/L) and 2,3-butanediol (mean, 363; range, 217–655 mg/L) than 177 

others French wines. 178 

Many of these compounds, such as proline, phenethyl alcohol, gallic acid or succinic acid 179 

could be directly or indirectly associated to grape variety. Proline is one of the most abundant 180 

amino acid in grape and wine. Its content in wine was correlated to grape varieties (Son, Kim, 181 

van den Berg, Hwang, Park, Lee, et al., 2008). Cabernet Sauvignon and Merlot, which are the 182 

main varieties of Bordeaux region, are known to be rich in proline (Huang & Ough, 1991). 183 

Phenethyl alcohol is a highly aromatic alcohol synthetized by bacteria, fungi, and yeasts from 184 

L-phenylalanine (Etschmann, Sell, & Schrader, 2003). Its content in wines depends of 185 

alcoholic fermentation but also on L-phenylalanine level in grapes. Son et al. already 186 

highlighted that phenethyl alcohol could be a chemical marker of grape variety (Son, et al., 187 

2008). They found higher contents in Cabernet Sauvignon wines than in Shiraz wines. But not 188 

only the grape variety influences the content of phenetyl alcohol, the same authors also 189 

observed significantly higher phenethyl alcohol levels in Cabernet Sauvignon wines produced 190 
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in Australia than in those produced in France or in South Korea. Gallic acid has been 191 

observed to discriminate against wines grape variety (Hu, Yue, Zhu, Wen, Zhang, & Hardie, 192 

2015). In particular, in agreement with our results, it has been shown that Cabernet Sauvignon 193 

wines contain high levels of gallic acid (Zhu, Hu, Lu, & Xu, 2018). Succinic acid is produced 194 

by yeasts during fermentation from sugar or amino acids (Coulter, Godden, & Pretorius, 195 

2004). It was pointed out as a discriminant factor of grape variety (Hu, Yue, Zhu, Wen, 196 

Zhang, & Hardie, 2015). Moreover its content was affected by vintage (Ali, Maltese, Toepfer, 197 

Choi, & Verpoorte, 2011) and winemaking practices (Mazzei, Spaccini, Francesca, Moschetti, 198 

& Piccolo, 2013). As for succinic acid, the contents of some compounds could be associated 199 

to the influence of different factors. Low lactic acid levels observed on Bordeaux wine 200 

suggest an indirect climate influence. Lactic acid is produced by malolactic fermentation from 201 

malic acid which is directly linked to the ripeness of the grape berry, so to climate (Lonvaud-202 

Funel, 1999). Caffeic acid has already been identified as a discriminative factor for wines 203 

made from vines treated by different cultural processes (De Pascali, Coletta, Del Coco, Basile, 204 

Gambacorta, & Fanizzi, 2014). Wines from cover crop vines had higher levels of caffeic acid 205 

than vines that had undergone soil tillage. It would seem that cultural practices are potentially 206 

responsible for the differences observed in our case. Finally, methanol, galacturonic acid, and 207 

arabinose are present in high levels specifically in Bordeaux wines (Figure 1C). These three 208 

compounds are connected with skin degradation on the must. Indeed, galacturonic acid and 209 

arabinose are two of the building blocks of pectins, which form the skin berry (Müller-210 

Maatsch, Bencivenni, Caligiani, Tedeschi, Bruggeman, Bosch, et al., 2016). Methanol is 211 

produced through pectin hydrolysis by enzymes (Revilla & González-SanJosé, 1998). This 212 

observation suggests a pre-fermentation process effect on Bordeaux red wines. A possible 213 

explanation can be the will of produce long-keeping wines, which means an extended 214 

maceration to extract the maximum content of polyphenols. So there is a set of factors that 215 
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configure the specificity of Bordeaux red wines including grape varieties, climate and 216 

winemaking practices. 217 

To confirm that Bordeaux wines have a singular fingerprinting, pairwise comparisons 218 

between Bordeaux wines and those of the others French wine-producing regions were 219 

performed by unsupervised statistical analysis (PCA) as shown on Figure 2. Biplots indicate 220 

separation and the overall correct prediction rates for Bordeaux wines were ranged between 221 

71 to 100%, for Languedoc and Burgundy wines, respectively (Table S3). These estimates are 222 

comparable with those observed by Godelmann et al. (2013), where geographical origin of 223 

wines from five German production areas could be predicted 89% correctly in average, with 224 

rates ranging from 59 to 100% (Godelmann, et al., 2013).  225 

The grape variety, independently from vintage, seems to be one of the main discriminative 226 

factors between Bordeaux wines and those of other French wine-producing regions. Bordeaux 227 

wines were produced with major parts of Cabernet Sauvignon and Merlot, whereas wines 228 

from other French regions were produced with different varieties: Pinot noir for Burgundy, 229 

Gamay for Beaujolais, and Cabernet Franc for Loire Valley wines. Role of grape varieties in 230 

wine discrimination was already proved in several studies (Anastasiadi, Zira, Magiatis, 231 

Haroutounian, Skaltsounis, & Mikros, 2009; Fan, Zhong, Fauhl-Hassek, Pfister, Horn, & 232 

Huang, 2018; Son, et al., 2008). Nevertheless, wines from regions using the same varieties 233 

than Bordeaux, such as Languedoc, were discriminated. Cultural and fermentation practices 234 

seem to have also an important role concerning wine classification. As previously mentioned, 235 

some discriminant compounds could be directly or indirectly linked to these practices such as 236 

caffeic acid, methanol, galacturonic acid, and arabinose. 237 

 238 

 239 

 240 
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3.2. Comparison of Bordeaux appellations 241 

In order to investigate Bordeaux wines, NMR metabolomics was used to discriminate wines 242 

from different subdivisions of Bordeaux (Graves, Libournais and Médoc). In addition, the 243 

effect of wine aging in bottle and vintage were investigated on these 127 Bordeaux wine 244 

samples. 245 

 246 

3.2.1. Geographic origin 247 

Bordeaux vineyard can be expanded in five main subdivisions: Blaye and Bourg, Entre-deux-248 

Mers, Graves, Libournais and Médoc. These areas differ with respect to their soil, 249 

mesoclimate and grape varieties. To examine the capacity of NMR combined to multivariate 250 

statistical analysis to distinguish subdivisions, the Bordeaux wine samples from Graves 251 

(n=16), Libournais (n=36) and Médoc (n=47) areas and different vintages (ranged from 2004 252 

to 2014) were compared. 253 

Initially, PCA was performed over all of the wines from the three appellations (Figure S1). On 254 

one hand, the PCA score plot between the three appellations showed separation by the first 255 

principal component, with overlapping of the Graves samples, resulting in low predictability. 256 

The statistical analysis revealed that Graves wines are not discriminated neither from 257 

Libournais nor Médoc wines. These data seem to preclude the discrimination of Graves wines 258 

from the two others Bordeaux appellations. On the other hand, unsupervised classification 259 

suggests a trend to distinguish between Libournais and Médoc. To confirm this observation, 260 

an OSC-PLS-DA was performed only with data created with Libournais and Médoc wines. 261 

Results are shown in Figure 3. The OSC-PLS-DA score plots revealed clear separation 262 

between Libournais and Médoc wines with high values of R2Y and Q2, of 0.77 and 0.68, 263 

respectively. The model was further validated using LOOCV. The mean overall correct 264 

classification of Médoc versus Libournais wines was 85% (83 and 87% for Médoc and 265 
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Libournais, respectively) (Table S4). Among the discriminant parameters Médoc wines 266 

contained more shikimic and lactic acids but less proline and ethanol (Figure 3). 267 

Average concentration of shikimic acid was 69 mg/L (range 23-95 mg/L) in Médoc wines 268 

whereas, in Libournais wines, average concentration was 20 mg/L (range 0-55 mg/L). 269 

Shikimic acid is a phenolic compound identified as a chemical marker of grape varieties 270 

(Godelmann, et al., 2013). Even if the Bordeaux wines are blended from different grape 271 

varieties, Cabernet Sauvignon is the dominant variety in Médoc PDO’s and Merlot Libournais 272 

appellation. It has been reported that shikimic acid levels in Cabernet Sauvignon wines are 273 

higher than in Merlot wines (Mardones, Hitschfeld, Contreras, Lepe, Gutiérrez, & von Baer, 274 

2005). Our results are in agreement with this observation. Concerning the proline contents, 275 

they reached 2.0 g/L on average (range 1.1-4.1 g/L) in the Libournais wines against 1.3 g/L 276 

(range 0.5-1.9 g/L) in the Médoc ones. Huang et al. have shown that Merlot contained more 277 

proline than Cabernet Sauvignon, with 1.4 and 0.8 g/L in a Merlot and Cabernet Sauvignon 278 

grape juice, respectively (Huang & Ough, 1991). This result is also in agreement with the 279 

distribution of grape varieties in the two areas. Both shikimic acid and proline levels suggest a 280 

grape variety effect on the observed wines discrimination. Concerning lactic acid, our results 281 

indicate that Médoc wine contain more lactic acid (mean, 0.73; range, 0.55–1.02 g/L) than 282 

Libournais ones (mean, 0.57; range, 0.39–0.77 g/L). As mentioned previously, lactic acid 283 

contents can be linked to malic acid levels in grapes, so indirectly linked with grape ripeness. 284 

The ethanol contents observed are consistent with this hypothesis. Ethanol levels are 285 

significantly lower in Médoc wines (mean 12.6, range 11.2-13.6%) than in Libournais wines 286 

(mean 13.4, range 12.3-14.4%). Therefore, it would seem that the combination of grape 287 

varieties, climate and cultural practices contributed to discriminate these close geographical 288 

designations as previously observed by Pereira et al. on Bordeaux’s monovarietal wines 289 

(Pereira, Gaudillère, Van Leeuwen, Hilbert, Maucourt, Deborde, et al., 2007). 290 
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 291 

3.2.2. Wine aging and vintages 292 

To observe the effects of vintage and wine evolution during bottle aging, the NMR-data of the 293 

Bordeaux red wines (n=127) obtained from thirteen different vintages (2004 to 2016) were 294 

analysed. First, to observe the influence of wine aging independently of vintage, the youngest 295 

wines (n=28, vintages 2013 to 2016) were compared to the oldest wines (n=37, vintages 2004 296 

to 2007) by OSC-PLS-DA (Figure 4). The analysis revealed a clear separation among the two 297 

groups with R2Y and Q2 values of 0.75 and 0.78, respectively. The main compounds 298 

responsible for these differences are xylose, epicatechin, catechin, tyrosine and citric acid 299 

which are more present in young wines, and ethyl acetate, ethyl lactate, fructose, caffeic acid, 300 

syringic acid, succinic acid and shikimic acid which are more present in older wines (Figure 301 

4C). Among the compounds responsible for the discrimination of the wines some could be 302 

directly connected to wine evolution during aging in bottle. Catechin and epicatechin are 303 

involved in a series of polymerization reactions with different compounds inducing a decrease 304 

of the free-compounds during aging due to precipitation. Similarly to our results, Cassino et 305 

al. observed the same pattern for xylose with a decrease during wine aging in bottles and an 306 

increase of esters (ethyl acetate and ethyl lactate) (Cassino, Tsolakis, Bonello, Gianotti, & 307 

Osella, 2018). These results indicate a clear evolution during bottle aging that will influence 308 

the discrimination between wines at a given point in time in addition to the differences 309 

between vintages. 310 

In order to observe the specific effects of wine evolution and vintage, the six different 311 

vintages with more than ten wine samples were submitted to multiple statistical approaches 312 

(2005, n=10; 2007, n=12; 2010, n=10; 2011, n=15; 2012; n=23 and 2013, n=10). Vintages 313 

were pairwise compared by OSC-PLS-DA to sharpen the observed separations and followed 314 

by cross-validations using LOOCV. Figure 5 shows the comparison between 2010 and 2011 315 
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vintages. OSC-PLS-DA was able to separate these vintages (R2Y = 0.81 and Q2 = 0.83) giving 316 

a mean overall correct classification of 75% (70 and 80% for 2010 and 2011, respectively 317 

(Table S5). The same procedure was applied to compare one vintage to another (Table S5) 318 

giving overall correct classifications ranging from 59% (2012 versus 2013) to 100% (2005 319 

versus 2010). Overall, it could be noted that the more vintages are distinct the higher are the 320 

classification scores. The average correct classification percentages of 2005 and 2007 321 

vintages versus the other ones (2010 to 2013) are 87 and 90%, respectively. In contrast, these 322 

percentages are reduced to 61 and 59% for comparisons between 2010 versus 2011 and 2012 323 

versus 2013, respectively. This could be due to the wine evolution during bottle aging at a 324 

given point in time, as previously mentioned. A wide span of time between vintages facilitates 325 

their distinction.  326 

To reduce the effect of wine aging in bottle and investigate the specific effect of vintage, the 327 

four successive vintages 2010 to 2013 were analysed. Compared to 2011, 2010 vintages 328 

presented more sugars and 2,3-butanediol, but less tyrosine, threonine, alanine, catechin, 329 

xylose and lactic acid (Figure 5). In Bordeaux, 2010 was a good year for viticulture, with a 330 

weather allowing good grape ripeness, which could be an explanation for upper level of 331 

sugars and lower level of lactic acid compared to wines from 2011. High levels of amino 332 

acids on 2011 could be explained by more rainfall inducing greatest roots absorption. In the 333 

same manners levels of amino acids and xylose in 2011 wines were increased in comparison 334 

to those of 2012 (Figure S2). Moreover, glycerol, isobutanol and ethyl acetate are negatively 335 

correlated to wines from 2012 vintage, but lactic acid, catechin, epicatechin and 2,3-336 

butanediol are positively correlated. Finally, 2013 was a bad vintage in Bordeaux inducing 337 

grape ripeness difficulties highlighted by low values of technologic ripeness parameters such 338 

as sugars to acids ratio. Discriminative variables of 2013 wines compared to wines from 2012 339 

are low levels of ethanol, which confirm low sugars levels, and myo-inositol (Figure S3). In 340 
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addition, high malic acid levels confirm the bad technological ripeness. All these observations 341 

confirm the climatic influence on wine discrimination between successive vintages. 342 

 343 

4. Conclusion 344 

In this study, 224 commercial wines produced in the six major French wine regions were 345 

analysed using 1H NMR experiments and multivariate analysis. Forty compounds were 346 

quantified by conventional targeted analysis. Advanced data analysis and chemometrics 347 

allowed the discrimination of wines on different levels. Bordeaux wines present a singular 348 

brand in comparison to the five other major French producing areas. Despite the differences 349 

within each geographical designation, NMR spectrometric analyses coupled to multivariate 350 

approaches allows the discrimination of a specific area. In addition, the analysis shows that it 351 

is possible to discriminate the two major Bordeaux sub-regions Libournais and Médoc. The 352 

grape variety composition alone does not explain all the differences observed. Soil and 353 

viticultural practices also have a significant influence, as evidenced by the chemical diversity 354 

of the molecular markers that discriminate these wines. Moreover, the differentiation of wines 355 

from different vintages is made possible in a relatively limited geographical area such as 356 

Bordeaux wines by combination of different factors including wine aging and climatic 357 

influences. Two successive vintages could be distinguished using specific markers of 358 

vitivinicultural conditions. In addition, the wine evolution during bottle aging induces the 359 

variation of some specific markers such as polyphenolic compounds. Nevertheless, the 360 

analysis during aging merit further study to monitor the wine evolution over time. 361 
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Figure legends 375 

Figure 1. OSC-PLS-DA (A) score plot, (B) loading plot, and (C) one way ANOVA 376 

performed with normalised data on 12 most discriminant parameters based on q-NMR 377 

normalized data from Bordeaux (red, n=127) versus other French regions (blue, n=97) red 378 

wines (validation parameters of the model: Q2 = 0.82 and R2Y = 0.75).  379 

 380 

Figure 2. Principal component analysis (PCA) score-plot based on q-NMR data of Bordeaux 381 

red wines (blue, n=127) and versus those from (A) Beaujolais (n=15), (B) Burgundy (n=20), 382 

(C) Côtes du Rhône (n=20), (D) Languedoc-Roussillon (n=24), and (E) Loire Valley (n=18). 383 

 384 

Figure 3. OSC-PLS-DA (A) score plot, (B) loading plot, and (C) one way ANOVA 385 

performed with normalised data on 16 most discriminant parameters based on normalized q-386 

NMR data from Libournais (red, n=36) versus Médoc (blue, n=47) samples (validation 387 

parameters of the model: Q2 = 0.68 and R2Y = 0.77).  388 

 389 

Figure 4. OSC-PLS-DA (A) score plot, (B) loading plot, and (C) one way ANOVA 390 

performed with normalised data on 12 most discriminant parameters based on q-NMR 391 

normalized data from young vintages (red, 2013 to 2016, n=28) versus old ones (blue, 2004 to 392 

2007, n=37) of Bordeaux red wines (validation parameters of the model: Q2 = 0.75 and R2Y = 393 

0.78).  394 

 395 

Figure 5. OSC-PLS-DA (A) score plot, (B) loading plot, and (C) one way ANOVA 396 

performed with normalised data on 11 most discriminant parameters based on qNMR 397 

normalized data from 2010 (red, n=10) versus 2011 vintage (blue, n=15) of Bordeaux red 398 

wines (validation parameters of the model: Q2 = 0.83 and R2Y = 0.81).  399 
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