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RESEARCH ARTICLE Open Access

Pangenome analyses of the wheat
pathogen Zymoseptoria tritici reveal the
structural basis of a highly plastic
eukaryotic genome
Clémence Plissonneau1,2, Fanny E. Hartmann1,3 and Daniel Croll4*

Abstract

Background: Structural variation contributes substantially to polymorphism within species. Chromosomal
rearrangements that impact genes can lead to functional variation among individuals and influence the
expression of phenotypic traits. Genomes of fungal pathogens show substantial chromosomal polymorphism
that can drive virulence evolution on host plants. Assessing the adaptive significance of structural variation is
challenging, because most studies rely on inferences based on a single reference genome sequence.

Results: We constructed and analyzed the pangenome of Zymoseptoria tritici, a major pathogen of wheat that
evolved host specialization by chromosomal rearrangements and gene deletions. We used single-molecule
real-time sequencing and high-density genetic maps to assemble multiple genomes. We annotated the gene
space based on transcriptomics data that covered the infection life cycle of each strain. Based on a total of five
telomere-to-telomere genomes, we constructed a pangenome for the species and identified a core set of 9149
genes. However, an additional 6600 genes were exclusive to a subset of the isolates. The substantial accessory
genome encoded on average fewer expressed genes but a larger fraction of the candidate effector genes that
may interact with the host during infection. We expanded our analyses of the pangenome to a worldwide
collection of 123 isolates of the same species. We confirmed that accessory genes were indeed more likely to
show deletion polymorphisms and loss-of-function mutations compared to core genes.

Conclusions: The pangenome construction of a highly polymorphic eukaryotic pathogen showed that a single
reference genome significantly underestimates the gene space of a species. The substantial accessory genome
provides a cradle for adaptive evolution.

Keywords: Fungal pathogen, Genome evolution, Genome assembly, Pangenome analyses, Pathogen evolution,
Zymoseptoria tritici

Background
Chromosomal rearrangements facilitate the emergence of
evolutionary novelty in eukaryotic genomes [1]. Among
other consequences, rearrangements impact adaptive evo-
lution by generating variation in gene content among indi-
viduals and through the emergence of new genes. Most
gene gains are the result of duplication events, followed by

diversification and neofunctionalization [2, 3]. Non-
homologous recombination can lead to gains in gene
function through the acquisition of new domains. Gene
gains have been traced back to horizontal gene transfer
events or to de novo gene emergence from non-coding
DNA [4, 5]. Gene losses can occur through non-
homologous recombination or pseudogenization. Despite
being largely under negative selection, gene losses also
contribute to adaptive evolution [6]. Gene gains and losses
are critical for the rapid adaptation of filamentous plant
pathogens to different hosts [7].
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In fungi, intra- and interspecific structural variation
among genomes has long been recognized [8]. In patho-
gens, structural variation can have an impact on host
range. For example, the host jump from dicotyledon to
monocotyledon hosts was accompanied by the loss of
genes in the fungus Melanopsichium pennsylvanicum
[9]. Over longer evolutionary time scales, the expansion
or contraction of gene families is tightly associated with
host specialization of plant pathogenic fungi [10–12]. In
contrast to the ubiquitous evidence for structural vari-
ation among genomes of different species, intraspecific
analyses of structural variation and polymorphism in
gene content are rare outside of a small number of
model organisms. Yet, many fungal genomes are amen-
able to accurate and complete genome assemblies using
long-read sequencing technologies [13, 14].
Analyses of multiple complete genomes of the same

species have the potential to reveal segregating chromo-
somal polymorphism and are necessary to accurately
cover the gene repertoire of a species. Capturing the full
gene repertoire of a species is widely referred to as the
pangenome [15, 16]. The pangenome concept distin-
guishes the core genome (i.e., genes found in all individ-
uals) from the accessory genome (i.e., genes absent in
one or more individuals). The distinction between core
and dispensable genomic regions is relevant because
these compartments are often on distinct evolutionary
trajectories [17–19]. Pangenomes constructed over the
past decade revolutionized the understanding of gen-
omic variability in bacterial species or lineages. For ex-
ample, the sequencing of 61 Escherichia coli strains
showed that only 993 genes are shared among all indi-
viduals, while the pangenome is estimated to comprise
15,741 genes [20]. Compared to the relative simplicity of
prokaryotic genomes, advances in long read sequencing
technologies have been necessary to efficiently assemble
eukaryotic genomes [21, 22]. Recently, pangenomes have
been constructed for plant species with complex ge-
nomes, including maize, Brassica oleracea, and soybean
species [23–25]. Intra-species genomic analyses of fungi
have largely focused on species complexes and on genes
missing compared to a reference genome strain [26–29],
with the notable exception of Baker’s yeast, where 12
complete genome assemblies are available [30].
Capturing the intra-specific gene content is particu-

larly relevant for plant pathogenic fungi because major
determinants of pathogenicity are often encoded by
genes not shared among all strains. Plant pathogens and
their hosts are often locked in arms races to counter
newly evolved host resistance and fungal pathogenicity
factors, respectively [31]. To enhance plant colonization,
pathogens secrete small effector molecules, which can
be recognized by plant resistance proteins to trigger
defense mechanisms [32]. In modern agroecosystems,

the large-scale deployment of single host genotypes can
create uniformity in host resistance mechanisms. Such
monocultures exert strong selection pressures on patho-
gens to evolve effectors that target the deployed host re-
sistance mechanism [33]. Analyses of a broad range of
plant pathogens revealed that these rapidly evolving ef-
fectors were often located in rapidly evolving compart-
ments of the genome [34]. In filamentous plant
pathogens, the compartmentalization of the genome and
tight association of effectors and transposable elements
in the same compartments has been described as the
‘two-speed genome’ model of pathogen evolution [7].
This bipartite compartmentalization includes blocks of
conserved and gene-dense regions and blocks of highly
rearranged regions, which are generally gene-poor but
enriched in rapidly evolving effector loci. Capturing the
pangenome of a pathogen species will enable joint ana-
lyses of genome plasticity and yet unknown determi-
nants of pathogenicity.
The plant pathogenic fungus Zymoseptoria tritici is re-

sponsible for Septoria tritici blotch, one of the most
damaging diseases on wheat [35]. Z. tritici populations
have rapidly evolved resistance to fungicides and have
surmounted major wheat resistance genes [36, 37].
Rapid adaptive evolution was likely facilitated by the
large effective population sizes, gene flow, and high re-
combination rates [38–40]. However, the genetic basis of
virulence remains poorly understood and, to date, only a
few effector genes have been functionally characterized
[41–43]. The genome of Z. tritici harbors 13 core
chromosomes and up to 8 accessory chromosomes,
which are not found in all strains of the species.
Accessory chromosomes have been shown to undergo
major structural rearrangements during meiosis [44, 45].
Homologous core chromosomes show substantial length
polymorphism, which is caused by the insertion or
deletion of clusters of transposable elements [14, 46].
Gene content can vary considerably among homolo-

gous chromosomes. Analyses of two completely assem-
bled genomes showed that hundreds of genes were
unique to either of the two genomes [14, 45]. Chromo-
somal sequences harboring such orphan regions within
species (i.e., not shared among all isolates) were also re-
ferred to as accessory or dispensable regions [14, 47].
Orphan regions play an important role in adaptive
evolution of the pathogen as these regions are enriched
in effector genes, including the recently discovered effec-
tors linked to the breakdown of host resistance [42, 48].
We constructed a pangenome of Z. tritici by perform-

ing de novo complete genome assemblies and analyses
of a total of five telomere-to-telomere genomes. Using
comprehensive transcriptomics datasets, we annotated
the gene space of each newly assembled genome and
performed comparative genomics analyses to estimate
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the total gene content of the species. We extrapolated
from the pangenome of five strains to the entire species
by analyzing genome-wide polymorphism in a worldwide
collection of 123 sequenced isolates.

Results
Complete genome assemblies of Z. tritici strains
We used high-coverage PacBio sequencing to assemble
complete chromosomes of the Z. tritici strains 1A5,
3D1, and 3D7. These three strains and the two strains
for which complete genomes were already available had
approximately identical phylogenetic distances (Fig. 1a).
A principal component analysis revealed that strains
1A5, 1E4, 3D1, and 3D7 were genetically more similar to
each other than the reference genome isolate IPO323
(Fig. 1b) reflecting the geographic origin of the different
strains. High-density genetic maps available for the same
isolates [49] confirmed the contiguity of all assembled
chromosomes. Illumina read mapping to each genome
assembly revealed ≤ 12 single base or small indel errors,
which were corrected according to the evidence from
the Illumina read data. The three new genomes com-
prised 20 (1E4) or 21 (1A5 and 3D1) chromosomes
(Fig. 1c). The two previously available genomes

comprised 17 (3D7) and 21 chromosomes (reference
genome IPO323). The total size of the five genomes
ranged from 37.9 to 40.7 Mb (Additional file 1: Table
S1). Differences in genome sizes were due to a combin-
ation of differences in accessory chromosome numbers
(4–8) and chromosome length polymorphism (Fig. 1c).
Core chromosome length polymorphism ranged from
2.1% to 4.8%, whereas length polymorphism among
accessory chromosomes reached up to 25% (Additional
file 1: Table S1). Length variation among homologous
chromosomes was caused by substantial insertion and
deletion polymorphism in both genic and non-genic re-
gions (Fig. 2).

Gene prediction and comparative analyses of gene
content
Comparative genomics analyses of the two previously
completed genomes 3D7 and IPO323 conservatively es-
timated that each genome harbored 296 and 216 gene
sequences, respectively, that had no homology in the
other genome [14]. To identify protein coding genes in
the assembled genomes, we performed gene prediction
analyses using splicing evidence from transcriptomic
datasets collected from each of the isolates over the
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Fig. 1 Comparison of complete genome assemblies of five Zymoseptoria tritici strains used to construct the pangenome. a Maximum likelihood
phylogeny of the isolates based on a genome-wide single nucleotide polymorphism (SNP) matrix. The scale refers to the proportion of total SNPs
included in the analysis. b Principal component analysis based on a genome-wide SNP matrix. The variance explained by each of the two axes is
shown in parentheses. c Lengths of completely assembled core and accessory chromosomes are shown in separate panels
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course of a complete wheat infection cycle. To ensure
that functional genes were consistently identified across
all genomes, we used matches of IPO323 proteins
against all other genomes as additional evidence during
gene prediction.
The total number of encoded proteins identified in each

of the five genomes ranged from 11,737 to 12,092
(Table 1). We evaluated the completeness of both the gen-
ome assemblies and the quality of the gene predictions by
performing BUSCO analyses on the predicted proteins.
We found that all genome annotations were highly
complete, ranging from 96.8% to 98.3% (Additional file 2:
Table S2). We identified a similar number of conserved
proteins in each isolate (7353 to 7439). The number of
proteins predicted to be secreted (secretome) ranged from
932 to 1059 among isolates (Table 1, Additional file 3:
Table S3). We analyzed the set of proteins likely acting as
effectors in host interactions based on predictions from
EffectorP [50]. We found a total of 221 candidate effectors
in the genome of IPO323 and a range of 286–330 candi-
date effectors among the four Swiss isolates 1A5, 1E4,
3D1, and 3D7 (Table 1).

Pangenome analyses of core and accessory gene sets
In order to assess shared protein functions among iso-
lates, we constructed a pangenome by clustering the
protein sets encoded by each of the genomes of isolates
1A5, 1E4, 3D1, 3D7, and IPO323. The thresholds used

at the protein clustering stage affected the number of
detected homologs. We conservatively considered pro-
teins with more than 60% length and more than 75%
sequence similarity as homologs. Decreasing the thresh-
olds did not meaningfully reduce the size of the pangen-
ome, whereas increasing the thresholds increased the
pangenome size by approximately 20% (Additional file 3:
Table S3). We identified a total of 15,749 non-redundant
proteins, of which 9149 (58.1%) were shared among all
five analyzed genomes (Fig. 3a, Additional file 4: Table
S4). We defined this set of proteins to be encoded by the
core genome. The accessory genome of all strains com-
bined encoded 6600 (41.9%) non-redundant proteins.
The accessory genome encoded 3377 (21.4%) proteins
shared by at least two isolates and 3223 (20.4%) singleton
proteins found in only one isolate (Fig. 3b). IPO323 and
3D7 had a higher proportion of singleton proteins, with
1006 and 859 proteins, respectively (Fig. 3a). Isolates 1A5,
1E4, and 3D1 had comparable numbers of singleton pro-
teins (411–483). The number of singleton proteins
reflected the genetic distances among the isolates as
shown by the principal component analysis (Fig. 1b).
Among the 15,749 proteins encoded by the pangen-

ome of Z. tritici, only 76 proteins had a paralog. This
low number of paralogs may be a consequence of effi-
cient repeat-induced point (RIP) mutations introduced
into any recently duplicated sequence [51]. Most para-
logs originated from simple duplication events
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genes transposable elements

Fig. 2 Pairwise chromosomal synteny between homologs of chromosome 8. Collinear sequences are shown by red segments with light to dark red
indicating levels of sequence identity (90–100%). Light to dark blue indicates levels of sequence identity (90–100%) of inverted sequences. The locations
of genes and transposable elements are shown in black and yellow, respectively. Chromosomal positions are shown with separate megabase (Mb) scales
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(Additional file 5: Table S5). Three of the paralogs
(Cluster_002657, Cluster_007468, and Cluster_009805)
encoded candidate effectors. The most expanded para-
log families were Cluster_001114, Cluster_000001,
Cluster_000201, Cluster_000202, and Cluster_000200,
and most paralog members were found in the 1E4 and
1A5 genomes with up to 13 and 24 copies, respectively
(Additional file 5: Table S5).
Differences in encoded proteins among isolates can

stem from several factors, including gene gains and
losses, as well as segregating loss-of-function (LOF) mu-
tations. We evaluated IPO323 proteins for which we
found no pangenome homolog in either one of the four
other isolates. Thus, such genes were classified as
accessory or singleton proteins. We mapped Illumina
whole genome sequencing data from each of the four
other isolates to the genome of IPO323 and analyzed
sequence coverage. We found that 31–35% of the genes
for which an isolate was not predicted to have a func-
tional protein lacked sequence coverage (Additional file
6: Table S6, Additional file 7: Figure S1). We found that
an additional 46–51% had at least partial sequence
coverage but contained LOF mutation causing protein
truncations (Additional file 6: Table S6). Finally, we
mapped RNAseq data of each isolate to the genome
of IPO323 and quantified expression levels of the
accessory genes. We found that, overall, 80–83% of
all genes lacked transcription over the course of an

infection (Additional file 6: Table S6). In summary,
isolates lacked accessory proteins due to a combin-
ation of gene deletions and LOF mutations. Add-
itional factors may be related to pseudogenization, as
suggested by a lack of transcription. In summary,
these factors accounted for a total of approximately
90% of accessory genes in the pangenome (Additional
file 6: Table S6).

Structure and function of the pangenome
We found that accessory and singleton genes were fre-
quently clustered into blocks of 2–23 genes in the IPO323
genome (Fig. 3c). The degree of clustering was signifi-
cantly higher than expected from a random distribution of
gene localizations (Fisher exact test, P < 0.0001). In the
IPO323 genome, singleton genes were closest to transpos-
able elements followed by accessory and core genes
(Fig. 4). As an evolutionary response to prevent transpos-
able element proliferation, regions rich in transposable
elements can be silenced through histone lysine methyla-
tion. Specific methlyations are associated with euchroma-
tin (H3K4me2), obligate (H3K9me3), and facultative
(H3K27me3) heterochromatin regions. All pangenome
gene categories were at similar distances to euchromatin
regions (Fig. 4). Mirroring the association with transpos-
able elements, singleton genes were closer to regions of
obligate heterochromatin. In contrast, core genes were
closer to regions of facultative heterochromatin (Fig. 4). In

Table 1 Genome assembly and annotation statistics of the five complete Zymoseptoria tritici genomes

Genomes assembly 1A5 1E4 3D1 3D7 IPO323

Genome size, Mb 39.7 38.6 40.7 37.9 39.7

Chromosomes, n 21 20 21 17 21

Gene annotation

Predicted genes 12,092 12,033 12,006 11,737 11,839

Average gene length, bp 1520.2 1524.2 1514.1 1502.6 1620.9

Average protein length, aa 467.5 468.3 466.4 457.2 487.8

Number of exons 29,716 30,015 29,033 30,399 30,068

Average exons per gene 2.46 2.49 2.42 2.59 2.54

Average exon length, bp 570.7 563.3 579.8 530.7 575.2

Number of introns 17,628 17,984 17,027 18,663 18,226

Average introns per gene 2.18 2.21 2.15 2.29 2.54

Average intron length, bp 80.7 79.7 79 80.6 91.6

Genes with introns 8099 8129 7925 8142 8044

Gene density, Mb–1 304.6 311.7 294.9 309.7 298.3

Protein functions

Proteins with Pfam domain 7403 7439 7431 7353 7375

Secreted protein 1025 1059 1014 1034 932

Predicted effectorsa 309 286 296 330 221
aEffectors were predicted using the software EffectorP [50]
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the Z. tritici genome, facultative heterochromatin was
mostly associated with subtelomeric regions, while obli-
gate heterochromatin was enriched in regions rich in
transposable elements.
We estimated the total size of the core and pangen-

ome by resampling 1–5 genomes and reporting the size
of the core and pangenome. We found that the core
genome likely stabilizes at approximately 9000 core
genes (Fig. 3d). However, the number of accessory genes
discovered with each additional genome did not stabilize
and the pangenome size increased almost linearly with
the number of genomes (Fig. 3d). Thus, the complete

pangenome of the species is likely substantially larger
than estimated from these five genomes.
We analyzed three categories of genes constituting

the pangenome of Z. tritici, namely core genes shared
among all five genomes, accessory genes found in 2–4
genomes, and singleton genes found only in a single
genome. We defined these categories to approximate
the gene frequencies in the species and identify specific
characteristics of subsets of the pangenome. The aver-
age amino acid sequence length was significantly differ-
ent between the three categories, with core genes
encoding on average the longest amino acid sequences

a b

c d

Fig. 3 The pangenome of Zymoseptoria tritici. a Venn diagram of the singleton, accessory, and core genes of the pangenome. b Categorization of the
pangenome into singleton, accessory, and core genes according to the number of times a specific gene was identified among genomes. c Genes of
the isolate IPO323 classified as either accessory or singleton in the pangenome were analyzed for clustering in the genome (black bar). In comparison,
the mean of 1000 randomly drawn distributions of accessory genes are shown with grey bars. Accessory genes were significantly more likely to be in
clusters than expected by chance (Fisher exact test, P < 0.0001). d Estimation of the sizes of the core genome (genes shared among all isolates) and
the pangenome (all genes). Genomes were resampled in all possible combinations of 1–5 and the number of core and pangenome genes are
reported as dots. The pangenome curve was modelled by fitting the power law regression formula y = AxB + C and the core genome curve was
modelled by fitting the exponential regression formula y = AeBx + C
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(Kruskal–Wallis test, P < 0.0001, Fig. 5a). Among core
genes, 67% encoded a conserved protein domain. The
percentage decreased to 32% and 20% for accessory and
singleton genes (Fig. 5b). Pathogen genomes encode a
large number of secreted proteins with roles in host inter-
actions. We found that both secreted proteins and effector
candidates were significantly enriched among proteins
encoded by accessory and singleton genes, with the high-
est proportion found in accessory genes (Fig. 5c, d). We
identified a total of 153 core effector candidates shared
among all five genomes as well as 232 accessory and 120
singleton effector candidates (Fig. 5e). The genomes of
IPO323 and 3D7 encoded the largest number of single-
tons with 44 and 35 effector candidates, respectively.
Levels of gene transcription also varied among gene
categories with core genes showing the highest and single-
tons showing the lowest median transcription levels
during infection of wheat (Fig. 5f).
We analyzed whether different gene categories of the

pangenome encoded distinct protein functions. For this,
we performed gene ontology (GO) term enrichment ana-
lyses. We found that core genes were significantly
enriched in housekeeping genes including basic cellular
functions and development. Core genes were also signifi-
cantly enriched in genes involved in general metabolism
functions such as lipid, sugar or amino acid metabolism,
biosynthesis and cell cycle (Additional file 8: Figure S2,
Additional file 9: Figure S3 and Additional file 10: Figure S4).
We found distinct GO terms to be enriched in accessory
and singleton gene categories. Accessory genes were signifi-
cantly enriched in functions such as transmembrane trans-
porter activity (Additional file 10: Figure S4). Moreover, we

found enrichment in cellular membrane localization
(Additional file 8: Figure S2). We also identified an
enrichment in zinc ion binding functions and protein
kinase activity, which suggests that the encoded proteins
play a role in signaling and transcriptional regulation.
Singleton genes were most significantly enriched in func-
tions related to DNA integration processes (Additional
file 8: Figure S2). Such functions often originate from the
insertion of transposable elements in protein coding
genes. We also found significantly enriched functions
related to host adaptation, including defense responses,
chitin catabolic processes, as well as hydrolase and
cysteine-type peptidase activities.

Pangenome characteristics in a worldwide collection of
Z. tritici
We investigated whether the distinct properties of the
pangenome gene categories were representative of species-
wide patterns in gene presence/absence variation and LOF
mutations. For this, we analyzed polymorphism detected in
a worldwide collection of 123 Z. tritici isolates. We mapped
Illumina short-read sequencing data of all isolates to each
of the five completely assembled genomes (Additional file
11: Table S7). Taking the 15,749 non-redundant genes of
the pangenome as a reference, we determined, for all
isolates, whether the pangenome genes were present and
functional (lacking frameshift mutations). We found that
each of the 123 isolates encoded between 11,683 and
12,684 functional genes (Fig. 6a). Non-synonymous nucleo-
tide diversity was significantly lower in core genes than in
accessory genes (Kruskal–Wallis test P < 0.0001; Fig. 6b,
Additional file 12: Table S8). Next, we analyzed copy
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Fig. 4 Association of core, accessory, and singleton genes in the pangenome with transposable elements and chromatin states. The genome of
IPO323 was analyzed for specific histone methylations associated with euchromatin (H3K4me2), obligate (H3K9me3), and facultative (H3K27me3)
heterochromatin regions. The boxplots show the median physical distances in bp
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number variation based on mapped read depth using
CNVnator. Among all 123 isolates and all 15,749 non-
redundant genes of the pangenome, we detected a total of
113,350 individual gene deletions. A total of 4556 loci
showed evidence for a complete gene deletion in at least
one isolate. We found strong differences in the rate of gene
deletions between the core and accessory genome (Fig. 6c).
Only 7.8% of the core genome loci showed evidence for de-
letions among the global collection of isolates, but 55.3%
and 61.2% of the accessory and singleton genome loci, re-
spectively, showed evidence for deletions. The majority
(52%) of the gene deletion loci had a low deletion frequency
among isolates (<10%). Core genome loci had the lowest
deletion frequencies with an average of 1.2% (Fig. 5a).
Accessory and singleton genes showed higher frequencies
of individual gene deletions, with averaged frequencies of
9.6% and 16.8%, respectively.

Pseudogenization often precedes gene loss and could
generate additional variation in gene content within the
species. We investigated two dominant causes of pseudo-
genization, namely premature stop codons and frameshift
mutations. To identify these two types of LOF mutations,
we analyzed single nucleotide polymorphisms (SNPs) and
small indels segregating among the 123 isolates. As for the
coverage analyses above, we called polymorphisms inde-
pendently using reads mapped against each of the five
completely assembled genomes (Additional file 6: Table
S6). We found LOF mutations in a total of 8669 genes
spanning all gene categories of the pangenome. Overall,
45.4% of the core genes, 68.6% of the accessory genes, and
68.2% of the singleton genes had at least one LOF
mutation in at least one isolate. The frequency of LOF
was significantly higher in accessory genes compared to
core genes (Kruskal–Wallis test, P < 0.0001; Fig. 6d).

a b

d
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c

Fig. 5 Functional analyses of the Zymoseptoria tritici pangenome. a Lengths of the encoded proteins by core, accessory, and singleton genes of the
pangenome (different letters are P < 0.0001, Kruskal–Wallis test). b Percentage of proteins with a conserved protein domain (different letters are
P < 0.0001, Fisher exact test). c, d Percentage of genes encoding secreted proteins and candidate effectors, respectively (different letters are P < 0.0001,
Fisher exact test). e Venn diagram of shared and unique effector candidates in the pangenome of isolates 1A5, 1E4, 3D1, 3D7, and IPO323 (reference
genome). f Median expression levels of pangenome genes (different letters are P < 0.0001, Kruskal–Wallis test)
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Pangenome analyses of effector genes
In Z. tritici, two major effector genes were identified using
association mapping [42, 43]. The first effector Zt_8_609
caused avirulence on the wheat cultivar Toronit and was
found to segregate a presence-absence polymorphism
within the species. Consistent with previous analyses
showing that Zt_8_609 was missing in 1A5, 1E4, 3D1, and
3D7 [42], the gene was identified as a singleton in IPO323

(Additional file 3: Table S3). The effector AvrStb6 causing
avirulence on cultivars carrying the resistance gene Stb6
was known to be missing in the annotation of IPO323
[43]. However, the gene was recovered and clustered at
the protein level in the annotations of 1A5, 1E4, 3D1, and
3D7 (Additional file 3: Table S3).
We more broadly analyzed gene deletions and LOF

mutations affecting genes that encoded candidate

ba

dc

fe

Fig. 6 Population genomic analyses of different pangenome gene categories. a Illumina whole-genome sequencing data of 123 Zymoseptoria tritici
isolates covering the worldwide distribution range was analyzed for polymorphism in core, accessory, and singleton genes of the pangenome. The
distribution shows the number of pangenome genes detected in each isolate. Gene presence was defined as showing no evidence for deletion
(based on sequence coverage) and no loss-of-function (LOF) mutations (based on variant calling). b Non-synonymous nucleotide diversity (πn) per
gene. c Percentage of isolates showing evidence for a gene deletion. d Percentage of isolates showing evidence for LOF mutations. e Percentage of
isolates showing evidence for an effector gene deletion. f Percentage of isolates showing evidence for LOF mutations in effector genes
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effectors. The pangenome analyses identified a total of
591 candidate effectors, of which 153 belonged to the
set of core genes (Fig. 5e). We analyzed the polymorph-
ism of candidate effector genes in the collection of 123
worldwide isolates. We observed a similar pattern for ef-
fector genes than for all gene categories combined. Ef-
fector genes showed much stronger conservation within
the species if they were core genes. Accessory and
singleton effector genes had both higher rates of gene
deletions and LOF mutations (Fig. 6e, f ). We identified a
total of 134 effector genes without any evidence for gene
deletion or LOF mutations in any of worldwide isolates.
Among these highly conserved effectors, 8 were also
conserved at the amino acid level and showed strong
up-regulation during plant colonization. This small pro-
portion of highly conserved effectors likely play an
essential role in pathogenicity.

Discussion
We constructed a pangenome for the highly poly-
morphic wheat pathogen Z. tritici based on five com-
pletely assembled and independently annotated isolates.
We identified a much larger gene repertoire than previ-
ously known from the reference genome alone. The core
and the accessory genome showed distinct functional,
structural and regulatory characteristics. We confirmed
the distinct properties of the core and accessory genome
by analyzing sequence data of a worldwide collection of
123 additional isolates. Accessory genes were more likely
to be polymorphic, contain frameshift mutations and
more likely to be deleted compared to core genes. We
identified eight highly conserved effector candidates
within the species that may play an essential role in
pathogenesis.

A pangenome to approximate the complete gene
repertoire of the species
Many fungal species vary considerably in genome size
among closely related species and show chromosome
length polymorphism within species [34, 52]. Early evi-
dence for chromosome length polymorphism in Z. tritici
was found based on gel electrophoresis [46]. A recent
population genomics study showed that Z. tritici popula-
tions harbor extensive gene deletion polymorphisms
affecting 15% of the genes identified in the reference
genome [53]. A comparison of two completely assem-
bled genomes showed that either strain harbored a simi-
lar number of additional genes compared to the other
strain [14]. Our pangenome construction confirmed that
Z. tritici harbors a significantly larger gene repertoire
than known from the reference genome alone. The gene
space of the reference genome IPO323 was estimated to
be composed of 11,795 complete genes [54] and our

minimum estimate of the gene repertoire of the pangen-
ome was 15,749 genes.
The total number of distinct genes encoded in Z. tritici

genomes is likely to be substantially higher for two
reasons. First, our estimates were based on four Swiss and
one Dutch isolates, which are unlikely to fully represent
the global polymorphism of the species. Nevertheless,
single field populations of Z. tritici harbor a substantial
portion (~90%) of the total genetic variation within the
species due to high effective population sizes and gene
flow [38]. Second, our resampling estimates of the
total gene content did not stabilize at a plateau with
five genomes.
The open nature of the Z. tritici pangenome means

that a substantial number of additional genes will be
identified by assembling additional genomes. In particu-
lar, analyzing genomes from the genetically diverse pop-
ulations in the Middle East and Fertile Crescent, where
the pathogen was co-domesticated with wheat, is likely
to drastically increase the size of the pangenome. In con-
trast to the open pangenome, we obtained a confident
estimation of the core genome size. Our resampling
showed that including additional genomes is unlikely to
substantially reduce the set of genes shared within the
species. We confirmed this prediction by analyzing the
gene content of 123 worldwide isolates and indeed
found that more than 98% of all genes defined as core
genes were present in all isolates. Core genes also shared
a number of properties indicative of their essential role
for the organism, and were significantly enriched among
others in functions related to basic cellular processes
and growth. Loss of genes encoding essential functions
would be strongly deleterious.
In contrast to the core genome, the accessory genome

was enriched in genes playing important roles in patho-
genicity. Plant pathogen genomes encode effectors that
can manipulate host immune defenses and largely deter-
mine the outcome of infections. Thus, comprehensive
knowledge of effector gene loci is crucial to gain insights
into the infection process. We identified hundreds of
effector genes in the newly assembled genomes of
isolates 1A5, 1E4, and 3D1, which were not present in
the previously assembled genomes of IPO323 and 3D7
[14, 45, 54]. We identified 250 effector genes that were
lacking in the IPO323 reference genome, which is
greater than the total number of effectors encoded by
the IPO323 genome (221). However, differences in ef-
fector gene predictions may also be influenced by the
annotation strategy [55]. Predictions for IPO323 were
performed using evidence for gene models extracted
from transcriptomic data of Z. tritici growing on culture
medium and during the earliest infection stages [54].
The newly assembled genomes were annotated using
transcriptomic evidence across the entire infection cycle
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[56]. This difference may indeed be important because
the expression of many effector genes coincides with the
development of large scale lesions and the onset of
pathogen reproduction [56]. An example of a missed
major avirulence effector is AvrStb6 [43]. The effector
gene was missing from genome annotations of the
IPO323 reference genome until evidence for the gene
was identified using more comprehensive transcriptomic
data. In contrast, the second known avirulence effector,
Zt_8_609, was properly annotated in the reference
genome IPO323, but the gene is deleted in all newly as-
sembled genomes [42]. Our pangenome analyses signifi-
cantly expanded the effector gene repertoire of Z. tritici
and provides an essential resource to identify yet
unknown avirulence factors.

Birth and death of genes in the pangenome
The pangenome constructed for Z. tritici comprised 42%
accessory genes (i.e., not fixed within the species). A more
expansive analysis of the pangenome covering more ge-
nomes would increase this proportion even further. The
extent of the accessory genome raises significant questions
with regard to the evolutionary origin of this polymorph-
ism, its role in adaptive evolution, and the trajectory of po-
tentially redundant gene functions. A substantial
proportion of the Z. tritici accessory genome was gener-
ated through LOF mutations segregating among isolates.
These mutations were predominantly deleterious frame-
shifts and early stop codons causing protein truncation.
Even if expressed, truncated proteins are unlikely to per-
form an identical biological function compared to the full-
length protein variant and, thus, contribute to functional
variation among isolates. Presence-absence polymorphism
of genes accounted for slightly less accessory genome
polymorphism than LOF mutations. Our analyses of a
worldwide collection of isolates confirmed the major char-
acteristics of the pangenome. In addition to higher fre-
quencies of gene deletions, accessory genes were more
likely to segregate LOF mutations. We also found that
accessory genes had higher non-synonymous nucleotide
diversity, which is indicative of relaxed selection caused by
functional redundancy.
In a previous analysis of Z. tritici, 1623 segregating

gene presence-absence polymorphisms were investigated
for their evolutionary origins [53]. Interestingly, approxi-
mately two-thirds of these polymorphisms were gener-
ated by deletions of genes that were shared among
closely related species. One-third of the presence-
absence polymorphisms affected genes lacking homo-
logs. Therefore, these genes were likely recently gained
and had not yet reached fixation within the species. In
principle, loss of essential gene functions should be
under strong negative selection in haploid organisms
[57]. Given the size of the Z. tritici accessory genome, a

substantial fraction of all Z. tritici genes are likely func-
tionally redundant or have no specific function (i.e., the
genes are dispensable).
Functional redundancy is unlikely to have evolved by in-

dividual gene duplications or whole genome duplications.
In fact, both our analysis of the pangenome and previous
analyses of the reference genome IPO323 revealed little
evidence for paralogy [45]. A likely explanation for the
lack of paralogs is that the genome of Z. tritici encodes
the machinery for the genomic defense mechanism RIP.
RIP introduces random mutations in any near identical se-
quence copy in the genome [58]. RIP primarily evolved as
a defense against the activity of transposable elements, but
it also constrains evolution by gene duplication [51]. Thus,
if gene dispensability evolved as a consequence of redun-
dancy, genes performing similar functions are unlikely to
be related by common descent. Functional redundancy in
absence of paralogy could explain why many effector gene
knockouts have no detectable impact on pathogenicity
[59, 60]. Importantly, functional redundancy in pathogen
effectors can serve the evolutionary purpose of a ‘bed-
hedging’ strategy. A change in the environment, such as
the introduction of a host detecting a specific effector, will
impose strong selection on the pathogen population to
eliminate this effector. Thus, a pathogen population that
is highly heterogeneous in effector complements can re-
cover from such selection by favoring non-recognized ef-
fectors that converge on the same function as a
recognized effector [61].
In addition to redundancy, environmental specificity or

local adaptation can be a driver of gene dispensability and,
ultimately, gene loss [62]. Some accessory genes could play
a role under specific environmental conditions and, thus,
contribute to local adaptation. As for functional redun-
dancy, the strongest candidate genes for such environmen-
tal specificity would be effector genes that evolved to
promote infection on specific host genotypes. Wheat culti-
vars are genetically highly diverse and encode at least 21
distinct resistance loci against the pathogen [63]. It is
thought that most wheat resistance loci are matched by a
specific pathogen effector. A pathogen expressing the
matching effector gene is unable to colonize the host.
Thus, geographic heterogeneity in the deployment of
wheat genotypes would favor specific effector gene losses
in specific regions. Evidence for such an adaptive gene loss
was found for a Z. tritici effector gene [42].

Conclusions
Z. tritici populations maintained very significant levels
of standing genetic variation as indicated by the speed of
adaptive evolution and decay in linkage disequilibrium
[37, 39, 40]. Effective population size is an important de-
terminant of pangenome sizes [64]. In absence of selec-
tion, large populations should maintain pangenomes by
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preventing accessory genes to be lost from the gene pool
by random drift. A constraint in the expansion of the
pangenome likely entails the necessity for homologous
chromosome pairing during meiosis. As the Z. tritici
accessory genome was associated with substantial struc-
tural variations, some accessory regions may already
show reduced recombination rates. In sufficiently large
populations, at least a fraction of the accessory genes
could have recently evolved from non-coding DNA.
Indeed, de novo gene evolution is common in the model
fungus Saccharomyces cerevisiae and other eukaryotes
[5, 65]. At an early stage, de novo genes would likely
have no function and show weak expression, characteris-
tics shared by many genes of the accessory genome.
Retracing the evolutionary origin of accessory genes will
provide significant insights into the emergence of highly
polymorphic pangenomes and their role in adaptive evo-
lution [23, 27, 28, 66, 67]. The analyses of eukaryotic
pangenomes will elucidate how major evolutionary nov-
elty arises within species.

Methods
High molecular-weight DNA extraction and single molecule
real-time (SMRT) sequencing
The isolates ST99CH_1A5, ST99CH_1E4, and
ST99CH_3D1 (abbreviated here as 1A5, 1E4, and 3D1,
respectively) were sampled from two Swiss wheat fields
in 1999 [68]. In order to extract high molecular-weight
DNA, we used the modified version of the cetyltrimethy-
lammonium bromide DNA extraction protocol
described in Plissonneau et al. [14]. In brief, fungal
spores were harvested after 5–6 days in liquid yeast su-
crose broth and lyophilized. Approximately 60–100 mg
of lyophilized spores were crushed with a mortar and
pestle. From a phenol-chloroform-isoamyl alcohol solu-
tion, the supernatant was transferred and centrifuged.
The pellet was resuspended in phenol-chloroform-
isoamyl alcohol and repeated twice. For each isolate,
PacBio SMRTbell libraries were prepared using > 15 μg
of high molecular-weight DNA. Sequencing was per-
formed using P6/C4 chemistry on a PacBio RSII instru-
ment at the Functional Genomics Center, Zurich,
Switzerland.

Complete genome assemblies
We used the pipeline developed previously for the Z. tritici
isolate 3D7 [14]. In summary, raw sequencing reads were
assembled using HGAP v 3.0 included in the SMRTanaly-
sis suite (version 2.3.0, patch 3) [21]. All settings were at
default, with the exception of the minimum seed read
length to initiate the self-correction. Different seed read
length cut-offs were tested to compensate for pre-
assembly yield. The assembled contigs were polished using
Quiver with default settings as implemented in the

SMRTanalysis suite. Problematic contigs were identified by
the mapped PacBio read coverage. Contigs were discarded
if the mean mapped coverage deviated by more than 1.5×
from the median coverage of all contigs (weighted by
length). We previously generated and genotyped crosses of
1A5 × 1E4 and 3D1 × 3D7, respectively [49]. Thus, we
were able to evaluate the contiguity of contigs using the
high-density SNP-based genetic maps. All assembled
contigs were uniquely assigned to a single linkage group.
The genetic and physical marker orders were highly corre-
lated. Completely assembled chromosomal sequences were
quality checked using short read data available for each of
the strains (NCBI Short Read Archive accessions
SRS383142, SRS383143, and SRS383146). We used the
PILON procedure to map Illumina short reads and cor-
rected indels and SNPs detected in the Illumina read align-
ments [69]. See Plissonneau et al. [14] for more details on
the SNP calling, map construction, and assembly valid-
ation procedure.

Gene prediction and genome annotation
To accurately predict the gene space of each newly as-
sembled genome, we used the gene prediction software
BRAKER v1.9 [70]. BRAKER combines coding sequence
and intron hints based on the mapping of conserved
protein sequences and introns identified in RNA-seq
data, respectively. We used RNA-seq datasets generated
for isolates 1A5, 1E4, and 3D1 [56], which covered four
time points (7, 12, 14, and 28 days after inoculation)
over the course of an infection of the susceptible wheat
cultivar Drifter. All sequencing datasets were retrieved
from the NCBI Short Read Archive under the project ac-
cession number SRP077418. Raw RNA-seq reads were
quality filtered using Trimmomatic v 0.36 [71] using the
following parameters: ILLUMINACLIP:TruSeq3-PE.fa:
2:30:10 LEADING:10 TRAILING:10 SLIDINGWIN
DOW:5:10 MINLEN: 50, and then aligned to the corre-
sponding genome assembly using tophat v 2.0.14 [72]
with the following parameters: –min-intron-length 10
–max-intron-length 1000 –mate-inner-dist 180 –mate-
std-dev 40. To extract predicted intron splice sites, we
used the tool bam2hints (–minintronlen = 10 –maxin-
tronlen = 1000 –maxgaplen = 9) from the AUGUSTUS
v3.2.1 gene prediction software [73]. In addition to
intron hints, we used coding sequences annotated in the
IPO323 reference genome [54]. For this, we mapped the
predicted protein sequences to each assembled genome
using exonerate 2.2.0 [74], with the following parame-
ters: –percent 95 –minintronlen = 10 –maxintronlen =
1000 –model = protein2genome. Finally, intron on
coding sequence hints were combined and provided to
BRAKER to generate gene predictions for each assem-
bled genome.
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Gene expression analyses
We quantified gene expression profiles over the course of
a wheat infection using RNAseq datasets generated by
Palma-Guerrero et al. [56] for isolates 1A5, 1E4, 3D1, and
3D7, and by Rudd et al. [59] for the reference genome iso-
late IPO323. RNAseq reads were mapped to the corre-
sponding reference genome using tophat v 2.0.14 [72]
using the following parameters: –min-intron-length 10
–max-intron-length 1000 –mate-inner-dist 180 –mate-
std-dev 40. To obtain read counts for each gene, we used
HTSeq v0.7.1 [75] with the parameters -s reverse –m
union. We calculated normalized counts per million and
reads per kilobase of transcript per million mapped reads
using the R package edgeR normalizing read counts indi-
vidually per isolate across all time points [76].

Annotation of gene functions
The completeness of the assembled genomes and the
corresponding gene annotations was tested using the
Ascomycota dataset of BUSCO version 3 [77]. Predicted
proteins were assigned to protein families (Pfam) and
GO terms using InterProScan 5.18–57 [78]. Secretion
signals, as well as cytoplasmic, transmembrane, and
extracellular domains, were predicted using a combin-
ation of SignalP 4.1 [79], Phobius 1.01 [80], and
TMHMM 2.0 [81]. To define the secretome of each iso-
late, we selected proteins, which were assigned a secre-
tion signal by both SignalP and Phobius. Proteins with
predicted transmembrane domains (by Phobius and
TMHMM), an extracellular domain or a cytoplasmic do-
main (by Phobius) were excluded. We analyzed the pre-
dicted secretome of each isolate for candidate effector
genes using EffectorP [50].

Pangenome analyses
We constructed the pangenome based on genes identi-
fied in the complete genomes of isolates 1A5, 1E4, 3D1,
3D7, and IPO323. We compared each of the five
encoded proteomes with BlastP with a cut-off e-value of
1 × 10–5 [82]. We then clustered proteins into families
based on pairwise alignments using the software SiLiX
v1.2.9 [83] and cut-offs set to 75% identity and 60%
coverage. To extrapolate the core genome and pangen-
ome sizes, we performed a resampling of all possible
combinations of 1–5 genomes. We modelled the core
genome and pangenome size curves by fitting the power
law regression formulas: y = AeBx + C and y = AxB + C,
respectively, in matlab.
Chromosomal synteny between genomes was analyzed

using pairwise blastn on repeat masked genomic se-
quences. Blastn hits were filtered for a minimum identity
of 95%, e-values reported as 0 and a minimum align-
ment length of 2000 bp. Syntenic regions shared

between pairs of homologous chromosomes were visual-
ized using the R package genoPlotR [84].
The chromosomal locations of core, accessory and

singleton genes were analyzed in the IPO323 genome
for the proximity to transposable elements [53].
Chromosomal locations were also analyzed for
euchromatin and heterochromatin marks based on
previously generated ChIP-seq datasets for the isolate
IPO323 [85]. We accessed the datasets from the
public gbrowse server (http://ascobase.cgrb.oregonsta
te.edu/cgi-bin/gb2/gbrowse/ztritici_public/). For each
ChIP-seq sample, we determined significantly enriched
domains using the RSEG toolset [86].

Isolate collection and Illumina genome sequencing
We analyzed Illumina whole-genome sequencing data
for 123 Z. tritici isolates originating from four worldwide
locations (Australia, Israel, Switzerland, and Oregon,
USA; Additional file 11: Table S7). Isolates were stored
for long-term use in silica at –80 °C. No clonal
genotypes were found among these isolates in previous
genetic diversity analyses [87]. A total of 106 isolates
were previously sequenced on a Illumina HiSeq 2500
(paired-end, 100 bp read lengths) and raw sequencing
data is available on the NCBI Short Read Archive under
the BioProject PRJNA178194 and PRJNA327615 [42, 44,
88]. We generated paired-end sequencing data for 19
additional isolates following identical procedures as for
the previously available data. We deposited the raw
sequencing data on the NCBI Short Read Archive under
the BioProject PRJNA327615 (see Additional file 11:
Table S7 for more details).

Alignment of Illumina genome sequencing data to
complete genomes
We trimmed the raw sequencing reads for quality and
adapter contamination using the software Trimmomatic
v 0.36 [71], with the following parameters: ILLUMINA
CLIP:TruSeq3-PE.fa:2:30:10 LEADING:10 TRAILING:10
SLIDINGWINDOW:5:10 MINLEN:50. Trimmed reads
were aligned separately on each of the five complete
genomes with bowtie2 v2.2.29 [89], with the following
parameters: sensitive-local –local –phredd33 –X 1000.
We identified and marked PCR duplicates with
MarkDuplicates of Picard tools v2.6.0 (http://broadin
stitute.github.io/picard).

Variant calling and analyses
We called SNPs and short indels of all 123 worldwide iso-
lates separately against each of the five complete genome
assemblies using the Genome Analysis Toolkit (GATK) v
3.7 pipeline [90]. First, we called variants individually for
each isolate using the GATK HaplotypeCaller with the fol-
lowing parameters: -nct 4 –emitRefConfidence GVCF
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–variant_index_type LINEAR –variant_index_parameter
128000 –sample_ploidy 1. The resulting gvcf files were
then combined per reference genome and genotyped with
the modules CombineGVCFs and GenotypeGVCFs, re-
spectively. The identified SNPs and short indels were
filtered for quality using VariationFiltration with the fol-
lowing cut-offs: QD > 20, FS < 0.1, QUAL > 250, MQ > 30,
–2 < BaseQRankSum< 2, –2 < ReadPosRankSum < 2, and
–2 <MQRankSumPos < 2. We analyzed the predicted im-
pact of each variant using SnpEff v 4.3 g (with –ud 300)
[91]. Variant effects were parsed with SnpSift v4.3 g [92].
To calculate the non-synonymous nucleotide diversity per
gene, we extracted non-synonymous SNPs with SnpSift
and then used vcftools with the command –haploid –site-
pi in vcftools v0.1.14 [93], with the haploid mode patch
provided by Julien Y. Dutheil.

Identification of copy number variation
To detect gene deletions and duplications in the 123
worldwide isolates, we used the software CNVnator [94].
CNVnator uses normalized read depth (RD) to identify
copy number variation (CNV). Following standard rec-
ommendations, we performed the analyses in bins of
100 bp. Raw CNV calls were filtered using the following
criteria: for duplications RD > 2 and deletions RD < 0.4,
additional filters were q0 < 0.5, length > 500 bp, and e-
value < 0.05. We retrieved genes affected by CNVs using
bedtools intersect [95]. CNVnator analyses were per-
formed separately for reads mapped to each of the five
complete genomes.

GO enrichment analysis
Enrichment of GO terms of proteins encoded by genes in
different categories was tested using hypergeometric tests
with a false discovery rate cut-off set to 0.05. We retained
only GO term enrichment results if at least five genes in
the genome matched the GO term. All analyses were per-
formed using the R packages GSEABase and GOStats [96].

Genome assembly and annotation data availability
All complete genome assemblies and corresponding gen-
ome annotations were uploaded to the European
Nucleotide Archive under accession numbers PRJEB15648,
PRJEB20900, and PRJEB20899 for isolates 1A5, 1E4, and
3D1, respectively.
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